finite element analysis; optimization; General Engineering; FEA; functionally graded lattice
Résumé :
[en] This paper presents a new method for optimizing the thickness distribution of a functionally
graded lattice structure. It links the thickness of discrete lattice regions via mathematical functions,
reducing the required number of optimization variables while being applicable to highly nonlinear
models and arbitrary optimization goals. This study demonstrates the method’s functionality by
altering the local thickness of a lattice structure in compression, optimizing the structure’s specific
energy absorption at constant weight. The simulation results suggest significant improvement
potential for the investigated Simple Cubic lattice, but less so for the Isotruss variant. The energy
absorption levels of the physical test results closely agree with the simulations; however, great
care must be taken to accurately capture material and geometry deviations stemming from the
manufacturing process. The proposed method can be applied to other lattice structures or goals
and could be useful in a wide range of applications where the optimization of lightweight and
high-performance structures is required
Disciplines :
Ingénierie mécanique
Auteur, co-auteur :
DECKER, Thierry ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Engineering (DoE)
KEDZIORA, Slawomir ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Engineering (DoE)
Co-auteurs externes :
no
Langue du document :
Anglais
Titre :
Local Thickness Optimization of Functionally Graded Lattice Structures in Compression
Anné G. Vleugels J. Van Der Biest O. Functionally graded ceramics Ceramic-Matrix Composites: Microstructure, Properties and Applications Elsevier Amsterdam, The Netherlands 2006 575 596 10.1533/9781845691066.5.575
Shabana Y.M. Noda N. Tohgo K. Elasto-plastic thermal stresses in functionally graded materials considering microstructure effects Proceedings of the Seventh Cairo University International MDP Conference Cairo, Egypt 15–17 February 2000
Zhou W. Ai S. Chen M. Zhang R. He R. Pei Y. Fang D. Preparation and thermodynamic analysis of the porous ZrO2/(ZrO2 + Ni) functionally graded bolted joint Compos. Part B Eng. 2015 82 13 22 10.1016/j.compositesb.2015.07.018
Noronha J. Dash J. Leary M. Watson M. Qian M. Kyriakou E. Brandt M. Additively Manufactured Functionally Graded Lattices: Design, Mechanical Response, Deformation Behavior, Applications, and Insights JOM 2023 75 5729 5754 10.1007/s11837-023-06190-x
Gibson L.J. Ashby M.F. Cellular Solids: Structure & Properties Cambridge University Press Oxford, UK 1988 10.1017/cbo9781139878326
Chen W. Zheng X. Liu S. Finite-element-mesh based method for modeling and optimization of lattice structures for additive manufacturing Materials 2018 11 2073 10.3390/ma11112073 30360562
Yang J. Chen X. Sun Y. Zhang J. Feng C. Wang Y. Wang K. Bai L. Compressive properties of bidirectionally graded lattice structures Mater. Des. 2022 218 110683 10.1016/j.matdes.2022.110683
Song J. Wang Y. Zhou W. Fan R. Yu B. Lu Y. Li L. Topology optimization-guided lattice composites and their mechanical characterizations Compos. Part B Eng. 2018 160 402 411 10.1016/j.compositesb.2018.12.027
Rahman H. Yarali E. Zolfagharian A. Serjouei A. Bodaghi M. Energy absorption and mechanical performance of functionally graded soft–hard lattice structures Materials 2021 14 1366 10.3390/ma14061366 33799821
Pham M.-S. Liu C. Todd I. Lertthanasarn J. Damage-tolerant architected materials inspired by crystal microstructure Nature 2019 565 305 311 10.1038/s41586-018-0850-3 30651615
Daynes S. Feih S. Lu W.F. Wei J. Optimisation of functionally graded lattice structures using isostatic lines Mater. Des. 2017 127 215 223 10.1016/j.matdes.2017.04.082
Chen Z. Xie Y.M. Wu X. Wang Z. Li Q. Zhou S. On hybrid cellular materials based on triply periodic minimal surfaces with extreme mechanical properties Mater. Des. 2019 183 108109 10.1016/j.matdes.2019.108109
Wu J. Aage N. Westermann R. Sigmund O. Infill Optimization for Additive Manufacturing—Approaching Bone-Like Porous Structures IEEE Trans. Vis. Comput. Graph. 2017 24 1127 1140 10.1109/TVCG.2017.2655523 28129160
