[en] When fully implemented, sixth generation (6G) wireless systems will constitute intelligent wireless networks that enable not only ubiquitous communication but also high-Accuracy localization services. They will be the driving force behind this transformation by introducing a new set of characteristics and service capabilities in which location will coexist with communication while sharing available resources. To that purpose, this survey investigates the envisioned applications and use cases of localization in future 6G wireless systems, while analyzing the impact of the major technology enablers. Afterwards, system models for millimeter wave, terahertz and visible light positioning that take into account both line-of-sight (LOS) and non-LOS channels are presented, while localization key performance indicators are revisited alongside mathematical definitions. Moreover, a detailed review of the state of the art conventional and learning-based localization techniques is conducted. Furthermore, the localization problem is formulated, the wireless system design is considered and the optimization of both is investigated. Finally, insights that arise from the presented analysis are summarized and used to highlight the most important future directions for localization in 6G wireless systems.
Disciplines :
Ingénierie électrique & électronique
Auteur, co-auteur :
Trevlakis, Stylianos E. ; InnoCube P.C., Department of Research and Development, Thessaloniki, Greece
Boulogeorgos, Alexandros-Apostolos A. ; University of Western Macedonia, Department of Electrical and Computer Engineering, Kozani, Greece
Pliatsios, Dimitrios ; University of Western Macedonia, Department of Electrical and Computer Engineering, Kozani, Greece
QUEROL, Jorge ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom
NTONTIN, Konstantinos ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom
Sarigiannidis, Panagiotis ; University of Western Macedonia, Department of Electrical and Computer Engineering, Kozani, Greece
CHATZINOTAS, Symeon ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom
Di Renzo, Marco ; Université Paris-Saclay, CNRS, CentraleSupélec, Laboratoire des Signaux et Systèmes, Gif-sur-Yvette, France
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Localization as a Key Enabler of 6G Wireless Systems: A Comprehensive Survey and an Outlook
Date de publication/diffusion :
2023
Titre du périodique :
IEEE Open Journal of the Communications Society
eISSN :
2644-125X
Maison d'édition :
Institute of Electrical and Electronics Engineers Inc.
European Unions Horizon-CL4-2021 Research and Innovation Programme Smart Networks and Services Joint Undertaking (SNS JU) through the European Union’s Horizon Europe Research and Innovation Programme European Commission through the H2020 ARIADNE Project H2020 RISE-6G Project Agence Nationale de la Recherche
W. Saad, M. Bennis, and M. Chen, “A vision of 6G wireless systems: Applications, trends, technologies, and open research problems,” IEEE Netw., vol. 34, no. 3, pp. 134–142, May/Jun. 2020.
M. Maier, A. Ebrahimzadeh, S. Rostami, and A. Beniiche, “The Internet of No Things: Making the Internet disappear and ‘see the invisible’,” IEEE Commun. Mag., vol. 58, no. 11, pp. 76–82, Nov. 2020.
F. Hu, Y. Deng, H. Zhou, T. H. Jung, C.-B. Chae, and A. H. Aghvami, “A vision of an XR-aided teleoperation system toward 5G/B5G,” IEEE Commun. Mag., vol. 59, no. 1, pp. 34–40, Jan. 2021.
A. Weiss, A.-K. Wortmeier, and B. Kubicek, “Cobots in industry 4.0: A roadmap for future practice studies on human–robot collaboration,” IEEE Trans. Human–Mach. Syst., vol. 51, no. 4, pp. 335–345, Aug. 2021.
S. Savazzi, M. Nicoli, M. Bennis, S. Kianoush, and L. Barbieri, “Opportunities of federated learning in connected, cooperative, and automated industrial systems,” IEEE Commun. Mag., vol. 59, no. 2, pp. 16–21, Feb. 2021.
K. Sankhe, D. Jaisinghani, and K. Chowdhury, “ReLy: Machine learning for ultra-reliable, low-latency messaging in industrial robots,” IEEE Commun. Mag., vol. 59, no. 4, pp. 75–81, Apr. 2021.
S. Perdikis and J. D. R. Millan, “Brain–machine interfaces: A tale of two learners,” IEEE Syst., Man, Cybern. Mag., vol. 6, no. 3, pp. 12–19, Jul. 2020.
L. U. Khan, Z. Han, W. Saad, E. Hossain, M. Guizani, and C. S. Hong, “Digital twin of wireless systems: Overview, taxonomy, challenges, and opportunities,” IEEE Commun. Surveys Tuts., vol. 24, no. 4, pp. 2230–2254, 4th Quart., 2022.
H. Zhou, C. She, Y. Deng, M. Dohler, and A. Nallanathan, “Machine learning for massive Industrial Internet of Things,” IEEE Wireless Commun., vol. 28, no. 4, pp. 81–87, Aug. 2021.
L. L. D. Oliveira, G. H. Eisenkraemer, E. A. Carara, J. B. Martins, and J. Monteiro, “Mobile localization techniques for wireless sensor networks: Survey and recommendations,” ACM Trans. Sensor Netw., vol. 19, no. 2, pp. 1–39, Apr. 2023.
N. Saeed, T. Y. Al-Naffouri, and M.-S. Alouini, “Around the world of IoT/climate monitoring using Internet of X-things,” IEEE Internet Things Mag., vol. 3, no. 2, pp. 82–83, Jun. 2020.
H.-C. Yang and M.-S. Alouini, “Data-oriented transmission in future wireless systems: Toward trustworthy support of advanced Internet of Things,” IEEE Veh. Technol. Mag., vol. 14, no. 3, pp. 78–83, Sep. 2019.
A. Celik, N. Saeed, B. Shihada, T. Y. Al-Naffouri, and M.-S. Alouini, “A software-defined opto-acoustic network architecture for Internet of Underwater Things,” IEEE Commun. Mag., vol. 58, no. 4, pp. 88–94, Apr. 2020.
J. I. D. O. Filho, A. Trichili, B. S. Ooi, M.-S. Alouini, and K. N. Salama, “Toward self-powered Internet of Underwater Things devices,” IEEE Wireless Commun. Mag., vol. 58, no. 1, pp. 68–73, Jan. 2020.
A. Pretto et al., “Building an aerial–ground robotics system for precision Farming: An adaptable solution,” IEEE Robot. Autom Mag., vol. 28, no. 3, pp. 29–49, Aug. 2021.
X. Liu et al., “Challenges and opportunities for autonomous micro- UAVs in precision agriculture,” IEEE Micro, vol. 42, no. 1, pp. 61–68, Feb. 2022.
Y. Zhong et al., “Empowering the V2X network by integrated sensing and communications: Background, design, advances, and opportunities,” IEEE Netw., vol. 36, no. 4, pp. 54–60, Oct. 2022.
A.-A. A. Boulogeorgos and G. K. Karagiannidis, “Low-cost cognitive radios against spectrum scarcity,” IEEE Techn. Committee Cogn. Netw. Newslett., vol. 3, no. 2, pp. 30–34, Nov. 2017.
A.-A. A. Boulogeorgos and G. K. Karagiannidis, “Energy detection in full-duplex systems with residual RF impairments over fading channels,” IEEE Wireless Commun. Lett., vol. 7, no. 2, pp. 246–249, Apr. 2018.
A.-A. A. Boulogeorgos, “Interference mitigation techniques in modern wireless communication systems,” Ph.D. dissertation, Dept. Comput. Sci., Aristotle Univ. Thessaloniki, Thessaloniki, Greece, Sep. 2016.
M. Matthaiou, O. Yurduseven, H. Q. Ngo, D. Morales-Jimenez, S. L. Cotton, and V. F. Fusco, “The road to 6G: Ten physical layer challenges for communications engineers,” IEEE Commun. Mag., vol. 59, no. 1, pp. 64–69, Jan. 2021.
X. Yang, M. Matthaiou, J. Yang, C.-K. Wen, F. Gao, and S. Jin, “Hardware-constrained millimeter-wave systems for 5G: Challenges, opportunities, and solutions,” IEEE Commun. Mag., vol. 57, no. 1, pp. 44–50, Jan. 2019.
J. Yang, S. Jin, C.-K. Wen, X. Yang, and M. Matthaiou, “Fast beam training architecture for hybrid mmWave transceivers,” IEEE Trans. Veh. Technol., vol. 69, no. 3, pp. 2700–2715, Jan. 2020.
K. Ntontin, A.-A. A. Boulogeorgos, D. G. Selimis, F. I. Lazarakis, A. Alexiou, and S. Chatzinotas, “Reconfigurable intelligent surface optimal placement in millimeter-wave networks,” IEEE Open J. Commun. Soc., vol. 2, pp. 704–718, 2021.
K. Ntontin et al., “Optimal reconfigurable intelligent surface placement in millimeter-wave communications,” in Proc. 15th Eur. Conf. Antennas Propag. (EuCAP), Apr. 2021, pp. 1–5.
L. Yang, X. Li, S. Jin, M. Matthaiou, and F.-C. Zheng, “Fine-grained analysis of reconfigurable intelligent surface-assisted mmWave networks,” IEEE Trans. Commun., vol. 70, no. 9, pp. 6277–6294, Jan. 2022.
A. Shastri et al., “A review of millimeter wave device-based localization and device-free sensing technologies and applications,” IEEE Commun. Surveys Tuts., vol. 24, no. 3, pp. 1708–1749, 3rd Quart., 2022.
A.-A. A. Boulogeorgos, J. M. Jornet, and A. Alexiou, “Directional terahertz communication systems for 6G: Fact check: A quantitative look,” IEEE Veh. Technol. Mag., vol. 16, no. 4, pp. 68–77, Dec. 2021.
