Bosonic systems; Entropy production; Gaussian systems; Thermodynamic process
Résumé :
[en] As previously demonstrated, the entropy production - a key quantity characterizing the irreversibility of thermodynamic processes - is related to generation of correlations between degrees of freedom of the system and its thermal environment. This raises the question of whether such correlations are of a classical or quantum nature, namely, whether they are accessible through local measurements on the correlated degrees of freedom. We address this problem by considering fermionic and bosonic Gaussian systems. We show that, for fermions, the entropy production is mostly quantum due to the parity superselection rule that restricts the set of physically allowed measurements to projections on the Fock states, thus significantly limiting the amount of classically accessible correlations. In contrast, in bosonic systems a much larger amount of correlations can be accessed through Gaussian measurements. Specifically, while the quantum contribution may be important at low temperatures, in the high-temperature limit the entropy production corresponds to purely classical position-momentum correlations. Our results demonstrate an important difference between fermionic and bosonic systems regarding the existence of a quantum-to-classical transition in the microscopic formulation of the entropy production. They also show that entropy production can be mainly caused by quantum correlations even in the weak coupling limit, which admits a description in terms of classical rate equations for state populations, as well as in the low particle density limit, where the transport properties of both bosons and fermions converge to those of classical particles.
Disciplines :
Physique
Auteur, co-auteur :
PTASZYNSKI, Krzysztof ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Physics and Materials Science (DPHYMS) ; Institute of Molecular Physics, Polish Academy of Sciences, Poznań, Poland
ESPOSITO, Massimiliano ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Physics and Materials Science (DPHYMS)
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Quantum and Classical Contributions to Entropy Production in Fermionic and Bosonic Gaussian Systems
K.P. was supported by the National Science Centre, Poland, under Grant No. 2017/27/N/ST3/01604, and by the Scholarships of Minister of Science and Higher Education. This research is also supported by the FQXi foundation project “Colloids and superconducting quantum circuits” (Grant No. FQXi-IAF19-05-52).
U. Seifert, Stochastic thermodynamics, fluctuation theorems, and molecular machines, Rep. Prog. Phys. 75, 126001 (2012). 0034-4885 10.1088/0034-4885/75/12/126001
G. T. Landi and M. Paternostro, Irreversible entropy production: From classical to quantum, Rev. Mod. Phys. 93, 035008 (2021). 0034-6861 10.1103/RevModPhys.93.035008
H. Tasaki, From Quantum Dynamics to the Canonical Distribution: General Picture and a Rigorous Example, Phys. Rev. Lett. 80, 1373 (1998). 0031-9007 10.1103/PhysRevLett.80.1373
S. Goldstein, J. L. Lebowitz, R. Tumulka, and N. Zanghì, Canonical Typicality, Phys. Rev. Lett. 96, 050403 (2006). 0031-9007 10.1103/PhysRevLett.96.050403
S. Popescu, A. J. Short, and A. Winter, Entanglement and the foundations of statistical mechanics, Nat. Phys. 2, 854 (2006). 1745-2473 10.1038/nphys444
M. Baldovin, A. Vulpiani, and G. Gradenigo, Statistical mechanics of an integrable system, J. Stat. Phys. 183, 41 (2021). 0022-4715 10.1007/s10955-021-02781-7
