Comparing contemporaneous hunter-gatherer and early agrarian settlement systems with spatial point process models: Case study of the Estonian Stone Age
Corded Ware Culture; Hunter-gatherers; Landscape archaeology; Maxent; Neolithic transition; Point-process model; Settlement patterns; Archeology (arts and humanities); Archeology
Abstract :
[en] Inductive locational models have been used for decades to map the probability of past settlements and identify the preferred environmental conditions for habitation. In this study we apply inductive modelling to compare the spatial structure of the settlement systems of hunter-fisher-gatherer groups (Narva and Combed Ware Culture) and early agrarian communities (Corded Ware Culture) in Stone Age Estonia. We conceptualise settlement system formation as a point process and develop a first order point process model representing the environmental suitability for habitation based on geomorphological, soil and proximity to water. We use MaxEnt and the SDMTune machine learning framework for building the model, variable selection and estimation. The model is applied to the two communities and the effects of the variables and the resulting spatial patterns compared. The statistical analysis indicated higher predictive power for hunter-fisher-gatherer sites, which might result from higher variety of agrarian activities, different socio-economic organization or effects of spatial structure of the landscape. The spatial comparison indicates significant differences between the suitable environments for habitation between the two groups. While the hunter-fisher-gatherer population had an entirely shoreline connected settlement system the Corded Ware people inhabited the areas further away from water bodies. This resulted in significantly expanded potential space with differing spatial configuration for the incoming agrarian groups, possibly allowing tolerated immigration. The results also indicate there was a certain overlap of areas considered suitable habitation by both cultural groups, which might have caused a competition for land.
Disciplines :
Archaeology
Author, co-author :
SIKK, Kaarel ; University of Luxembourg > Faculty of Humanities, Education and Social Sciences > Department of Geography and Spatial Planning > Team Geoffrey CARUSO
CARUSO, Geoffrey ; University of Luxembourg > Faculty of Humanities, Education and Social Sciences (FHSE) > Department of Geography and Spatial Planning (DGEO) > Geography and Spatial Planning
Rosentau, Alar; Department of Geology, Institute of Ecology and Earth Sciences University of Tartu, CHEMICUM – Ravila 14A, Tartu, Estonia
Kriiska, Aivar; Department of Archaeology, Institute of History and Archaeology, University of Tartu, Tartu, Estonia
External co-authors :
yes
Language :
English
Title :
Comparing contemporaneous hunter-gatherer and early agrarian settlement systems with spatial point process models: Case study of the Estonian Stone Age
Allentoft, M.E., Sikora, M., Sjögren, K.-G., Rasmussen, S., Rasmussen, M., Stenderup, J., Damgaard, P.B., Schroeder, H., Ahlström, T., Vinner, L., Malaspinas, A.-S., Margaryan, A., Higham, T., Chivall, D., Lynnerup, N., Harvig, L., Baron, J., Casa, P.D., Dąbrowski, P., Duffy, P.R., Ebel, A.V., Epimakhov, A., Frei, K., Furmanek, M., Gralak, T., Gromov, A., Gronkiewicz, S., Grupe, G., Hajdu, T., Jarysz, R., Khartanovich, V., Khokhlov, A., Kiss, V., Kolář, J., Kriiska, A., Lasak, I., Longhi, C., McGlynn, G., Merkevicius, A., Merkyte, I., Metspalu, M., Mkrtchyan, R., Moiseyev, V., Paja, L., Pálfi, G., Pokutta, D., Pospieszny, Ł., Price, T.D., Saag, L., Sablin, M., Shishlina, N., Smrčka, V., Soenov, V.I., Szeverényi, V., Tóth, G., Trifanova, S.V., Varul, L., Vicze, M., Yepiskoposyan, L., Zhitenev, V., Orlando, L., Sicheritz-Pontén, T., Brunak, S., Nielsen, R., Kristiansen, K., Willerslev, E., Population genomics of Bronze Age Eurasia. Nature 522:7555 (2015), 167–172, 10.1038/nature14507.
Altschul, J., Models and the modelling process. Quantifying the Present and Predicting the Past: Theory, Method, and Application of Archaeological Predictive Modeling, 1988, U.S. Department of the Interior, Bureau of Land Management, Denver, 61–89.