A.-A. A. Boulogeorgos and A. Alexiou, “Error analysis of mixed THz-RF wireless systems,” IEEE Commun. Lett., vol. 24, no. 2, pp. 277–281, Feb. 2020.
A.-A. A. Boulogeorgos, S. E. Trevlakis, and N. D. Chatzidiamantis, “Optical wireless communications for in-body and transdermal biomedical applications,” IEEE Commun. Mag., vol. 59, no. 1, pp. 119–125, Jan. 2021.
T. A. Tsiftsis, C. Valagiannopoulos, H. Liu, A.-A. A. Boulogeorgos, and N. I. Miridakis, “Metasurface-coated devices: A new paradigm for energy-efficient and secure 6G communications,” IEEE Veh. Technol. Mag., vol. 17, no. 1, pp. 27–36, Nov. 2022.
S. E. Trevlakis, A.-A. A. Boulogeorgos, N. D. Chatzidiamantis, and G. K. Karagiannidis, “All-optical cochlear implants,” IEEE Trans. Mol. Biol. Multi-Scale Commun., vol. 6, no. 1, pp. 13–24, Jul. 2020.
A.-A. A. Boulogeorgos and A. Alexiou, “Coverage analysis of reconfigurable intelligent surface assisted THz wireless systems,” IEEE Open J. Veh. Technol., vol. 2, pp. 94–110, 2021.
A. Celik, I. Romdhane, G. Kaddoum, and A. M. Eltawil, “A topdown survey on optical wireless communications for the Internet of Things,” IEEE Commun. Surveys Tuts., vol. 25, no. 1, pp. 1–45, 1st Quart., 2023.
A. Chaaban, Z. Rezki, and M.-S. Alouini, “On the capacity of intensity-modulation direct-detection Gaussian optical wireless communication channels: A tutorial,” IEEE Commun. Surveys Tuts., vol. 24, no. 1, pp. 455–491, 1st Quart., 2022.
S. Naser et al., “Toward federated-learning-enabled visible light communication in 6G systems,” IEEE Wireless Commun., vol. 29, no. 1, pp. 48–56, Feb. 2022.
M. M. Azari, S. Solanki, S. Chatzinotas, and M. Bennis, “THzempowered UAVs in 6G: Opportunities, challenges, and trade-offs,” IEEE Commun. Mag., vol. 60, no. 5, pp. 24–30, May 2022.
D. Pliatsios, S. K. Goudos, T. Lagkas, V. Argyriou, A.-A. A. Boulogeorgos, and P. Sarigiannidis, “Drone-base-station for next-generation Internet-of-Things: A comparison of swarm intelligence approaches,” IEEE Open J. Antennas Propag., vol. 3, pp. 32–47, 2022.
A.-A. A. Boulogeorgos, N. D. Chatzidiamantis, H. G. Sandalidis, A. Alexiou, and M. Di Renzo, “Cascaded composite turbulence and misalignment: Statistical characterization and applications to reconfigurable intelligent surface-empowered wireless systems,” IEEE Trans. Veh. Technol., vol. 71, no. 4, pp. 3821–3836, Jan. 2022.
A.-A. A. Boulogeorgos, A. Alexiou, and M. Di Renzo, “Outage performance analysis of RIS-assisted UAV wireless systems under disorientation and misalignment,” IEEE Trans. Veh. Technol., vol. 71, no. 10, pp. 10712–10728, Oct. 2022.
A.-A. A. Boulogeorgos, J. M. Riera, and A. Alexiou, “On the joint effect of rain and beam misalignment in terahertz wireless systems,” IEEE Access, vol. 10, pp. 58997–59012, 2022.
G. Bresson, Z. Alsayed, L. Yu, and S. Glaser, “Simultaneous localization and mapping: A survey of current trends in autonomous driving,” IEEE Trans. Intell. Veh., vol. 2, no. 3, pp. 194–220, Sep. 2017.
A. F. G. Goncalves Ferreira, D. M. A. Fernandes, A. P. Catarino, and J. L. Monteiro, “Localization and positioning systems for emergency responders: A survey,” IEEE Commun. Surveys Tuts., vol. 19, no. 4, pp. 2836–2870, 4th Quart., 2017.
S. Kuutti, S. Fallah, K. Katsaros, M. Dianati, F. Mccullough, and A. Mouzakitis, “A survey of the state-of-the-art localization techniques and their potentials for autonomous vehicle applications,” IEEE Internet Things J., vol. 5, no. 2, pp. 829–846, Apr. 2018.
C. Laoudias, A. Moreira, S. Kim, S. Lee, L. Wirola, and C. Fischione, “A survey of enabling technologies for network localization, tracking, and navigation,” IEEE Commun. Surveys Tuts., vol. 20, no. 4, pp. 3607–3644, 4th Quart., 2018.
J. A. del Peral-Rosado, R. Raulefs, J. A. López-Salcedo, and G. Seco-Granados, “Survey of cellular mobile radio localization methods: From 1G to 5G,” IEEE Commun. Surveys Tuts., vol. 20, no. 2, pp. 1124–1148, 2nd Quart., 2018.
M. F. Keskin, A. D. Sezer, and S. Gezici, “Localization via visible light systems,” Proc. IEEE, vol. 106, no. 6, pp. 1063–1088, Jun. 2018.
R. C. Shit et al., “Ubiquitous Localization (UbiLoc): A survey and taxonomy on device free localization for smart world,” IEEE Commun. Surveys., vol. 21, no. 4, pp. 3532–3564, 4th Quart., 2019.
F. Zafari, A. Gkelias, and K. K. Leung, “A survey of indoor localization systems and technologies,” IEEE Commun. Surveys Tuts., vol. 21, no. 3, pp. 2568–2599, 3rd Quart., 2019.
N. Saeed, H. Nam, T. Y. Al-Naffouri, and M.-S. Alouini, “A state-of-the-art survey on multidimensional scaling-based localization techniques,” IEEE Commun. Surveys Tuts., vol. 21, no. 4, pp. 3565–3583, 4th Quart., 2019.
F. Wen, H. Wymeersch, B. Peng, W. P. Tay, H. C. So, and D. Yang, “A survey on 5G massive MIMO localization,” Digit. Signal Process, vol. 94, pp. 21–28, Nov. 2019.
D. Burghal, A. T. Ravi, V. Rao, A. A. Alghafis, and A. F. Molisch, “A comprehensive survey of machine learning based localization with wireless signals,” Dec. 2020, arXiv:2012.11171,
X. Zhu, W. Qu, T. Qiu, L. Zhao, M. Atiquzzaman, and D. O. Wu, “Indoor intelligent fingerprint-based localization: Principles, approaches and challenges,” IEEE Commun. Surveys Tuts., vol. 22, no. 4, pp. 2634–2657, 4th Quart., 2020.
A. Motroni, A. Buffi, and P. Nepa, “A survey on indoor vehicle localization through RFID technology,” IEEE Access, vol. 9, pp. 17921–17942, 2021.
C. De Lima et al., “Convergent communication, sensing and localization in 6G systems: An overview of technologies, opportunities and challenges,” IEEE Access, vol. 9, pp. 26902–26925, 2021.
O. Kanhere and T. S. Rappaport, “Position location for futuristic cellular communications: 5G and beyond,” IEEE Commun. Mag., vol. 59, no. 1, pp. 70–75, Jan. 2021.
Z. Xiao and Y. Zeng, “An overview on integrated localization and communication towards 6G,” Sci. China Inf. Sci., vol. 65, no. 3, pp. 1–46, Dec. 2021.
H. Ding, B. Zhang, J. Zhou, Y. Yan, G. Tian, and B. Gu, “Recent developments and applications of simultaneous localization and mapping in agriculture,” J. Field Robot., vol. 39, no. 6, pp. 956–983, May 2022.
J. Laconte, A. Kasmi, R. Aufrère, M. Vaidis, and R. Chapuis, “A survey of localization methods for autonomous vehicles in highway scenarios,” Sensors, vol. 22, no. 1, p. 247, Dec. 2022.
A. Liu et al., “A survey on fundamental limits of integrated sensing and communication,” IEEE Commun. Survey Tuts., vol. 24, no. 2, pp. 994–1034, 2nd Quart., 2022.
H. Chen et al., “A tutorial on terahertz-band localization for 6G communication systems,” IEEE Commun. Surveys Tuts., vol. 24, no. 3, pp. 1780–1815, 3rd Quart., 2022.
Z. Du et al., “Integrated sensing and communications for V2I networks: Dynamic predictive beamforming for extended vehicle targets,” IEEE Trans. Wireless Commun., vol. 22, no. 6, pp. 3612–3627, Jun. 2023.
C. T. Nguyen et al., “A comprehensive survey of enabling and emerging technologies for social distancing—Part I: Fundamentals and enabling technologies,” IEEE Access, vol. 8, pp. 153479–153507, 2020.
C. T. Nguyen et al., “A comprehensive survey of enabling and emerging technologies for social distancing—Part II: Emerging technologies and open issues,” IEEE Access, vol. 8, pp. 154209–154236, 2020.
F. Lemic et al., “Survey on terahertz nanocommunication and networking: A top-down perspective,” IEEE J. Sel. Areas Commun., vol. 39, no. 6, pp. 1506–1543, Apr. 2021.
R. Liu, R. Y.-N. Li, M. Di Renzo, and L. Hanzo, “A vision and an evolutionary framework for 6G: Scenarios, capabilities and enablers,” 2023, arXiv:2305.13887.
H. Viswanathan and P. E. Mogensen, “Communications in the 6G era,” IEEE Access, vol. 8, pp. 57063–57074, 2020.
M. Suguna, B. Shah, S. K. Raj, and M. Suresh, “A study on the influential factors of the last mile delivery projects during COVID-19 era,” Oper. Manag. Res., vol. 15, nos. 1–2, pp. 399-412, 2022.