L. Dabelow, P. Vorndamme, and P. Reimann, Thermalization of locally perturbed many-body quantum systems, Phys. Rev. B 105, 024310 (2022). 2469-9950 10.1103/PhysRevB.105.024310
M. C. Bañuls, J. I. Cirac, and M. B. Hastings, Strong and Weak Thermalization of Infinite Nonintegrable Quantum Systems, Phys. Rev. Lett. 106, 050405 (2011). 0031-9007 10.1103/PhysRevLett.106.050405
J. M. Deutsch, Quantum statistical mechanics in a closed system, Phys. Rev. A 43, 2046 (1991). 1050-2947 10.1103/PhysRevA.43.2046
M. Srednicki, Chaos and quantum thermalization, Phys. Rev. E 50, 888 (1994). 1063-651X 10.1103/PhysRevE.50.888
J. M. Deutsch, Eigenstate thermalization hypothesis, Rep. Prog. Phys. 81, 082001 (2018). 0034-4885 10.1088/1361-6633/aac9f1
A. Polkovnikov, K. Sengupta, A. Silva, and M. Vengalattore, Colloquium: Nonequilibrium dynamics of closed interacting quantum systems, Rev. Mod. Phys. 83, 863 (2011). 0034-6861 10.1103/RevModPhys.83.863
J. Eisert, M. Friesdorf, and C. Gogolin, Quantum many-body systems out of equilibrium, Nat. Phys. 11, 124 (2015). 1745-2473 10.1038/nphys3215
C. Gogolin and J. Eisert, Equilibration, thermalisation, and the emergence of statistical mechanics in closed quantum systems, Rep. Prog. Phys. 79, 056001 (2016). 0034-4885 10.1088/0034-4885/79/5/056001
L. D'Alessio, Y. Kafri, A. Polkovnikov, and M. Rigol, From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics, Adv. Phys. 65, 239 (2016). 0001-8732 10.1080/00018732.2016.1198134
T. Mori, T. N. Ikeda, E. Kaminishi, and M. Ueda, Thermalization and prethermalization in isolated quantum systems: A theoretical overview, J. Phys. B 51, 112001 (2018). 0953-4075 10.1088/1361-6455/aabcdf
S. Trotzky, Y-A. Chen, A. Flesch, I. P. McCulloch, U. Schollwöck, J. Eisert, and I. Bloch, Probing the relaxation towards equilibrium in an isolated strongly correlated one-dimensional Bose gas, Nat. Phys. 8, 325 (2012). 1745-2473 10.1038/nphys2232
A. M. Kaufman, M. E. Tai, A. Lukin, M. Rispoli, R. Schittko, P. M. Preiss, and M. Greiner, Quantum thermalization through entanglement in an isolated many-body system, Science 353, 794 (2016). 0036-8075 10.1126/science.aaf6725
G. Clos, D. Porras, U. Warring, and T. Schaetz, Time-Resolved Observation of Thermalization in an Isolated Quantum System, Phys. Rev. Lett. 117, 170401 (2016). 0031-9007 10.1103/PhysRevLett.117.170401
C. Neill, et al., Ergodic dynamics and thermalization in an isolated quantum system, Nat. Phys. 12, 1037 (2016). 1745-2473 10.1038/nphys3830
X. Xu, C. Guo, and D. Poletti, Typicality of nonequilibrium quasi-steady currents, Phys. Rev. A 105, L040203 (2022). 2469-9926 10.1103/PhysRevA.105.L040203
H. Spohn, Entropy production for quantum dynamical semigroups, J. Math. Phys. 19, 1227 (1978). 0022-2488 10.1063/1.523789
P. Strasberg and M. Esposito, Non-Markovianity and negative entropy production rates, Phys. Rev. E 99, 012120 (2019). 2470-0045 10.1103/PhysRevE.99.012120
Á. Rivas, Strong Coupling Thermodynamics of Open Quantum Systems, Phys. Rev. Lett. 124, 160601 (2020). 0031-9007 10.1103/PhysRevLett.124.160601
D. Andrieux, P. Gaspard, T. Monnai, and S. Tasaki, The fluctuation theorem for currents in open quantum systems, New J. Phys. 11, 043014 (2009). 1367-2630 10.1088/1367-2630/11/4/043014
M. Esposito, U. Harbola, and S. Mukamel, Nonequilibrium fluctuations, fluctuation theorems, and counting statistics in quantum systems, Rev. Mod. Phys. 81, 1665 (2009). 0034-6861 10.1103/RevModPhys.81.1665
C. Jarzynski, Equalities and inequalities: Irreversibility and the second law of thermodynamics at the nanoscale, Annu. Rev. Condens. Matter Phys. 2, 329 (2011). 1947-5454 10.1146/annurev-conmatphys-062910-140506
