Nonlinear ltering; Stochastic di erential; Stochastic calculus
Résumé :
[en] In this paper, we derive the Kushner-Stratonovich and
the Zakai equation for the lter and the unnormalized
lter associated with a nonlinear ltering problem with
correlated noises, bounded coe cients and a signal process
evolving in an in nite dimensional space. A robust form
of the Zakai equation is established when the noises are
independent.
Disciplines :
Mathématiques
Auteur, co-auteur :
Boulanger, Christophe
SCHILTZ, Jang ; University of Luxembourg > Faculty of Law, Economics and Finance (FDEF) > Luxembourg School of Finance (LSF)
Langue du document :
Anglais
Titre :
Nonlinear filtering with correlated noises in infinite dimension
Date de publication/diffusion :
1997
Nom de la manifestation :
European Contfrol Conference ECC 97
Lieu de la manifestation :
Brussels, Belgique
Date de la manifestation :
1-4 July 1997
Manifestation à portée :
International
Titre de l'ouvrage principal :
Proceedings of the European Control Conference 1997
Bismut J. M., Michel D., Diffusions conditionnelles, Part I: J. Funct. Anal, 44, 174-211, (1981).
Part II: J. Funct. Anal, 45, 274-292, (1982).
Clark J., The design of a robust approximation to the stochastic differential equations of nonlinear filtering, in: Swirzynski J. (ed.), Communication systems and random process theory, Sijthoff and Nordhoof (1978).
Davis M., Pathwise nonlinear filtering, in: Hazenwinkel and Willems, (eds.), Stochastic systems the mathematics of filtering and identification and applications, Reidel, Dordrecht, (1981).
Davis M., Marcus S. I., An introduction to nonlinear filtering, in: Hazenwinkel and Willems, (eds.), Stochastic systems the mathematics of filtering and identification and applications, Reidel, Dordrecht, (1981).
Florchinger P., Zakai equation of nonlinear filtering in infinite dimension, Proceedings of the 30th Conference on Decision and Control, 2754-2755, (1991).
Florchinger P., Zakai equation of nonlinear filtering with unbounded coefficients. The case of dependent noises. System & Control Letters, 21, 413-422, (1993).
Holley R., Stroock D., Diffusions on an infinite dimensional torus, J. Funct. Anal., 42, 29-63, (1981).
Hopkins W., Nonlinear filtering of non degenerate diffusions with unbounded coefficients, Thesis, University of Maryland at College Park, (1982).
Millet A., Nualart D., Sanz M., Time reversal for infinite dimensional diffusions, Probab. Theor. Rel. Fields, 82, 315-347, (1989).
Pardoux E., Stochastic partial differential equations and filtering of diffusion processes, Stochastics, 3, 127-167, (1979).
Pardoux E., Filtrage non linéaíre et équatíons aux dérívées partielles stochastiques associées, in: Ecole d'édé des Probabilitiés de Saint-Flour, Lect. Notes Math., 1464, Springer: Berlin, Heidelberg, New-York, 69-163, (1989).
Zakai M., On the optimal filtering of diffusion processes, Z. Wahrscheinlichkstheor. Verw. Gebiete, 11, 230-243, (1969).