E. Baccarelli, M. Scarpiniti, and A. Momenzadeh, “Ecomobifog– design and dynamic optimization of a 5G mobile-fog-cloud multi-tier ecosystem for the real-time distributed execution of stream applications,” IEEE Access, vol. 7, pp. 55565–55608, 2019.
European Commission. “Destination Earth—New digital twin of the Earth will help tackle climate change and protect nature.” Accessed: Mar. 30, 2022. [Online]. Available: https://ec.europa.eu/commission/ presscorner/detail/en/IP_22_1977
P. Hofmann, R. Bassoli, F. H. Fitzek, and M. Reisslein, “MC NFV: molecular communication NFV in 6G networks,” in Proc. IEEE 21st Mediterr. Electrotech. Conf. (MELECON), Aug. 2022, pp. 1205–1210.
P. K. D. Pramanik, A. Nayyar, and G. Pareek, “WBAN: Driving e-healthcare beyond telemedicine to remote health monitoring: Architecture and protocols,” in Telemedicine Technologies. Amsterdam, The Netherlands: Elsevier, May 2019, pp. 89–119.
K. Wei, L. Zhang, Y. Guo, and X. Jiang, “Health monitoring based on Internet of Medical Things: Architecture, enabling technologies, and applications,” IEEE Access, vol. 8, pp. 27468–27478, Feb. 2020.
A. K. Dey, G. D. Abowd, and D. Salber, “A conceptual framework and a toolkit for supporting the rapid prototyping of contextaware applications,” Human–Comput. Interact., vol. 16, nos. 2–4, pp. 97–166, Dec. 2001.
P. Dourish, “Seeking a foundation for context-aware computing,” Human–Comput. Interact., vol. 16, nos. 2–4, pp. 229–241, Nov. 2001.
D. Nüst, F. Bache, A. Bröring, C. Stasch, and S. Jirka, “Visualizing the availability of temporally structured sensor data,” in Proc. AGILE Int. Conf. Geograph. Inf. Sci., Sep. 2019, p. 12.
A. Behravan et al., “Positioning and sensing in 6G: Gaps, challenges, and opportunities,” IEEE Veh. Technol. Mag., vol. 18, no. 1, pp. 40–48, Mar. 2023.
D. K. P. Tan et al., “Integrated sensing and communication in 6G: Motivations, use cases, requirements, challenges and future directions,” in Proc. 1st IEEE Int. Online Symp. Joint Commun. Sens. (JC&S), Mar. 2021, pp. 1–6.
A. T. Z. Kasgari, W. Saad, and M. Debbah, “Human-in-theloop wireless communications: Machine learning and brain-aware resource management,” IEEE Trans. Commun., vol. 67, no. 11, pp. 7727–7743, Nov. 2019.
J. Park, S. Samarakoon, M. Bennis, and M. Debbah, “Wireless network intelligence at the edge,” Proc. IEEE, vol. 107, no. 11, pp. 2204–2239, Nov. 2019.
A. Mostaani, T. X. Vu, S. K. Sharma, Q. Liao, and S. Chatzinotas, “Task-oriented communication system design in cyber-physical systems: A survey on theory and applications,” Nov. 2021, arXiv:2102.07166.
K. A. Delin and S. P. Jackson, “Sensor Web: A new instrument concept,” in Proc. SPIE, vol. 4284, Jan. 2001, pp. 1–9.
C. Xiao and N. Chen, “Sensor Web: An infrastructure for real-time smart applications,” Int. J. Sens. Netw. Data Commun., vol. 6, p. e114, Sep. 2017.
X. Zhang et al., “Geospatial sensor Web: A cyber-physical infrastructure for geoscience research and application,” Earth Sci. Rev., vol. 185, pp. 684–703, Oct. 2018.
S. Nayak and R. Patgiri, “6G communication technology: A vision on intelligent healthcare,” in Health Informatics: A Computational Perspective in Healthcare, New York, NY, USA: Springer, Jan. 2021, pp. 1–18.
H. F. Ahmad, W. Rafique, R. U. Rasool, A. Alhumam, Z. Anwar, and J. Qadir, “Leveraging 6G, extended reality, and IoT big data analytics for healthcare: A review,” Comput. Sci. Rev., vol. 48, May 2023, Art. no. 100558.
A. A. Boulogeorgos, S. E. Trevlakis, S. A. Tegos, V. K. Papanikolaou, and G. K. Karagiannidis, “Machine learning in nano-scale biomedical engineering,” IEEE Trans. Mol., Biol. Multi-Scale Commun., vol. 7, no. 1, pp. 10–39, Nov. 2021.
F. Dressler and S. Fischer, ‘‘Connecting in-body nano communication with body area networks: Challenges and opportunities of the Internet of Nano Things,” Nano Commun. Netw., vol. 6, no. 2, pp. 29–38, Jun. 2015.
G. Piro, G. Boggia, and L. A. Grieco, “On the design of an energy-harvesting protocol stack for body area nano-networks,” Nano Commun. Netw., vol. 6, no. 2, pp. 74–84, Jun. 2015.
F. Lemic, S. Abadal, A. Stevanovic, E. Alarcón, and J. Famaey, “Toward location-aware in-body terahertz nanonetworks with energy harvesting,” in Proc. 9th ACM Int. Conf. Nanoscale Comput. Commun., Oct. 2022, pp. 1–6.
J. T. Gómez, A. Kuestner, J. Simonjan, B. D. Unluturk, and F. Dressler, “Nanosensor location estimation in the human circulatory system using machine learning,” IEEE Trans. Nanotechnol., vol. 21, pp. 663–673, 2022.
J. T. Gómez, J. L. G. Rios, and F. Dressler, “Nanosensor location in the human circulatory system based on electric circuit representation of vessels,” in Proc. 9th ACM Int. Conf. Nanoscale Comput. Commun., Oct. 2022, pp. 1–7.
A. Elango, A. Al-Tahmeesschi, M. Saukkoriipi, T. Malmivirta, and L. Ruotsalainen, “WHITE PAPER: Protecting GNSS against intentional interference,” Aug. 2022, arXiv:2208.11555.
N. Xie, Y. Chen, Z. Li, and D. O. Wu, “Lightweight secure localization approach in wireless sensor networks,” IEEE Trans. Commun., vol. 69, no. 10, pp. 6879–6893, Oct. 2021.
X. Liu, S. Su, F. Han, Y. Liu, and Z. Pan, “A range-based secure localization algorithm for wireless sensor networks,” IEEE Sensors J., vol. 19, no. 2, pp. 785–796, Jan. 2019.
A. Bochem and H. Zhang, “Robustness enhanced sensor assisted Monte Carlo localization for wireless sensor networks and the Internet of Things,” IEEE Access, vol. 10, pp. 33408–33420, 2022.
H. Sarieddeen, N. Saeed, T. Y. Al-Naffouri, and M.-S. Alouini, “Next generation terahertz communications: A rendezvous of sensing, imaging, and localization,” IEEE Commun. Mag., vol. 58, no. 5, pp. 69–75, May 2020.
C. B. Barneto et al., “Full-duplex OFDM radar with LTE and 5G NR waveforms: Challenges, solutions, and measurements,” IEEE Trans. Microw. Theory Techn., vol. 67, no. 10, pp. 4042–4054, Oct. 2019.
S. Balakrishnan, S. Gupta, A. Bhuyan, P. Wang, D. Koutsonikolas, and Z. Sun, “Physical layer identification based on spatial–temporal beam features for millimeter-wave wireless networks,” IEEE Trans. Inf. Forensics Security, vol. 15, pp. 1831–1845, 2019.
N. Soltanieh, Y. Norouzi, Y. Yang, and N. C. Karmakar, “A review of radio frequency fingerprinting techniques,” IEEE J. Radio Freq. Identification, vol. 4, no. 3, pp. 222–233, Sep. 2020.
S. Yuan, B. Han, D. Krummacker, and H. D. Schotten, “Massive twinning to enhance emergent intelligence,” in Proc. IEEE Symp. Comput. Commun. (ISCC), Oct. 2022, pp. 1–8.
M. A. Uusitalo et al., “6G vision, value, use cases and technologies from European 6G flagship project Hexa-X,” IEEE Access, vol. 9, pp. 160004–160020, 2021.
E. Skvortsov, E. Skvortsova, I. Sandu, and G. Iovlev, “Transition of agriculture to digital, intellectual and robotics technologies,” Ekonomika Regiona, vol. 3, p. 1014, Sep. 2018.
J. J. Roldán et al., “Robots in agriculture: State of art and practical experiences,” in Service Robots, London, U.K.: IntechOpen, Oct. 2018, pp. 67–90.
J. Guo et al., “Multi-GNSS precise point positioning for precision agriculture,” Precis. Agricult., vol. 19, no. 5, pp. 895–911, Oct. 2018.
L. C. Santos, A. S. Aguiar, F. N. Santos, A. Valente, J. B. Ventura, and A. J. Sousa, “Navigation stack for robots working in steep slope vineyard,” in Proc. SAI Intell. Syst. Conf., Aug. 2020, pp. 264–285.
C. Cadena et al., “Past, present, and future of simultaneous localization and mapping: Toward the robust-perception age,” IEEE Trans. Robot., vol. 32, no. 6, pp. 1309–1332, Dec. 2016.
H. Zhan, C. S. Weerasekera, J.-W. Bian, and I. Reid, “Visual odometry revisited: What should be learnt?” in Proc. IEEE Int. Conf. Robot. Autom. (ICRA), Sep. 2020, pp. 4203–4210.