M. Campisi, P. Hänggi, and P. Talkner, Colloquium: Quantum fluctuation relations: Foundations and applications, Rev. Mod. Phys. 83, 771 (2011). 0034-6861 10.1103/RevModPhys.83.771
M. Campisi and P. Hänggi, Fluctuation, dissipation and the arrow of time, Entropy 13, 2024 (2011). 1099-4300 10.3390/e13122024
M. Horodecki and J. Oppenheim, Fundamental limitations for quantum and nanoscale thermodynamics, Nat. Commun. 4, 2059 (2013). 2041-1723 10.1038/ncomms3059
F. G. S. L. Brandão, M. Horodecki, J. Oppenheim, J. M. Renes, and R. W. Spekkens, Resource Theory of Quantum States Out of Thermal Equilibrium, Phys. Rev. Lett. 111, 250404 (2013). 0031-9007 10.1103/PhysRevLett.111.250404
F. G. S. L. Brandão, M. Horodecki, N. H. Y. Ng, J. Oppenheim, and S. Wehner, The second laws of quantum thermodynamics, Proc. Natl. Acad. Sci. U.S.A. 112, 3275 (2015). 0027-8424 10.1073/pnas.1411728112
M. Esposito, K. Lindenberg, and C. Van den Broeck, Entropy production as correlation between system and reservoir, New J. Phys. 12, 013013 (2010). 1367-2630 10.1088/1367-2630/12/1/013013
P. Strasberg and A. Winter, First and Second Law of Quantum Thermodynamics: A Consistent Derivation Based on a Microscopic Definition of Entropy, PRX Quantum 2, 030202 (2021). 2691-3399 10.1103/PRXQuantum.2.030202
P. Strasberg, M. G. Díaz, and A. Riera-Campeny, Clausius inequality for finite baths reveals universal efficiency improvements, Phys. Rev. E 104, L022103 (2021). 2470-0045 10.1103/PhysRevE.104.L022103
K. Ptaszyński and M. Esposito, Entropy Production in Open Systems: The Predominant Role of Intraenvironment Correlations, Phys. Rev. Lett. 123, 200603 (2019). 0031-9007 10.1103/PhysRevLett.123.200603
J. P. Santos, L. C. Céleri, G. T. Landi, and M. Paternostro, The role of quantum coherence in non-equilibrium entropy production, npj Quantum Inf. 5, 23 (2019). 2056-6387 10.1038/s41534-019-0138-y
P. A. Camati, J. F. G. Santos, and R. M. Serra, Coherence effects in the performance of the quantum Otto heat engine, Phys. Rev. A 99, 062103 (2019). 2469-9926 10.1103/PhysRevA.99.062103
C. L. Latune, I. Sinayskiy, and F. Petruccione, Negative contributions to entropy production induced by quantum coherences, Phys. Rev. A 102, 042220 (2020). 2469-9926 10.1103/PhysRevA.102.042220
M. H. Mohammady, A. Auffèves, and J. Anders, Energetic footprints of irreversibility in the quantum regime, Commun. Phys. 3, 89 (2020). 2399-3650 10.1038/s42005-020-0356-9
B. O. Goes and G. T. Landi, Entropy production dynamics in quench protocols of a driven-dissipative critical system, Phys. Rev. A 102, 052202 (2020). 2469-9926 10.1103/PhysRevA.102.052202
G. Francica, J. Goold, and F. Plastina, Role of coherence in the nonequilibrium thermodynamics of quantum systems, Phys. Rev. E 99, 042105 (2019). 2470-0045 10.1103/PhysRevE.99.042105
A. D. Varizi, A. P. Vieira, C. Cormick, R. C. Drumond, and G. T. Landi, Quantum coherence and criticality in irreversible work, Phys. Rev. Res. 2, 033279 (2020). 2643-1564 10.1103/PhysRevResearch.2.033279
A. D. Varizi, M. A. Cipolla, M. Perarnau-Llobet, R. C. Drumond, and G. T. Landi, Contributions from populations and coherences in non-equilibrium entropy production, New J. Phys. 23, 063027 (2021). 1367-2630 10.1088/1367-2630/abfe20
A. D. Varizi, R. C. Drumond, and G. T. Landi, Quantum quench thermodynamics at high temperatures, Phys. Rev. A 105, 062218 (2022). 2469-9926 10.1103/PhysRevA.105.062218
P. Strasberg and A. Winter, Heat, work and entropy production in open quantum systems: A microscopic approach based on observational entropy, (2020), ArXiv:2002.08817v1.