Anderson, R.P., Raza, A., The effect of the extent of the study region on GIS models of species geographic distributions and estimates of niche evolution: preliminary tests with montane rodents (genus Nephelomys) in Venezuela: Effect of study region on models of distributions. J. Biogeogr. 37 (2010), 1378–1393, 10.1111/j.1365-2699.2010.02290.x.
Arbeiter, R., 1993. Engineering Geology Maps for the Tallinn area in scale 1:5000. Sheets 97–99 and 126–128.
Baddeley, A., Berman, M., Fisher, N.I., Hardegen, A., Milne, R.K., Schuhmacher, D., Shah, R., Turner, R., Spatial logistic regression and change-of-support in Poisson point processes. Electron. J. Statist. 4 (2010), 1151–1201, 10.1214/10-EJS581.
Banks, W.E., 2017. The application of ecological niche modeling methods to archaeological data in order to examine culture-environment relationships and cultural trajectories. Quaternaire. Revue de l'Association française pour l’étude du Quaternaire 271–276. 10.4000/quaternaire.7966.
Banks, W.E., d'Errico, F., Dibble, H.L., Krishtalka, L., West, D., Olszewski, D.I., Peterson, A.T., Anderson, D.G., Gillam, J.C., Montet-White, A., Eco-cultural niche modeling: new tools for reconstructing the geography and ecology of past human populations. PaleoAnthropology 4 (2006), 68–83.
Connor, T., Hull, V., Viña, A., Shortridge, A., Tang, Y., Zhang, J., Wang, F., Liu, J., Effects of grain size and niche breadth on species distribution modeling. Ecography 41:8 (2018), 1270–1282, 10.1111/ecog.03416.
Conrad, O., Bechtel, B., Bock, M., Dietrich, H., Fischer, E., Gerlitz, L., Wehberg, J., Wichmann, V., Böhner, J., System for automated geoscientific analyses (SAGA) v. 2.1.4. Geosci. Model Dev. 8:7 (2015), 1991–2007, 10.5194/gmd-8-1991-2015.
Costa, H., Foody, G., Jiménez, S., Silva, L., Impacts of species misidentification on species distribution modeling with presence-only data. ISPRS Int. J. Geo-Inf. 4 (2015), 2496–2518, 10.3390/ijgi4042496.
Crema, E.R., Bevan, A., Lake, M.W., A probabilistic framework for assessing spatio-temporal point patterns in the archaeological record. J. Archaeol. Sci. 37:5 (2010), 1118–1130, 10.1016/j.jas.2009.12.012.
Ebert, J.I., Kohler, T.A., The theoretical basis of archaeological predictive modeling and a consideration of appropriate data-collection methods. Quantifying the Present and Predicting the Past: Theory, Method, and Application of Archaeological Predictive Modeling, 1988, U.S. Department of the Interior, Bureau of Land Management, Denver, 97–172.
Ekman, M., A consistent map of the postglacial uplift of Fennoscandia. Terra Nova 8:2 (1996), 158–165, 10.1111/j.1365-3121.1996.tb00739.x.
Elith, J., Phillips, S.J., Hastie, T., Dudík, M., Chee, Y.E., Yates, C.J., A statistical explanation of MaxEnt for ecologists: statistical explanation of MaxEnt. Divers. Distrib. 17 (2011), 43–57, 10.1111/j.1472-4642.2010.00725.x.
Estonian Land Board, Elevation Data. 2019, Estonian Land Board, Tallinn.
Haak, W., Lazaridis, I., Patterson, N., Rohland, N., Mallick, S., Llamas, B., Brandt, G., Nordenfelt, S., Harney, E., Stewardson, K., Fu, Q., Mittnik, A., Bánffy, E., Economou, C., Francken, M., Friederich, S., Pena, R.G., Hallgren, F., Khartanovich, V., Khokhlov, A., Kunst, M., Kuznetsov, P., Meller, H., Mochalov, O., Moiseyev, V., Nicklisch, N., Pichler, S.L., Risch, R., Rojo Guerra, M.A., Roth, C., Szécsényi-Nagy, A., Wahl, J., Meyer, M., Krause, J., Brown, D., Anthony, D., Cooper, A., Alt, K.W., Reich, D., Massive migration from the steppe was a source for Indo-European languages in Europe. Nature 522:7555 (2015), 207–211, 10.1038/nature14317.