U. D. Ulusar, G. Celik, and F. Al-Turjman, “Cognitive RF-based localization for mission-critical applications in smart cities: An overview,” Comput. Elect. Eng., vol. 87, Jul. 2020, Art. no. 106780.
A. A. Brincat, F. Pacifici, S. Martinaglia, and F. Mazzola, “The Internet of Things for intelligent transportation systems in real smart cities scenarios,” in Proc. IEEE 5th World Forum Internet Things (WF-IoT), Jul. 2019, pp. 128–132.
P. Gope, R. Amin, S. H. Islam, N. Kumar, and V. K. Bhalla, “Lightweight and privacy-preserving RFID authentication scheme for distributed IoT infrastructure with secure localization services for smart city environment,” Future Gener. Comput. Syst., vol. 83, pp. 629–637, Mar. 2018.
C. Chaccour, M. N. Soorki, W. Saad, M. Bennis, P. Popovski, and M. Debbah, “Seven defining features of terahertz (THz) wireless systems: A fellowship of communication and sensing,” IEEE Commun. Surveys Tuts., vol. 24, no. 2, pp. 967–993, 2nd Quart., 2022.
M. Giordani, M. Polese, M. Mezzavilla, S. Rangan, and M. Zorzi, “Toward 6G networks: Use cases and technologies,” IEEE Commun. Mag., vol. 58, no. 3, pp. 55–61, Mar. 2020.
F. Mogyorósi et al., “Positioning in 5G and 6G networks—A survey,” Sensors, vol. 22, no. 13, p. 4757, Jun. 2022.
Y. Lu, P. Richter, and E. S. Lohan, “Opportunities and challenges in the Industrial Internet of Things based on 5G positioning,” in Proc. 8th Int. Conf. Localization GNSS (ICL-GNSS), Aug. 2018, pp. 1–6.
Q.-B. Zhang, P. Wang, and Z.-H. Chen, “An improved particle filter for mobile robot localization based on particle swarm optimization,” Exp. Syst. Appl., vol. 135, pp. 181–193, Nov. 2019.
J. Biswas and M. Veloso, “The 1, 000-km challenge: Insights and quantitative and qualitative results,” IEEE Intell. Syst., vol. 31, no. 3, pp. 86–96, May/Jun. 2016.
H. Durrant-Whyte and T. Bailey, “Simultaneous localization and mapping: Part I,” IEEE Robot. Autom Mag., vol. 13, no. 2, pp. 99–110, Jun. 2006.
J. Fuentes-Pacheco, J. Ruiz-Ascencio, and J. M. Rendón-Mancha, “Visual simultaneous localization and mapping: A survey,” Artif. Intell. Rev., vol. 43, no. 1, pp. 55–81, Jan. 2015.
A. R. Khairuddin, M. S. Talib, and H. Haron, “Review on simultaneous localization and mapping (SLAM),” in Proc. IEEE Int. Conf. Control Syst. Comput. Eng. (ICCSCE), Jun. 2015, pp. 85–90.
S. Erfani, A. Jafari, and A. Hajiahmad, “Comparison of two data fusion methods for localization of wheeled mobile robot in farm conditions,” Artif. Intell. Agricult., vol. 1, pp. 48–55, May 2019.
R. Smith, M. Self, and P. Cheeseman, “Estimating uncertain spatial relationships in robotics,” in Uncertainty in Artificial Intelligence (Machine Intelligence and Pattern Recognition), vol. 5, J. F. Lemmer and L. N. Kanal, Eds. New York, NY, USA: North-Holland, Jul. 1988, pp. 435–461.
F. Demim, A. Nemra, and K. Louadj, “Robust SVSF-SLAM for unmanned vehicle in unknown environment,” IFAC PapersOnLine, vol. 49, no. 21, pp. 386–394, Nov. 2016.
S. Gupte, P. I. T. Mohandas, and J. M. Conrad, “A survey of quadrotor unmanned aerial vehicles,” in Proc. IEEE Southeastcon, May 2012, pp. 1–6.
R. M. Faragher, C. Sarno, and M. Newman, “Opportunistic radio SLAM for indoor navigation using smartphone sensors,” in Proc. IEEE/ION Position Location Navig. Symp., Jul. 2012, pp. 120–128.
R. A. Newcombe et al., “KinectFusion: Real-time dense surface mapping and tracking,” in Proc. 10th IEEE Int. Symp. Mixed Augmented Real., Mar. 2011, pp. 127–136.
H. Wymeersch et al., “Localisation and sensing use cases and gap analysis,” Hexa-X Deliverable D3.1, vol. 3, no. 1, p. 14, Dec. 2021.
H.-P. Tan, R. Diamant, W. K. Seah, and M. Waldmeyer, “A survey of techniques and challenges in underwater localization,” Ocean Eng., vol. 38, nos. 14–15, pp. 1663–1676, Oct. 2011.
M. Jouhari, K. Ibrahimi, H. Tembine, and J. Ben-Othman, “Underwater wireless sensor networks: A survey on enabling technologies, localization protocols, and Internet of Underwater Things,” IEEE Access, vol. 7, pp. 96879–96899, 2019.
J. Luo, Y. Yang, Z. Wang, and Y. Chen, “Localization algorithm for underwater sensor network: A review,” IEEE Internet Things J., vol. 8, no. 17, pp. 13126–13144, Sep. 2021.
G. Stratidakis, A.-A. A. Boulogeorgos, and A. Alexiou, “A cooperative localization-aided tracking algorithm for THz wireless systems,” in Proc. IEEE Wireless Commun. Netw. Conf. (WCNC), Oct. 2019, pp. 1–7.
J. Kokkoniemi, J. Lehtomäki, and M. Juntti, “Simplified molecular absorption loss model for 275–400 gigahertz frequency band,” in Proc. 12th Eur. Conf. Antennas Propag. (EuCAP), Dec. 2018, pp. 1–5.
A.-A. A. Boulogeorgos et al., “Wireless terahertz system architectures for networks beyond 5G,” Oct. 2018, arXiv:1810.12260.
A.-A. A. Boulogeorgos et al., “Terahertz technologies to deliver optical network quality of experience in wireless systems beyond 5G,” IEEE Commun. Mag., vol. 56, no. 6, pp. 144–151, Jun. 2018.
N. Kouzayha, M. A. Kishk, H. Sarieddeen, T. Y. Al-Naffouri, and M.-S. Alouini, “Coverage and rate analysis in coexisting terahertz and RF finite wireless networks,” Sep. 2021, arXiv:2109.00646.
S. Tarboush, H. Sarieddeen, M.-S. Alouini, and T. Y. Al-Naffouri, “Single-versus multi-carrier terahertz-band communications: A comparative study,” IEEE Open J. Commun. Soc., vol. 3, pp. 1466–1486, 2022.
S. Nie and I. F. Akyildiz, “Three-dimensional dynamic channel modeling and tracking for terahertz band indoor communications,” in Proc. IEEE 28th Annu. Int. Symp. Pers. Indoor Mobile Radio Commun. (PIMRC), Feb. 2017, pp. 1–5.
B. Peng and T. Kürner, “Three-dimensional angle of arrival estimation in dynamic indoor terahertz channels using a forward–backward algorithm,” IEEE Trans. Veh. Technol., vol. 66, no. 5, pp. 3798–3811, May 2017.
A. Guerra, F. Guidi, D. Dardari, and P. M. Djuri´c, “Near-field tracking with large antenna arrays: Fundamental limits and practical algorithms,” IEEE Trans. Signal Process., vol. 69, pp. 5723–5738, 2021.
J. Tan and L. Dai, “Wideband beam tracking in THz massive MIMO systems,” IEEE J. Sel. Areas Commun., vol. 39, no. 6, pp. 1693–1710, Jun. 2021.
S. Fan, Y. Wu, C. Han, and X. Wang, “A structured bidirectional LSTM deep learning method for 3D terahertz indoor localization,” in Proc. IEEE INFOCOM Conf. Comput. Commun., Aug. 2020, pp. 2381–2390.
I. Ahmed et al., “A survey on hybrid beamforming techniques in 5G: Architecture and system model perspectives,” IEEE Commun. Surveys Tuts., vol. 20, no. 4, pp. 3060–3097, 4th Quart., 2018.
Y. Miao et al., “Measurement-based feasibility exploration on detecting and localizing multiple humans using MIMO radio channel properties,” IEEE Access, vol. 8, pp. 3738–3750, 2019.
W. Huang, S. Zhu, S. Wang, J. Xie, and Y. Zhang, “Sparse representation for device-free human detection and localization with COTS RFID,” in Proc. Int. Conf. Algorithms Architect. Parallel Process., Jan. 2019, pp. 639–654.
S. Denis, R. Berkvens, and M. Weyn, “A survey on detection, tracking and identification in radio frequency-based device-free localization,” Sensors, vol. 19, no. 23, p. 5329, Dec. 2019.
F. Hong, X. Wang, Y. Yang, Y. Zong, Y. Zhang, and Z. Guo, “WFID: Passive device-free human identification using WiFi signal,” in Proc. 13th Int. Conf. Mobile Ubiquitous Syst. Comput. Netw. Services, Nov. 2016, pp. 47–56.
F. Wen, J. Kulmer, K. Witrisal, and H. Wymeersch, “5G positioning and mapping with diffuse multipath,” IEEE Trans. Wireless Commun., vol. 20, no. 2, pp. 1164–1174, Jan. 2021.
Y. Ge et al., “5G SLAM using the clustering and assignment approach with diffuse multipath,” Sensors, vol. 20, no. 16, p. 4656, Aug. 2020.