C. C. Rulli and M. S. Sarandy, Global quantum discord in multipartite systems, Phys. Rev. A 84, 042109 (2011). 1050-2947 10.1103/PhysRevA.84.042109
M. Bradshaw, P. K. Lam, and S. M. Assad, Gaussian multipartite quantum discord from classical mutual information, J. Phys. B: At. Mol. Opt. Phys. 52, 245501 (2019). 0953-4075 10.1088/1361-6455/ab443c
M. Aguilar and J. P. Paz, Time-extensive classical and quantum correlations in thermal machines, Phys. Rev. A 105, 012410 (2022). 2469-9926 10.1103/PhysRevA.105.012410
M. Aguilar, N. Freitas, and J. P. Paz, Entanglement generation in quantum thermal machines, Phys. Rev. A 102, 062422 (2020). 2469-9926 10.1103/PhysRevA.102.062422
G. C. Wick, A. S. Wightman, and E. P. Wigner, The intrinsic parity of elementary particles, Phys. Rev. 88, 101 (1952). 0031-899X 10.1103/PhysRev.88.101
S. Szalay, Z Zimborás, M. Máté, G. Barcza, C. Schilling, and Ö. Legeza, Fermionic systems for quantum information people, J. Phys. A: Math. Theor. 54, 393001 (2021). 1751-8113 10.1088/1751-8121/ac0646
J. Faba, V. Martín, and L. Robledo, Two-orbital quantum discord in fermion systems, Phys. Rev. A 103, 032426 (2021). 2469-9926 10.1103/PhysRevA.103.032426
A. Colla and H.-P. Breuer, Entropy production and the role of correlations in quantum Brownian motion, Phys. Rev. A 104, 052408 (2021). 2469-9926 10.1103/PhysRevA.104.052408
I. Peschel, Calculation of reduced density matrices from correlation functions, J. Phys. A: Math. Gen. 36, L205 (2003). 0305-4470 10.1088/0305-4470/36/14/101
S. Bravyi, Lagrangian representation for fermionic linear optics, Quantum Inf. Comput. 5, 216 (2005). 1533-7146 10.26421/QIC5.3-3
C. V. Kraus, A quantum information perspective of fermionic quantum many-body systems, PhD thesis, Technische Universität München (2009).
V. Eisler and Z. Zimborás, On the partial transpose of fermionic Gaussian states, New J. Phys. 17, 053048 (2015). 1367-2630 10.1088/1367-2630/17/5/053048
L. Hackl and E. Bianchi, Bosonic and fermionic Gaussian states from Kähler structures, Sci. Post Phys. Core 4, 025 (2021). 2666-9366 10.21468/SciPostPhysCore.4.3.025
J. Surace and L. Tagliacozzo, Fermionic Gaussian states: An introduction to numerical approaches, Sci. Post Phys. Lect. Notes 54, 1 (2022). 2590-1990 10.21468/SciPostPhysLectNotes.54
A. Sharma and E. Rabani, Landauer current and mutual information, Phys. Rev. B 91, 085121 (2015). 1098-0121 10.1103/PhysRevB.91.085121
H. Bernigau, M. J. Kastoryano, and J. Eisert, Mutual information area laws for thermal free fermions, J. Stat. Mech. P02008 (2015), 1742-5468 10.1088/1742-5468/2015/02/P02008.
G. Röpke, Nonequilibrium Statistical Physics (Wiley-VCH, Weinheim, 2013).
V. Eisler and I. Peschel, On entanglement evolution across defects in critical chains, Europhys. Lett. 99, 20001 (2012). 0295-5075 10.1209/0295-5075/99/20001
M. V. Fichetti, Theory of electron transport in small semiconductor devices using the Pauli master equation, J. Appl. Phys. 83, 270 (1998). 0021-8979 10.1063/1.367149
A. S. Holevo, Bounds for the quantity of information transmitted by a quantum communication channel, Probl. Peredachi Inf. 9, 3 (1973). [Probl. Inf. Transm. 9, 177 (1973)]
A. Pernice, J. Helm, and W. T. Strunz, System-environment correlations and non-Markovian dynamics, J. Phys. B: At. Mol. Opt. Phys. 45, 154005 (2012). 0953-4075 10.1088/0953-4075/45/15/154005
A. Smirne, N. Megier, and B. Vacchini, On the connection between microscopic description and memory effects in open quantum system dynamics, Quantum 5, 439 (2021). 2521-327X 10.22331/q-2021-04-26-439
A. S. Householder, Unitary triangularization of a nonsymmetric matrix, J. ACM 5, 339 (1958). 0004-5411 10.1145/320941.320947
T. Ozaki, Householder method for tridiagonalization: Ver. 1.0, https://www.openmx-square.org/tech_notes/tech10-1_0/tech10-1_0.html.