Jaanits, L., Kultuuri arengupidevusest Eestis üleminekul keskmiselt nooremale kiviajale. Schmiedehelm, M., Jaanits, L., Selirand, J., (eds.) Studia Archaeologica in Memoriam Harri Moora, 1970, Valgus, Tallinn, 81–87.
Jaanits, L., 1955. Neoliitilised asulad Eesti NSV territooriumil, in: Muistsed Asulad Ja Linnused. Arheoloogiline kogumik I. Eesti Riiklik Kirjastus, pp. 176–201.
Jaanits, L., Laul, S., Lõugas, V., Tõnisson, E., Eesti esiajalugu. 1982, Eesti Raamat, Tallinn.
Jussila, T., Kriiska, A., Shore displacement chronology of the Estonian Stone Age. Estonian J. Archaeol., 8(1), 2004, 3, 10.3176/arch.2004.1.01.
Kmoch, A., Kanal, A., Astover, A., Kull, A., Virro, H., Helm, A., Pärtel, M., Ostonen, I., Uuemaa, E., EstSoil-EH: a high-resolution eco-hydrological modelling parameters dataset for Estonia. Earth Syst. Sci. Data 13 (2021), 83–97, 10.5194/essd-13-83-2021.
Kriiska, A., 2019. Lühivaade III aastatuhandesse eKr ehk mida me teame voi vähemalt arvame end teadvat Eesti alal elanud nöörkeraamika kultuuri inimestest. Humanitaarteadused ja kunstid 100aastases rahvusülikoolis. Ed. R. Altnurme. Tartu Ülikooli Kirjastus, Tartu 13–24.
Kriiska, A., 2000. Corded Ware culture sites in north-eastern Estonia, in: De Temporibus Antiquissimis Ad Honorem Lembit Jaanits. Muinasaja Teadus. pp. 59–79.
Kriiska, A., Gerasimov, D.V., Nordqvist, K., Lisitsyn, S.N., Sandell, S., Kholkina, M.A., 2016. Stone Age Research in the Narva–Luga Klint Bay Area in 2005–2014. Iskos 21.
Kriiska, A., Lang, V., Mäesalu, A., Tvauri, A., Valk, H., 2020. Eesti ajalugu I. Eesti esiajalugu [Estonian History I. Estonian Prehistory]. Tartu Ülikooli ajaloo ja arheoloogia instituut, Tartu.
Kriiska, A., Nordqvist, K., 2012. Arheoloogilised väljakaevamised Narva-Jõesuu IIa neoliitilisel asulakohal 2010. aastal, in: Märgilised Mälestised. Uurimusi Narva Piirkonna Ajaloost., Narva Muuseumi Toimetised. Narva Muuseum, Narva, pp. 14–37.
Kriiska, A., Oras, E., Lõugas, L., Meadows, J., Lucquin, A., Craig, O.E., Late Mesolithic Narva stage in Estonia: pottery, settlement types and chronology. Estonian J. Archaeol., 21(1), 2017, 52, 10.3176/arch.2017.1.03.
Kvamme, K.L., 2005. There and back again: Revisiting archaeological locational modeling, in: GIS and Archaeological Site Location Modeling. CRC Press, pp. 23–55.
Liu, C., White, M., Newell, G., Pearson, R., Selecting thresholds for the prediction of species occurrence with presence-only data. J. Biogeogr. 40:4 (2013), 778–789, 10.1111/jbi.12058.
Lõugas, L., Kriiska, A., Maldre, L., New dates for the Late Neolithic Corded Ware Culture burials and early husbandry in the East Baltic region. Archaeofauna 16 (2007), 21–31.
Mehrer, M.W., Wescott, K.L. (Eds.), 2005. GIS and Archaeological Site Location Modeling, 0 ed. CRC Press, Boca Raton. 10.1201/9780203563359.