H. Wymeersch, J. He, B. Denis, A. Clemente, and M. Juntti, “Radio localization and mapping with reconfigurable intelligent surfaces: Challenges, opportunities, and research directions,” IEEE Veh. Technol. Mag., vol. 15, no. 4, pp. 52–61, Dec. 2020.
E. C. Strinati et al., “Reconfigurable, intelligent, and sustainable wireless environments for 6G smart connectivity,” IEEE Commun. Mag., vol. 59, no. 10, pp. 99–105, Oct. 2021.
M. Nemati and J. Choi, “Intelligent-meta-surfaces-aided wireless communications in 6G,” in Proc. IEEE 95th Veh. Technol. Conf. (VTC-Spring), Aug. 2022, pp. 1–5.
A. Tishchenko, A. Ali, A. Araghi, P. Botham, B. Burton, and M. Khalily, “Autonomous reconfigurable intelligent surface based on highly-efficient solar cells,” in Proc. 17th Eur. Conf. Antennas Propag. (EuCAP), Mar. 2023, pp. 1–8.
N. Khalid and O. B. Akan, “Experimental throughput analysis of low-THz MIMO communication channel in 5G wireless networks,” IEEE Wireless Commun. Lett., vol. 5, no. 6, pp. 616–619, Dec. 2016.
C. Liaskos, S. Nie, A. Tsioliaridou, A. Pitsillides, S. Ioannidis, and I. Akyildiz, “A new wireless communication paradigm through software-controlled metasurfaces,” IEEE Commun. Mag., vol. 56, no. 9, pp. 162–169, Sep. 2018.
X. Fu, F. Yang, C. Liu, X. Wu, and T. J. Cui, “Terahertz beam steering technologies: From phased arrays to field-programmable metasurfaces,” Adv. Opt. Mater., vol. 8, no. 3, Aug. 2020, Art. no. 1900628.
S. Venkatesh, X. Lu, H. Saeidi, and K. Sengupta, “A high-speed programmable and scalable terahertz holographic metasurface based on tiled CMOS chips,” Nat. Electron., vol. 3, no. 12, pp. 785–793, Dec. 2020.
S. Nie, J. M. Jornet, and I. F. Akyildiz, “Intelligent environments based on ultra-massive MIMO platforms for wireless communication in millimeter wave and terahertz bands,” in Proc. IEEE Int. Conf. Acoust. Speech Signal Process. (ICASSP), Apr. 2019, pp. 7849–7853.
S. Ali et al., “6G white paper on machine learning in wireless communication networks,” Apr. 2020, arXiv:2004.13875.
C.-H. Hsieh, J.-Y. Chen, and B.-H. Nien, “Deep learning-based indoor localization using received signal strength and channel state information,” IEEE Access, vol. 7, pp. 33256–33267, 2019.
B. S. Ciftler, A. Albaseer, N. Lasla, and M. Abdallah, “Federated learning for RSS fingerprint-based localization: A privacy-preserving crowdsourcing method,” in Proc. IEEE Int. Wireless Commun. Mobile Comput. (IWCMC), Jul. 2020, pp. 2112–2117.
B. Peng, G. Seco-Granados, E. Steinmetz, M. Fröhle, and H. Wymeersch, “Decentralized scheduling for cooperative localization with deep reinforcement learning,” IEEE Trans. Veh. Technol., vol. 68, no. 5, pp. 4295–4305, May 2019.
C. Studer, S. Medjkouh, E. Gonulta¸s, T. Goldstein, and O. Tirkkonen, “Channel charting: Locating users within the radio environment using channel state information,” IEEE Access, vol. 6, pp. 47682–47698, 2018.
D. Kocur, M. Svecova, and D. Novak, “UWB radar based localization of a person changing the nature of their motion state,” in Proc. IEEE Int. Conf. Radar (RADAR), Aug. 2018, pp. 525–529.
F. Liu, C. Masouros, A. P. Petropulu, H. Griffiths, and L. Hanzo, “Joint radar and communication design: Applications, state-of-theart, and the road ahead,” IEEE Trans. Commun., vol. 68, no. 6, pp. 3834–3862, Jun. 2020.
J. Sachs, Handbook of Ultra-Wideband Short-Range Sensing: Theory, Sensors, Applications. Hoboken, NJ, USA: Wiley, Dec. 2013.
A. Alkhateeb, S. Alex, P. Varkey, Y. Li, Q. Qu, and D. Tujkovic, “Deep learning coordinated beamforming for highly-mobile millimeter wave systems,” IEEE Access, vol. 6, pp. 37328–37348, 2018.
B. P. Ginsburg et al., “A multimode 76-to-81GHz automotive radar transceiver with autonomous monitoring,” in Proc. IEEE Int. Solid-State Circuits Conf. (ISSCC), Feb. 2018, pp. 158–160.
D. Tagliaferri, M. Brambilla, M. Nicoli, and U. Spagnolini, “Sensoraided beamwidth and power control for next generation vehicular communications,” IEEE Access, vol. 9, pp. 56301–56317, 2021.
B. Chang, X. Yan, L. Zhang, Z. Chen, L. Li, and M. A. Imran, “Joint communication and control for mmWave/THz beam alignment in V2X networks,” IEEE Internet Things J., vol. 9, no. 13, pp. 11203–11213, Jul. 2022.
R. Aldera, D. De Martini, M. Gadd, and P. Newman, “What could go wrong? Introspective radar odometry in challenging environments,” in Proc. IEEE Intell. Transp. Syst. Conf. (ITSC), Nov. 2019, pp. 2835–2842.
Y. S. Park, Y.-S. Shin, and A. Kim, “PHARAO: Direct radar odometry using phase correlation,” in Proc. IEEE Int. Conf. Robot. Autom. (ICRA), Sep. 2020, pp. 2617–2623.
A. N. Ramesh, C. M. León, J. C. Zafra, S. Brüggenwirth, and M. A. González-Huici, “Landmark-based RADAR SLAM for autonomous driving,” in Proc. 21st Int. Radar Symp. (IRS), Jul. 2021, pp. 1–10.
S. H. Cen and P. Newman, “Precise ego-motion estimation with millimeter-wave radar under diverse and challenging conditions,” in Proc. IEEE Int. Conf. Robot. Autom. (ICRA), Nov. 2018, pp. 6045–6052.
S. H. Cen and P. Newman, “Radar-only ego-motion estimation in difficult settings via graph matching,” in Proc. Int. Conf. Robot. Autom. (ICRA), Aug. 2019, pp. 298–304.
¸ S. Saftescu, M. Gadd, D. De Martini, D. Barnes, and P. Newman, “Kidnapped radar: Topological radar localisation using rotationallyinvariant metric learning,” in Proc. IEEE Int. Conf. Robot. Autom. (ICRA), Sep. 2020, pp. 4358–4364.
T. Y. Tang, D. De Martini, D. Barnes, and P. Newman, “RSL-Net: Localising in satellite images from a radar on the ground,” IEEE Robot. Autom. Lett., vol. 5, no. 2, pp. 1087–1094, Jan. 2020.
A. Kanev, A. Nasteka, C. Bessonova, D. Nevmerzhitsky, A. Silaev, A. Efremov, and K. Nikiforova, “Anomaly detection in wireless sensor network of the ‘smart home’ system,” in Proc. 20th Conf. Open Innov. Assoc. (FRUCT), Oct. 2017, pp. 118–124.
M. Liu, K. Yang, N. Zhao, Y. Chen, H. Song, and F. Gong, “Intelligent signal classification in industrial distributed wireless sensor networks based Industrial Internet of Things,” IEEE Trans. Ind. Informat., vol. 17, no. 7, pp. 4946–4956, Jul. 2021.
P. Sommer et al., “Information bang for the energy buck: Towards energy-and mobility-aware tracking,” in Proc. EWSN, Feb. 2016, pp. 193–204.
L. Tönisson et al., “Knowledge transfer with citizen science: Luft– Leipzig case study,” Sustainability, vol. 13, no. 14, p. 7855, Jul. 2021.
S. Tomic, M. Beko, and R. Dinis, “3-D target localization in wireless sensor networks using RSS and AoA measurements,” IEEE Trans. Veh. Technol., vol. 66, no. 4, pp. 3197–3210, Apr. 2017.
X. Xing, G. Wang, and J. Li, “Collaborative target tracking in wireless sensor networks,” Ad Hoc Sensor Wireless Netw., vol. 23, nos. 1–2, pp. 117–135, Aug. 2014.
Y. Xiao, S. Zhang, J. Wang, and C. Zhu, “A novel indoor localization algorithm for efficient mobility management in wireless networks,” Wireless Commun. Mobile Comput., vol. 2018, Jun. 2018, Art. no. 9517942.
A. Gunathillake, A. V. Savkin, and A. P. Jayasumana, “Topology mapping algorithm for 2-D and 3-D wireless sensor networks based on maximum likelihood estimation,” Comput. Netw., vol. 130, pp. 1–15, Nov. 2018.
F. Ebner, T. Fetzer, F. Deinzer, and M. Grzegorzek, “On Wi-Fi model optimizations for smartphone-based indoor localization,” ISPRS Int. J. Geo-Inf., vol. 6, no. 8, p. 233, Aug. 2017.
A.-C. Anastou, K. K. Delibasis, A.-A. A. Boulogeorgos, H. G. Sandalidis, A. Vavoulas, and S. K. Tasoulis, “A low complexity indoor visible light positioning method,” IEEE Access, vol. 9, pp. 57658–57673, 2021.
J. Luo, L. Fan, and H. Li, “Indoor positioning systems based on visible light communication: State of the art,” IEEE Commun. Surveys Tuts., vol. 19, no. 4, pp. 2871–2893, 4th Quart., 2017.