G. Adesso, A. Serafini, and F. Illuminati, Determination of Continuous Variable Entanglement by Purity Measurements, Phys. Rev. Lett. 92, 087901 (2004). 0031-9007 10.1103/PhysRevLett.92.087901
A. Serafini, G. Adesso, and F. Illuminati, Unitarily localizable entanglement of Gaussian states, Phys. Rev. A 71, 032349 (2005). 1050-2947 10.1103/PhysRevA.71.032349
K. Ptaszyński and M. Esposito, Post-thermalization via information spreading in open quantum systems, Phys. Rev. E 106, 014122 (2022). 2470-0045 10.1103/PhysRevE.106.014122
L. Pucci, M. Esposito, and L. Peliti, Entropy production in quantum Brownian motion, J. Stat. Mech. P04005 (2013), 1742-5468 10.1088/1742-5468/2013/04/P04005.
S. Einsiedler, Non-perturbative approach to non-Markovianity and entropy production in the Caldeira-Leggett model, Master's thesis, Albert-Ludwigs-Universität Freiburg, 2020.
N. J. Cerf and C. Adami, Negative Entropy and Information in Quantum Mechanics, Phys. Rev. Lett. 79, 5194 (1997). 0031-9007 10.1103/PhysRevLett.79.5194
K. G. H. Vollbrecht and M. M. Wolf, Conditional entropies and their relation to entanglement criteria, J. Math. Phys. 43, 4299 (2002). 0022-2488 10.1063/1.1498490
T. Debarba, R. O. Vianna, and F. Iemini, Quantumness of correlations in fermionic systems, Phys. Rev. A 95, 022325 (2017). 2469-9926 10.1103/PhysRevA.95.022325
D. Kaszlikowski, A. Sen(De), U. Sen, V. Vedral, and A. Winter, Quantum Correlation without Classical Correlations, Phys. Rev. Lett. 101, 070502 (2008). 0031-9007 10.1103/PhysRevLett.101.070502
H. M. Wiseman and J. A. Vaccaro, Entanglement of Indistinguishable Particles Shared between Two Parties, Phys. Rev. Lett. 91, 097902 (2003). 0031-9007 10.1103/PhysRevLett.91.097902
L. Ding, S. Mardazad, S. Das, S. Szalay, U. Schollwöck, Z. Zimborás, and C. Schilling, Concept of orbital entanglement and correlation in quantum chemistry, J. Chem. Theory Comput. 17, 79 (2021). 1549-9618 10.1021/acs.jctc.0c00559
J. O. Ernst and F. Tennie, Mode entanglement in fermionic and bosonic harmonium, (2022), ArXiv:2211.09647.
O. Pusuluk, M. H. Yeşiller, G. Torun, Ö. E. Müstecaplloǧlu, E. Yurtsever, and V. Vedral, Classical and quantum orbital correlations in molecular electronic states, New J. Phys. 24, 102001 (2022). 1367-2630 10.1088/1367-2630/ac932b