Merow, C., Smith, M.J., Silander, J.A., A practical guide to MaxEnt for modeling species’ distributions: what it does, and why inputs and settings matter. Ecography 36:10 (2013), 1058–1069, 10.1111/j.1600-0587.2013.07872.x.
Mittnik, A., Wang, C.-C., Pfrengle, S., Daubaras, M., Zariņa, G., Hallgren, F., Allmäe, R., Khartanovich, V., Moiseyev, V., Tõrv, M., Furtwängler, A., Andrades Valtueña, A., Feldman, M., Economou, C., Oinonen, M., Vasks, A., Balanovska, E., Reich, D., Jankauskas, R., Haak, W., Schiffels, S., Krause, J., The genetic prehistory of the Baltic Sea region. Nat. Commun., 9, 2018, 442, 10.1038/s41467-018-02825-9.
Moora, H., Laid, E., Mägiste, J., Kruus, H., 1935. Eesti Ajalugu I. Esiajalugu ja muistne vabadusvõitlus. Eesti kirjanduse Selts, Tartu.
Morales, N.S., Fernández, I.C., Baca-González, V., 2017. MaxEnt's parameter configuration and small samples: are we paying attention to recommendations? A systematic review. PeerJ 5, e3093. 10.7717/peerj.3093.
Muru, M., Rosentau, A., Kriiska, A., Lõugas, L., Kadakas, U., Vassiljev, Jüri, Saarse, L., Aunap, R., Küttim, L., Puusepp, L., Kihno, K., Sea level changes and Neolithic hunter-fisher-gatherers in the centre of Tallinn, southern coast of the Gulf of Finland, Baltic Sea. The Holocene 27:7 (2017), 917–928, 10.1177/0959683616678462.
Oras, E., Lucquin, A., Lõugas, L., Tõrv, M., Kriiska, A., Craig, O.E., The adoption of pottery by north-east European hunter-gatherers: Evidence from lipid residue analysis. J. Archaeol. Sci. 78 (2017), 112–119, 10.1016/j.jas.2016.11.010.
Peterson, A.T., Soberón, J., Pearson, R.G., Anderson, R.P., Martínez-Meyer, E., Nakamura, M., Araújo, M.B., (eds.) Ecological Niches and Geographic Distributions (MPB-49)Ecological Niches and Geographic Distributions (MPB-49), 2011, Princeton University Press.
Phillips, S.J., Anderson, R.P., Dudík, M., Schapire, R.E., Blair, M.E., Opening the black box: an open-source release of Maxent. Ecography 40:7 (2017), 887–893, 10.1111/ecog.2017.v40.i710.1111/ecog.03049.
Phillips, S.J., Anderson, R.P., Schapire, R.E., Maximum entropy modeling of species geographic distributions. Ecol. Model. 190:3-4 (2006), 231–259, 10.1016/j.ecolmodel.2005.03.026.
Phillips, S.J., Dudík, M., Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31:2 (2008), 161–175, 10.1111/j.0906-7590.2008.5203.x.
Phillips, S.J., Dudík, M., Schapire, R.E., 2017b. Maxent software for modeling species niches and distributions (Version 3.4. 1). Available from url: http://biodiversityinformatics.amnh.org/open_source/maxent/.
Renner, I.W., Elith, J., Baddeley, A., Fithian, W., Hastie, T., Phillips, S.J., Popovic, G., Warton, D.I., Point process models for presence-only analysis. Methods Ecol. Evol. 6 (2015), 366–379, 10.1111/2041-210X.12352.
Rosentau, A., Muru, M., Kriiska, A., Subetto, D.A., Vassiljev, J., Hang, T., Gerasimov, D., Nordqvist, K., Ludikova, A., Lõugas, L., Raig, H., Kihno, K., Aunap, R., Letyka, N., 2013. Stone Age settlement and Holocene shore displacement in the Narva-Luga Klint Bay area, eastern Gulf of Finland: Stone Age settlement and Holocene shore displacement, Gulf of Finland. Boreas n/a-n/a. 10.1111/bor.12004.