P. Chen, M. Pang, D. Che, Y. Yin, D. Hu, and S. Gao, “A survey on visible light positioning from software algorithms to hardware,” Wireless Commun. Mobile Comput., vol. 2021, Feb. 2021, Art. no. 9739577.
A. M. Abdelhady, A. K. S. Salem, O. Amin, B. Shihada, and M.-S. Alouini, “Visible light communications via intelligent reflecting surfaces: Metasurfaces vs mirror arrays,” IEEE Open J. Commun. Soc., vol. 2, pp. 1–20, 2020.
Y. Zhuang et al., “A survey of positioning systems using visible LED lights,” IEEE Commun. Surveys Tuts., vol. 20, no. 3, pp. 1963–1988, 3rd Quart., 2018.
M. Maheepala, A. Z. Kouzani, and M. A. Joordens, “Light-based indoor positioning systems: A review,” IEEE Sensors J., vol. 20, no. 8, pp. 3971–3995, Apr. 2020.
A. Costanzo and V. Loscrì, “Error compensation in indoor positioning systems based on software defined visible light communication,” Phys. Commun., vol. 34, pp. 235–245, Apr. 2019.
K. Sengupta, T. Nagatsuma, and D. M. Mittleman, “Terahertz integrated electronic and hybrid electronic–photonic systems,” Nat. Electron., vol. 1, no. 12, pp. 622–635, Dec. 2018.
K. Sengupta, “Universal terahertz integrated systems: Bridging the ‘THz’ and ‘application’ gap in the next decade,” in Proc. IEEE MTT-S Int. Microw. RF Conf. (IMARC), Dec. 2019, pp. 1–3.
K. Kenneth et al., “Opening terahertz for everyday applications,” IEEE Commun. Mag., vol. 57, no. 8, pp. 70–76, Aug. 2019.
R. W. Heath, N. Gonzalez-Prelcic, S. Rangan, W. Roh, and A. M. Sayeed, “An overview of signal processing techniques for millimeter wave MIMO systems,” IEEE J. Sel. Topics Signal Process., vol. 10, no. 3, pp. 436–453, Apr. 2016.
A. Shahmansoori, G. E. Garcia, G. Destino, G. Seco-Granados, and H. Wymeersch, “Position and orientation estimation through millimeter-wave MIMO in 5G systems,” IEEE Trans. Wireless Commun., vol. 17, no. 3, pp. 1822–1835, Mar. 2018.
J. Ma, R. Shrestha, W. Zhang, L. Moeller, and D. M. Mittleman, “Terahertz wireless links using diffuse scattering from rough surfaces,” IEEE Trans. THz Sci. Technol., vol. 9, no. 5, pp. 463–470, Sep. 2019.
A. Fascista, A. Coluccia, H. Wymeersch, and G. Seco-Granados, “Millimeter-wave downlink positioning with a single-antenna receiver,” IEEE Trans. Wireless Commun., vol. 18, no. 9, pp. 4479–4490, Sep. 2019.
W. Tang et al., “Wireless communications with reconfigurable intelligent surface: Path loss modeling and experimental measurement,” IEEE Trans. Wireless Commun., vol. 20, no. 1, pp. 421–439, Jan. 2021.
J. M. Kahn and J. R. Barry, “Wireless infrared communications,” Proc. IEEE, vol. 85, no. 2, pp. 265–298, Feb. 1997.
L. Qian, X. Chi, L. Zhao, and A. Chaaban, “Secure visible light communications via intelligent reflecting surfaces,” in Proc. IEEE Int. Conf. Commun. (ICC), Aug. 2021, pp. 1–6.
T. Tang, T. Shang, and Q. Li, “Impact of multiple shadows on visible light communication channel,” IEEE Commun. Lett., vol. 25, no. 2, pp. 513–517, Feb. 2021.
W. Zhang, M. S. Chowdhury, and M. Kavehrad, “Asynchronous indoor positioning system based on visible light communications,” Opt. Eng., vol. 53, no. 4, Apr. 2014, Art. no. 45105.
S.-Y. Jung, S. Hann, and C.-S. Park, “TDOA-based optical wireless indoor localization using LED ceiling lamps,” IEEE Trans. Consum. Electron., vol. 57, no. 4, pp. 1592–1597, Nov. 2011.
S. Subedi et al., “Practical fingerprinting localization for indoor positioning system by using beacons,” J. Sensors, vol. 2017, Dec. 2017, Art. no. 9742170.
C. Zhao, H. Zhang, and J. Song, “Fingerprint and visible light communication based indoor positioning method,” in Proc. IEEE 9th Int. Conf. Adv. Infocomm Technol. (ICAIT), 2017, pp. 204–209.
I. Guvenc and C.-C. Chong, “A survey on TOA based wireless localization and NLOS mitigation techniques,” IEEE Commun. Surveys Tuts., vol. 11, no. 3, pp. 107–124, 3rd Quart., 2009.
L. Hu, X. Wang, and S. Wang, “Decentralized underwater target detection and localization,” IEEE Sensors J., vol. 21, no. 2, pp. 2385–2399, Jan. 2021.
R. Ramanathan, A. Samanta, and T. L. Porta, “Symptotics: A framework for analyzing the scalability of real-world wireless networks,” in Proc. 9th ACM Symp. Perform. Eval. Wireless Ad Hoc Sensor Ubiquitous Netw., Oct. 2012, pp. 31–38.
S. Ghafoor, N. Boujnah, M. H. Rehmani, and A. Davy, “MAC protocols for terahertz communication: A comprehensive survey,” IEEE Commun. Surveys Tuts., vol. 22, no. 4, pp. 2236–2282, 4th Quart., 2020.
A. Yastrebova, R. Kirichek, Y. Koucheryavy, A. Borodin, and A. Koucheryavy, “Future networks 2030: Architecture & requirements,” in Proc. 10th Int. Congr. Ultra Modern Telecommun. Control Syst. Workshops (ICUMT), Nov. 2018, pp. 1–8.
A. Faisal, H. Sarieddeen, H. Dahrouj, T. Y. Al-Naffouri, and M.-S. Alouini, “Ultramassive MIMO systems at terahertz bands: Prospects and challenges,” IEEE Veh. Technol. Mag., vol. 15, no. 4, pp. 33–42, Dec. 2020.
V. Petrov, M. Komarov, D. Moltchanov, J. M. Jornet, and Y. Koucheryavy, “Interference and SINR in millimeter wave and terahertz communication systems with blocking and directional antennas,” IEEE Trans. Wireless Commun., vol. 16, no. 3, pp. 1791–1808, Mar. 2017.
C. Han, W. Tong, and X.-W. Yao, “MA-ADM: A memory-assisted angular-division-multiplexing MAC protocol in Terahertz communication networks,” Nano Commun. Netw., vol. 13, pp. 51–59, Aug. 2017.
Q. Wu and R. Zhang, “Towards smart and reconfigurable environment: Intelligent reflecting surface aided wireless network,” IEEE Commun. Mag., vol. 58, no. 1, pp. 106–112, Jan. 2019.
R. Zhang and S. Cao, “Extending reliability of mmWave radar tracking and detection via fusion with camera,” IEEE Access, vol. 7, pp. 137065–137079, 2019.
C. X. Lu et al., “milliEgo: Single-chip mmWave radar aided egomotion estimation via deep sensor fusion,” in Proc. 18th Conf. Embedded Netw. Sensor Syst., Nov. 2020, pp. 109–122.
Z. Wang, R. Liu, Q. Liu, J. S. Thompson, and M. Kadoch, “Energyefficient data collection and device positioning in UAV-assisted IoT,” IEEE Internet Things J., vol. 7, no. 2, pp. 1122–1139, Feb. 2020.
Y. Wang, K. Gu, Y. Wu, W. Dai, and Y. Shen, “NLOS effect mitigation via spatial geometry exploitation in cooperative localization,” IEEE Trans. Wireless Commun., vol. 19, no. 9, pp. 6037–6049, Sep. 2020.
C. Gao, G. Zhao, and H. Fourati, Cooperative Localization and Navigation: Theory, Research, and Practice. Hoboken, NJ, USA: CRC Press, Aug. 2019.
H. Sarieddeen, M.-S. Alouini, and T. Y. Al-Naffouri, “Terahertzband ultra-massive spatial modulation MIMO,” IEEE J. Sel. Areas Commun., vol. 37, no. 9, pp. 2040–2052, Sep. 2019.
M. H. Loukil, H. Sarieddeen, M.-S. Alouini, and T. Y. Al-Naffouri, “Terahertz-band MIMO systems: Adaptive transmission and blind parameter estimation,” IEEE Commun. Lett., vol. 25, no. 2, pp. 641–645, Feb. 2021.
Z. Hossain and J. M. Jornet, “Hierarchical bandwidth modulation for ultra-broadband terahertz communications,” in Proc. IEEE Int. Conf. Commun. (ICC), Jul. 2019, pp. 1–7.
Z. Wei et al., “Orthogonal time-frequency space modulation: A promising next-generation waveform,” IEEE Wireless Commun., vol. 28, no. 4, pp. 136–144, Aug. 2021.
A. Magbool, H. Sarieddeen, N. Kouzayha, M.-S. Alouini, and T. Y. Al-Naffouri, “Terahertz-band non-orthogonal multiple access: System- and link-level considerations,” IEEE Wireless Commun., vol. 30, no. 1, pp. 142–149, Feb. 2023.
A. Hu and J. He, “Position-aided beam learning for initial access in mmWave MIMO cellular networks,” IEEE Syst. J., vol. 16, no. 1, pp. 1103–1113, Mar. 2022.