A. Ferraro, S. Olivares, and M. G. A. Paris, Gaussian States in Quantum Information (Bibliopolis, Napoli, 2005).
C. Weedbrook, S. Pirandola, R. García-Patrón, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, Gaussian quantum information, Rev. Mod. Phys. 84, 621 (2012). 0034-6861 10.1103/RevModPhys.84.621
G. Adesso, S. Ragy, and A. R. Lee, Continuous variable quantum information: Gaussian states and beyond, Open Syst. Inf. Dyn. 21, 1440001 (2014). 1230-1612 10.1142/S1230161214400010
A. S. Holevo, M. Sohma, and O. Hirota, Capacity of quantum Gaussian channels, Phys. Rev. A 59, 1820 (1999). 1050-2947 10.1103/PhysRevA.59.1820
H. P. Yuen and J. H. Shapiro, Optical communication with two-photon coherent states-part III: Quantum measurements realizable with photoemissive detectors, IEEE Trans. Inf. Theory 26, 78 (1980). 0018-9448 10.1109/TIT.1980.1056132
S.-W. Li, The correlation production in thermodynamics, Entropy 21, 111 (2019). 1099-4300 10.3390/e21020111
A. Smith, K. Sinha, and C. Jarzynski, Quantum coherences and classical inhomogeneities as equivalent thermodynamics resources, Entropy 24, 474 (2022). 1099-4300 10.3390/e24040474
S. Floerchinger, T. Haas, and H. Müller-Groeling, Wehrl entropy, entropic uncertainty relations, and entanglement, Phys. Rev. A 103, 062222 (2021). 2469-9926 10.1103/PhysRevA.103.062222
A. Wehrl, General properties of entropy, Rev. Mod. Phys. 50, 221 (1978). 0034-6861 10.1103/RevModPhys.50.221
A. Wehrl, On the relation between classical and quantum-mechanical entropy, Rep. Math. Phys. 16, 353 (1979). 0034-4877 10.1016/0034-4877(79)90070-3
V. BuŽek, C. H. Keitel, and P. L. Knight, Sampling entropies and operational phase-space measurement. I. General formalism, Phys. Rev. A 51, 2575 (1995). 1050-2947 10.1103/PhysRevA.51.2575
L.-M. Duan, G. Giedke, J. I. Cirac, and P. Zoller, Inseparability Criterion for Continuous Variable Systems, Phys. Rev. Lett. 84, 2722 (2000). 0031-9007 10.1103/PhysRevLett.84.2722
A. Serafini, F. Illuminati, M. G. A. Paris, and S. De Siena, Entanglement and purity of two-mode Gaussian states in noisy channels, Phys. Rev. A 69, 022318 (2004). 1050-2947 10.1103/PhysRevA.69.022318
V. V. Dodonov, O. V. Man'ko, and V. I. Man'ko, Multidimensional Hermite polynomials and photon distribution for polymode mixed light, Phys. Rev. A 50, 813 (1994). 1050-2947 10.1103/PhysRevA.50.813
B. L. Schumaker and C. M. Caves, New formalism for two-photon quantum optics. II. Mathematical foundation and compact notation, Phys. Rev. A 31, 3093 (1985). 0556-2791 10.1103/PhysRevA.31.3093
A. O. Caldeira and A. J. Leggett, Quantum tunneling in a dissipative system, Ann. Phys. (USA) 149, 374 (1983). 0003-4916 10.1016/0003-4916(83)90202-6
J. Eisert and M. B. Plenio, Quantum and Classical Correlations in Quantum Brownian Motion, Phys. Rev. Lett. 89, 137902 (2002). 0031-9007 10.1103/PhysRevLett.89.137902
W. H. Zurek, Decoherence, einselection, and the quantum origins of the classical, Rev. Mod. Phys. 75, 715 (2003). 0034-6861 10.1103/RevModPhys.75.715
P. Ullersma, An exactly solvable model for Brownian motion: I. Derivation of the Langevin equation, Physica 32, 27 (1966). 0031-8914 10.1016/0031-8914(66)90102-9
L. S. Levitov and G. B. Lesovik, Charge distribution in quantum shot noise, Pis'ma Zh. Eksp. Teor. Fiz. 58, 225 (1993). [JETP Lett. 58, 230 (1993)]
K. Saito and A. Dhar, Fluctuation Theorem in Quantum Heat Conduction, Phys. Rev. Lett. 99, 180601 (2007). 0031-9007 10.1103/PhysRevLett.99.180601
P. Gaspard, Scattering approach to the thermodynamics of quantum transport, New J. Phys. 17, 045001 (2015). 1367-2630 10.1088/1367-2630/17/4/045001
K. Brandner, T. Hanazato, and K. Saito, Thermodynamic Bounds on Precision in Ballistic Multiterminal Transport, Phys. Rev. Lett. 120, 090601 (2018). 0031-9007 10.1103/PhysRevLett.120.090601