Niknam H. Akbarzadeh A. Graded lattice structures: Simultaneous enhancement in stiffness and energy absorption Mater. Des. 2020 196 109129 10.1016/j.matdes.2020.109129
Ajdari A. Nayeb-Hashemi H. Vaziri A. Dynamic crushing and energy absorption of regular, irregular and functionally graded cellular structures Int. J. Solids Struct. 2011 48 506 516 10.1016/j.ijsolstr.2010.10.018
Maskery I. Hussey A. Panesar A. Aremu A. Tuck C. Ashcroft I. Hague R. An investigation into reinforced and functionally graded lattice structures J. Cell. Plast. 2016 53 151 165 10.1177/0021955X16639035
Maskery I. Aboulkhair N.T. Aremu A.O. Tuck C.J. Ashcroft I.A. Wildman R.D. Hague R.J.M. A mechanical property evaluation of graded density Al-Si10-Mg lattice structures manufactured by selective laser melting Mater. Sci. Eng. A 2016 670 264 274 10.1016/j.msea.2016.06.013
Choy S.Y. Sun C.-N. Leong K.F. Wei J. Compressive properties of functionally graded lattice structures manufactured by selective laser melting Mater. Des. 2017 131 112 120 10.1016/j.matdes.2017.06.006
Tao W. Liu Y. Sutton A. Kolan K. Leu M.C. EasyChair Preprint Design of Lattice Structures with Graded Density Fabricated by Additive Manufacturing “Design of lattice structures with graded density fabricated by additive manufacturing” Proceedings of the 2018 International Symposium on Flexible Automation, ISFA 2018 Kanazawa, Japan 15–19 July 2018
Bai L. Gong C. Chen X. Sun Y. Xin L. Pu H. Peng Y. Luo J. Mechanical properties and energy absorption capabilities of functionally graded lattice structures: Experiments and simulations Int. J. Mech. Sci. 2020 182 105735 10.1016/j.ijmecsci.2020.105735
nTop Available online: https://www.ntop.com (accessed on 31 October 2023)
HP MJF Available online: https://www.hp.com/us-en/printers/3d-printers/learning-center/3d-printing-process.html#section=hp-multi-jet-fusion (accessed on 31 October 2023)
Decker T. Kedziora S. Museyibov E. Comparison of Strength Properties of Common Powder Bed Fusion and Stereolithography Materials Proceedings of the 11th International Conference on Nano and Materials Science Singapore 13–15 January 2023
Faes M. Wang Y. Lava P. Moens D. Variability in the mechanical properties of laser sintered PA-12 components Proceedings of the 26th Annual International Solid Freeform Fabrication Symposium—An Additive Manufacturing Conference Austin, TX, USA 10–12 August 2015 SFF Singapore 2015 847 856
Aldahash S.A. Friction and wear properties of oriented Polaymide 12 objects manufactured by SLS Technology J. Engin. Appl. Sci. 2019 15 9 25
Roppenecker D.B. Grazek R. Coy J.A. Irlinger F. Lueth T.C. Friction coefficients and surface properties for laser sintered parts Proceedings of the ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE) San Diego, CA, USA 15–21 November 2013 Volume 2 1 10
Altair Available online: https://altair.com (accessed on 31 October 2023)
Altair HyperMesh Available online: https://altair.com/hypermesh/ (accessed on 31 October 2023)
Altair HyperStudy Available online: https://altair.com/hyperstudy/ (accessed on 31 October 2023)
Fischer S.F. Thielen M. Loprang R.R. Seidel R. Fleck C. Speck T. Bührig-Polaczek A. Pummelos as concept generators for biomimetically inspired low weight structures with excellent damping properties Adv. Eng. Mater. 2010 12 B658 B663 10.1002/adem.201080065
Modifiable Extensible Lattice Sequence (MELS) Available online: https://2021.help.altair.com/2021.2/hwdesktop/hst/topics/design_exploration/method_modified_extensible_lattice_sequence_doe_r.htm (accessed on 31 October 2023)
Global Response Search Method (GRSM) Available online: https://2021.help.altair.com/2021.2/hwdesktop/hst/topics/design_exploration/method_global_response_surface_method_r.htm (accessed on 31 October 2023)
Liu X. Wada T. Suzuki A. Takata N. Kobashi M. Kato M. Understanding and suppressing shear band formation in strut-based lattice structures manufactured by laser powder bed fusion Mater. Des. 2021 199 109416 10.1016/j.matdes.2020.109416