C. N. Barati, S. Dutta, S. Rangan, and A. Sabharwal, “Energy and latency of beamforming architectures for initial access in mmWave wireless networks,” J. Indian Inst. Sci., vol. 100, no. 2, pp. 281–302, May 2020.
K. Chen, C. Qi, and G. Y. Li, “Two-step codeword design for millimeter wave massive MIMO systems with quantized phase shifters,” IEEE Trans. Signal Process., vol. 68, pp. 170–180, 2019.
X. Sun, C. Qi, and G. Y. Li, “Beam training and allocation for multiuser millimeter wave massive MIMO systems,” IEEE Trans. Wireless Commun., vol. 18, no. 2, pp. 1041–1053, Feb. 2019.
A. Alkhateeb, Y.-H. Nam, M. S. Rahman, J. Zhang, and R. W. Heath, “Initial beam association in millimeter wave cellular systems: Analysis and design insights,” IEEE Trans. Wireless Commun., vol. 16, no. 5, pp. 2807–2821, May 2017.
C. N. Barati et al., “Initial access in millimeter wave cellular systems,” IEEE Trans. Wireless Commun., vol. 15, no. 12, pp. 7926–7940, Dec. 2016.
B. Zhou, A. Liu, and V. Lau, “Successive localization and beamforming in 5G mmWave MIMO communication systems,” IEEE Trans. Signal Process., vol. 67, no. 6, pp. 1620–1635, Mar. 2019.
N. Garcia, H. Wymeersch, and D. T. Slock, “Optimal precoders for tracking the AoD and AoA of a mmWave path,” IEEE Trans. Signal Process., vol. 66, no. 21, pp. 5718–5729, Nov. 2018.
E. Björnson, H. Wymeersch, B. Matthiesen, P. Popovski, L. Sanguinetti, and E. de Carvalho, “Reconfigurable intelligent surfaces: A signal processing perspective with wireless applications,” IEEE Signal Process Mag., vol. 39, no. 2, pp. 135–158, Mar. 2022.
M. Gerasimenko, D. Moltchanov, M. Gapeyenko, S. Andreev, and Y. Koucheryavy, “Capacity of multiconnectivity mmWave systems with dynamic blockage and directional antennas,” IEEE Trans. Veh. Technol., vol. 68, no. 4, pp. 3534–3549, Apr. 2019.
B. Hanssens et al., “An indoor localization technique based on ultra-wideband AoD/AoA/ToA estimation,” in Proc. IEEE Int. Symp. Antennas Propag. (APSURSI), Oct. 2016, pp. 1445–1446.
G. Ottoy and L. De Strycker, “An improved 2-D triangulation algorithm for use with linear arrays,” IEEE Sensors J., vol. 16, no. 23, pp. 8238–8243, Dec. 2016.
R. Tazawa, N. Honma, M. Atsusi, and M. Hiroto, “Improving accuracy of RSSI-based indoor localization using three-element array,” in Proc. Int. Symp. Antennas Propag. (ISAP), Oct. 2016, pp. 336–337.
H. Steendam, “A 3-D positioning algorithm for AOA-based VLP with an aperture-based receiver,” IEEE J. Sel. Areas Commun., vol. 36, no. 1, pp. 23–33, Jan. 2018.
T.-H. Lee, S. Weng, and J. Sanford, “Indoor radio triangulation using only RSSI data,” in Proc. IEEE Int. Symp. Antennas Propag. North Amer. Radio Sci. Meeting, Feb. 2020, pp. 1097–1098.
E. Soltanaghaei, A. Kalyanaraman, and K. Whitehouse, “Multipath triangulation: Decimeter-level WiFi localization and orientation with a single unaided receiver,” in Proc. ACM 16th Annu. Int. Conf. Mobile Syst. Appl. Services, Munich Germany, Jun. 2018, pp. 376–388.
V. R. Adama and G. M. Asutkar, “Improved localization with RSSI and DTN algorithms in wireless sensor networks,” Int. J. Inf. Technol., vol. 13, no. 2, pp. 603–607, Jan. 2021.
P. Kristalina, A. Pratiarso, T. Badriyah, and E. D. Putro, “A wireless sensor networks localization using geometric triangulation scheme for object tracking in urban search and rescue application,” in Proc. 2nd Int. Conf. Sci. Inf. Technol. (ICSITech), Feb. 2016, pp. 254–259.
A. Landström and J. van de Beek, “Transmitter localization for 5G mmWave REMs by stochastic generalized triangulation,” in Proc. 23rd Int. Conf. Telecommun. (ICT), Jun. 2016, pp. 1–5.
Prateek and R. Arya, “T-LOC: RSSI-based, range-free, triangulation assisted localization for convex relaxation with limited node range under uncertainty skew constraint,” J. Ambient Intell. Humanized Comput., vol. 14, pp. 7063–7077, Oct. 2021.
Q. Yan, J. Chen, G. Ottoy, B. Cox, and L. De Strycker, “An accurate AOA localization method based on unreliable sensor detection,” in Proc. IEEE Sensors Appl. Symp. (SAS), Mar. 2018, pp. 1–6.
J. Werner, M. Costa, A. Hakkarainen, K. Leppanen, and M. Valkama, “Joint user node positioning and clock offset estimation in 5G ultra-dense networks,” in Proc. IEEE Global Commun. Conf. (GLOBECOM), Dec. 2015, pp. 1–7.
S. Yousefi, X.-W. Chang, and B. Champagne, “Mobile localization in non-line-of-sight using constrained square-root unscented Kalman filter,” IEEE Trans. Veh. Technol., vol. 64, no. 5, pp. 2071–2083, May 2015.
E. Rastorgueva-Foi, M. Koivisto, M. Valkama, M. Costa, and K. Leppänen, “Localization and tracking in mmWave radio networks using beam-based DoD measurements,” in Proc. 8th Int. Conf. Localization GNSS (ICL-GNSS), Jun. 2018, pp. 1–6.
O. Kanhere and T. S. Rappaport, “Outdoor sub-THz position location and tracking using field measurements at 142 GHz,” in Proc. IEEE Int. Conf. Commun. (ICC), Aug. 2021, pp. 1–6.
M. Ammous and S. Valaee, “Positioning and tracking using reconfigurable intelligent surfaces and extended kalman filter,” in Proc. IEEE 95th Veh. Technol. Conf. (VTC-Spring), Aug. 2022, pp. 1–6.
M. Koivisto, M. Costa, A. Hakkarainen, K. Leppanen, and M. Valkama, “Joint 3D positioning and network synchronization in 5G ultra-dense networks using UKF and EKF,” in Proc. IEEE Globecom Workshops (GC Wkshps), Feb. 2016, pp. 1–7.
M. Koivisto et al., “Joint device positioning and clock synchronization in 5G ultra-dense networks,” IEEE Trans. Wireless Commun., vol. 16, no. 5, pp. 2866–2881, May 2017.
X. Bai, Z. Zhang, L. Liu, X. Zhai, J. Panneerselvam, and L. Ge, “Enhancing localization of mobile robots in distributed sensor environments for reliable proximity service applications,” IEEE Access, vol. 7, pp. 28826–28834, 2019.
H. Cao, Y. T. Chan, and H. C. So, “Maximum likelihood TDOA estimation from compressed sensing samples without reconstruction,” IEEE Signal Process Lett., vol. 24, no. 5, pp. 564–568, May 2017.
A. Abdelreheem, E. M. Mohamed, and H. Esmaiel, “Location-based millimeter wave multi-level beamforming using compressive sensing,” IEEE Commun. Lett., vol. 22, no. 1, pp. 185–188, Oct. 2018.
S. Salari, F. Chan, Y.-T. Chan, and W. Read, “TDOA estimation with compressive sensing measurements and hadamard matrix,” IEEE Trans. Aerosp. Electron. Syst., vol. 54, no. 6, pp. 3137–3142, Dec. 2018.
A. Harlakin, J. Mietzner, P. A. Hoeher, and A. Meusling, “Compressive-sensing-aided MIMO radar enabling multi-functional and compact sensors in air scenarios using optimized antenna arrays,” IEEE Access, vol. 9, pp. 41417–41429, 2021.
X. Jiang, N. Li, Y. Guo, D. Yu, and S. Yang, “Localization of multiple RF sources based on Bayesian compressive sensing using a limited number of UAVs with airborne RSS sensor,” IEEE Sensors J., vol. 21, no. 5, pp. 7067–7079, Nov. 2021.
X. Jiang, N. Li, Y. Guo, W. Xie, K. Xu, and M. Guo, “Localization of multiple RF sources via priori knowledge-aided Bayesian compressive sensing in UAV-based WSN,” IEEE Commun. Lett., vol. 25, no. 12, pp. 3848–3852, Dec. 2021.
R. Ramadan, A. Jwaifel, H. Al-Tous, and I. Barhumi, “Compressive sensing with weighted coefficient approach for indoor source localization,” in Proc. 40th Int. Conf. Telecommun. Signal Process. (TSP), Oct. 2017, pp. 243–246.
K. Gligoric, M. Ajmani, D. Vukobratovi´c, and S. Sinanovi´c, “Visible light communications-based indoor positioning via compressed sensing,” IEEE Commun. Lett., vol. 22, no. 7, pp. 1410–1413, May 2018.
L. Oliveira, H. Li, L. Almeida, and T. E. Abrudan, “RSSI-based relative localisation for mobile robots,” Ad Hoc Netw., vol. 13, pp. 321–335, Feb. 2014.
C. Di Franco, A. Melani, and M. Marinoni, “Solving ambiguities in MDS relative localization,” in Proc. Int. Conf. Adv. Robot. (ICAR), Sep. 2015, pp. 230–236.