Rosentau, A., Veski, S., Kriiska, A., Aunap, R., Vassiljev, J., Saarse, L., Hang, T., Heinsalu, A., Oja, T., Palaeogeographic model for the SW Estonian coastal zone of the Baltic Sea. The Baltic Sea Basin, 2011, Springer-Verlag, Berlin, 165–188.
Saag, L., Varul, L., Scheib, C.L., Stenderup, J., Allentoft, M.E., Saag, L., Pagani, L., Reidla, M., Tambets, K., Metspalu, E., Kriiska, A., Willerslev, E., Kivisild, T., Metspalu, M., Extensive Farming in Estonia Started through a Sex-Biased Migration from the Steppe. Curr. Biol. 27 (2017), 2185–2193.e6, 10.1016/j.cub.2017.06.022.
Saag, L., Vasilyev, S.V., Varul, L., Kosorukova, N.V., Gerasimov, D.V., Oshibkina, S.V., Griffith, S.J., Solnik, A., Saag, L., D'Atanasio, E., Metspalu, E., Reidla, M., Rootsi, S., Kivisild, T., Scheib, C.L., Tambets, K., Kriiska, A., Metspalu, M., Genetic ancestry changes in Stone to Bronze Age transition in the East European plain. Science. Advances, 7, 2021, eabd6535, 10.1126/sciadv.abd6535.
Saarse, L., Vassiljev, J., Miidel, A., Simulation of the Baltic Sea Shorelines in Estonia and Neighbouring Areas. J. Coastal Res. 19 (2003), 261–268.
Sikk, K., Kriiska, A., Johanson, K., Sander, K., Vindi, A., 2020a. Environment and settlement location choice in Stone Age Estonia. EJA.
Sikk, K., Caruso, G., A spatially explicit agent-based model of central place foraging theory and its explanatory power for hunter-gatherers settlement patterns formation processes. Adaptive Behavior (Evolution of Cultural Complexity), 2020, 377–397, 10.1177/1059712320922915.
Sikk, K., Kriiska, A., Johanson, K., Sander, K., Vindi, A., Estonian Stone Age settlement sites: a dataset., 2020, 10.5281/zenodo.3775415.
Verhagen, P., Whitley, T.G., Integrating Archaeological Theory and Predictive Modeling: a Live Report from the Scene. J Archaeol Method Theory 19 (2012), 49–100, 10.1007/s10816-011-9102-7.
Vernon, K.B., Yaworsky, P.M., Spangler, J., Brewer, S., Codding, B.F., Decomposing Habitat Suitability Across the Forager to Farmer Transition. Environ. Archaeol., 1–14, 2020, 10.1080/14614103.2020.1746880.
Vidal-Cordasco, M., Nuevo-López, A., Difference in ecological niche breadth between Mesolithic and Early Neolithic groups in Iberia. J. Archaeolog. Sci.: Rep., 35, 2021, 102728, 10.1016/j.jasrep.2020.102728.
Vignali, S., Barras, A.G., Arlettaz, R., Braunisch, V., SDMtune : An R package to tune and evaluate species distribution models. Ecol. Evol. 10 (2020), 11488–11506, 10.1002/ece3.6786.
Wachtel, I., Zidon, R., Shelach-Lavi, G., Using the Maximal Entropy Modeling Approach to Analyze the Evolution of Sedentary Agricultural Societies in Northeast China. Entropy, 22, 2020, 307, 10.3390/e22030307.
Warren, D.L., Glor, R.E., Turelli, M., Environmental niche equivalency versus conservatism: quantitative approaches to niche evolution. Evolution: International Journal of Organic. Evolution 62 (2008), 2868–2883, 10.1111/j.1558-5646.2008.00482.x.
Whitford, B.R., Characterizing the cultural evolutionary process from eco-cultural niche models: niche construction during the Neolithic of the Struma River Valley (c. 6200–4900 BC). Archaeol Anthropol Sci 11 (2019), 2181–2200, 10.1007/s12520-018-0667-x.
Yaworsky, P.M., Vernon, K.B., Spangler, J.D., Brewer, S.C., Codding, B.F., Advancing predictive modeling in archaeology: An evaluation of regression and machine learning methods on the Grand Staircase-Escalante National Monument. PLoS ONE, 15, 2020, e0239424, 10.1371/journal.pone.0239424.