H. J. W. Haug and A.-P. Jauho, Quantum Kinetics in Transport and Optics of Semiconductors (Springer, Berlin, 2008).
B. K. Agarwalla and D. Segal, Energy current and its statistics in the nonequilibrium spin-boson model: Majorana fermion representation, New J. Phys. 19, 043030 (2017). 1367-2630 10.1088/1367-2630/aa6657
G. Adesso and A. Datta, Quantum versus Classical Correlations in Gaussian States, Phys. Rev. Lett. 105, 030501 (2010). 0031-9007 10.1103/PhysRevLett.105.030501
S. Pirandola, G. Spedalieri, S. L. Braunstein, N. J. Cerf, and S. Lloyd, Optimality of Gaussian Discord, Phys. Rev. Lett. 113, 140405 (2014). 0031-9007 10.1103/PhysRevLett.113.140405
F. Giustino, Electron-phonon interactions from first principles, Rev. Mod. Phys. 89, 015003 (2017). 0034-6861 10.1103/RevModPhys.89.015003
J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Theory of superconductivity, Phys. Rev. 108, 1175 (1957). 0031-899X 10.1103/PhysRev.108.1175
J. Koch and F. von Oppen, Franck-Condon Blockade and Giant Fano Factors in Transport through Single Molecules, Phys. Rev. Lett. 94, 206804 (2005). 0031-9007 10.1103/PhysRevLett.94.206804
J. Koch, F. von Oppen, and A. V. Andreev, Theory of the Franck-Condon blockade regime, Phys. Rev. B 74, 205438 (2006). 1098-0121 10.1103/PhysRevB.74.205438
N. V. Prokof'ev and P. C. E. Stamp, Theory of the spin bath, Rep. Prog. Phys. 63, 669 (2000). 0034-4885 10.1088/0034-4885/63/4/204
H.-P. Breuer, D. Burgarth, and F. Petruccione, Non-Markovian dynamics in a spin star system: Exact solution and approximation techniques, Phys. Rev. B 70, 045323 (2004). 1098-0121 10.1103/PhysRevB.70.045323
Ł. Cywiński, W. M. Witzel, and S. Das Sarma, Pure quantum dephasing of a solid-state electron spin qubit in a large nuclear spin bath coupled by long-range hyperfine-mediated interactions, Phys. Rev. B 79, 245314 (2009). 1098-0121 10.1103/PhysRevB.79.245314
T. Salamon, M. Płodzień, M. Lewenstein, and K. Roszak, Qubit-environment entanglement outside of pure decoherence: Hyperfine interaction, Phys. Rev. B 107, 085428 (2023). 2469-9950 10.1103/PhysRevB.107.085428
F. Wilczek, Quantum Mechanics of Fractional-Spin Particles, Phys. Rev. Lett. 49, 957 (1982). 0031-9007 10.1103/PhysRevLett.49.957
D. Arovas, J. R. Schrieffer, and F. Wilczek, Fractional Statistics and the Quantum Hall Effect, Phys. Rev. Lett. 53, 722 (1984). 0031-9007 10.1103/PhysRevLett.53.722
C. Nayak, S. H. Simon, A. Stern, M. Freedman, and S. Das Sarma, Non-Abelian anyons and topological quantum computation, Rev. Mod. Phys. 80, 1083 (2008). 0034-6861 10.1103/RevModPhys.80.1083
N. M. Myers and S. Deffner, Thermodynamics of Statistical Anyons, PRX Quantum 2, 040312 (2021). 2691-3399 10.1103/PRXQuantum.2.040312
We thank H. Larraguível Carrillo for this suggestion.
M. J. Gullans and D. A. Huse, Localization as an Entanglement Phase Transition in Boundary-Driven Anderson Models, Phys. Rev. Lett. 123, 110601 (2019). 0031-9007 10.1103/PhysRevLett.123.110601
M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2010).
D. E. Bruschi, G. S. Paraoanu, I. Fuentes, F. K. Wilhelm, and A. W. Schell, General solution of the time evolution of two interacting harmonic oscillators, Phys. Rev. A 103, 023707 (2021). 2469-9926 10.1103/PhysRevA.103.023707