N. Saeed and H. Nam, “Robust multidimensional scaling for cognitive radio network localization,” IEEE Trans. Veh. Technol., vol. 64, no. 9, pp. 4056–4062, Sep. 2015.
V. K. Chaurasiya, N. Jain, and G. Nandi, “A novel distance estimation approach for 3D localization in wireless sensor network using multi dimensional scaling,” Inf. Fusion, vol. 15, pp. 5–18, Jan. 2014.
W. Jiang, C. Xu, L. Pei, and W. Yu, “Multidimensional scalingbased TDOA localization scheme using an auxiliary line,” IEEE Signal Process Lett., vol. 23, no. 4, pp. 546–550, Apr. 2016.
S. Kumar, R. Kumar, and K. Rajawat, “Cooperative localization of mobile networks Via velocity-assisted multidimensional scaling,” IEEE Trans. Signal Process., vol. 64, no. 7, pp. 1744–1758, Apr. 2016.
G. Morral and P. Bianchi, “Distributed on-line multidimensional scaling for self-localization in wireless sensor networks,” Signal Process., vol. 120, pp. 88–98, Mar. 2016.
B. R. Stojkoska, J. Palikrushev, K. Trivodaliev, and S. Kalajdziski, “Indoor localization of unmanned aerial vehicles based on RSSI,” in Proc. IEEE 17th Int. Conf. Smart Technol. (EUROCON), Aug. 2017, pp. 120–125.
Y. Fan, X. Qi, B. Li, and L. Liu, “Fast clustering-based multidimensional scaling for mobile networks localisation,” IET Commun., vol. 14, no. 1, pp. 135–143, Jan. 2020.
Y. Fan, X. Qi, and L. Liu, “Fault-tolerant cooperative localization of 3D mobile networks via two-layer filter multidimensional scaling,” IEEE Sensors J., vol. 21, no. 6, pp. 8354–8366, Mar. 2021.
W. Cui, C. Wu, W. Meng, B. Li, Y. Zhang, and L. Xie, “Dynamic multidimensional scaling algorithm for 3-D mobile localization,” IEEE Trans. Instrum. Meas., vol. 65, no. 12, pp. 2853–2865, Oct. 2016.
A. Weiss, “Direct position determination of narrowband radio frequency transmitters,” IEEE Signal Process. Lett., vol. 11, no. 5, pp. 513–516, May 2004.
N. Garcia, H. Wymeersch, E. G. Larsson, A. M. Haimovich, and M. Coulon, “Direct localization for massive MIMO,” IEEE Trans. Signal Process., vol. 65, no. 10, pp. 2475–2487, May 2017.
J. Yin, D. Wang, Y. Wu, and R. Liu, “Direct localization of multiple stationary narrowband sources based on angle and doppler,” IEEE Commun. Lett., vol. 21, no. 12, pp. 2630–2633, Sep. 2018.
M. Chen, X. Mao, X. Long, and L. Xin, “Underdetermined direct localization of emitters based on spatio-temporal processing,” IEEE Signal Process Lett., vol. 25, no. 3, pp. 452–456, Mar. 2018.
K. Han, Y. Liu, Z. Deng, L. Yin, and L. Shi, “Direct positioning method of mixed far-field and near-field based on 5G massive MIMO system,” IEEE Access, vol. 7, pp. 72170–72181, 2019.
F. Ma, Z.-M. Liu, and F. Guo, “Direct position determination in asynchronous sensor networks,” IEEE Trans. Veh. Technol., vol. 68, no. 9, pp. 8790–8803, Jul. 2019.
H. Zhao, N. Zhang, and Y. Shen, “Beamspace direct localization for large-scale antenna array systems,” IEEE Trans. Signal Process., vol. 68, pp. 3529–3544, May 2020.
N. Xia, B. Li, and J. Wang, “A direct localization method in the presence of cochannel interference and multipath fading,” IEEE Syst. J., vol. 15, no. 2, pp. 2855–2858, Jul. 2021.
Z. Yu, J. Li, Q. Guo, and J. Ding, “Efficient direct target localization for distributed MIMO radar with expectation propagation and belief propagation,” IEEE Trans. Signal Process., vol. 69, pp. 4055–4068, 2021.
M. F. Hossain, A. U. Mahin, T. Debnath, F. B. Mosharrof, and K. Z. Islam, “Recent research in cloud radio access network (C-RAN) for 5G cellular systems—A survey,” J. Netw. Comput. Appl., vol. 139, pp. 31–48, May s2019.
J. Bai, G. Wei, S. Wang, X. Wang, and Z. Fei, “Efficient direct localization of OFDM emitters in multipath environment with mobile receivers,” IEEE Trans. Veh. Technol., vol. 71, no. 1, pp. 545–556, Oct. 2022.
N. Nedjah, L. M. Mourelle, and P. J. A. de Oliveira, “Simultaneous localization and mapping using swarm intelligence based methods,” Exp. Syst. Appl., vol. 159, Nov. 2020, Art. no. 113547.
P. T. Daely and S. Y. Shin, “Range based wireless node localization using dragonfly algorithm,” in Proc. 8th Int. Conf. Ubiquitous Future Netw. (ICUFN), Aug. 2016, pp. 1012–1015.
A. Arsic, M. Tuba, and M. Jordanski, “Fireworks algorithm applied to wireless sensor networks localization problem,” in Proc. IEEE Congr. Evol. Comput. (CEC), Nov. 2016, pp. 4038–4044.
V. R. Kulkarni, V. Desai, and R. V. Kulkarni, “Multistage localization in wireless sensor networks using artificial bee colony algorithm,” in Proc. IEEE Symp. Comput. Intell. (SSCI), Feb. 2016, pp. 1–8.
S. Monica and G. Ferrari, “A swarm-based approach to real-time 3D indoor localization: Experimental performance analysis,” Appl. Soft Comput., vol. 43, pp. 489–497, Jun. 2016.
E. Tuba, M. Tuba, and M. Beko, “Two stage wireless sensor node localization using firefly algorithm,” in Smart Trends in Systems, Security and Sustainability, vol. 18, X.-S. Yang, A. K. Nagar, and A. Joshi, Eds. Singapore: Springer, Dec. 2018, pp. 113–120.
I. Strumberger, E. Tuba, N. Bacanin, M. Beko, and M. Tuba, “Monarch butterfly optimization algorithm for localization in wireless sensor networks,” in Proc. 28th Int. Conf. Radioelektronika (RADIOELEKTRONIKA), Jun. 2018, pp. 1–6.
I. Strumberger, E. Tuba, N. Bacanin, M. Beko, and M. Tuba, “Wireless sensor network localization problem by hybridized moth search algorithm,” in Proc. 14th Int. Wireless Commun. Mobile Comput. Conf. (IWCMC), Aug. 2018, pp. 316–321.
S. Phoemphon, C. So-In, and D. T. Niyato, “A hybrid model using fuzzy logic and an extreme learning machine with vector particle swarm optimization for wireless sensor network localization,” Appl. Soft Comput., vol. 65, pp. 101–120, Apr. 2018.
V. R. Kulkarni and V. Desai, “Computational intelligence for localization of mobile wireless sensor networks,” in Computational Intelligence: Theories, Applications and Future Directions—Volume II, vol. 799, N. K. Verma and A. K. Ghosh, Eds. Singapore: Springer, Sep. 2019, pp. 449–463.
I. Strumberger, M. Minovic, M. Tuba, and N. Bacanin, “Performance of elephant herding optimization and tree growth algorithm adapted for node localization in wireless sensor networks,” Sensors, vol. 19, no. 11, p. 2515, Oct. 2019.
M. Y. Arafat and S. Moh, “Localization and clustering based on swarm intelligence in UAV networks for emergency communications,” IEEE Internet Things J., vol. 6, no. 5, pp. 8958–8976, Jun. 2019.
J. Akram, A. Javed, S. Khan, A. Akram, H. S. Munawar, and W. Ahmad, “Swarm intelligence based localization in wireless sensor networks,” in Proc. 36th Annu. ACM Symp. Appl. Comput., Mar. 2021, pp. 1906–1914.
P. Singh, A. Khosla, A. Kumar, and M. Khosla, “Computational intelligence based localization of moving target nodes using single anchor node in wireless sensor networks,” Telecommun. Syst., vol. 69, no. 3, pp. 397–411, Nov. 2018.
M. Zhou, F. Qiu, Z. Tian, K. Xu, and Q. Jiang, “Positioning error vs. signal distribution: An analysis towards lower error bound in WLAN fingerprint based indoor localization,” in Proc. IEEE Global Commun. Conf. (GLOBECOM), Dec. 2015, pp. 1–6.
M. Zhou, F. Qiu, Z. Tian, H. Wu, Q. Zhang, and W. He, “An information-based approach to precision analysis of indoor WLAN localization using location fingerprint,” Entropy, vol. 17, no. 12, pp. 8031–8055, Dec. 2015.
S. He, B. Ji, and S.-H. G. Chan, “Chameleon: Survey-free updating of a fingerprint database for indoor localization,” IEEE Pervasive Comput., vol. 15, no. 4, pp. 66–75, Oct. 2016.
M. D’Souza, B. Schoots, and M. Ros, “Indoor position tracking using received signal strength-based fingerprint context aware partitioning,” IET Radar Sonar Navig., vol. 10, no. 8, pp. 1347–1355, Oct. 2016.
Q. Li, W. Li, W. Sun, J. Li, and Z. Liu, ‘‘Fingerprint and assistant nodes based Wi-Fi localization in complex indoor environment,” IEEE Access, vol. 4, pp. 2993–3004, 2016.
L. Chen, K. Yang, and X. Wang, “Robust cooperative Wi-Fi fingerprint-based indoor localization,” IEEE Internet Things J., vol. 3, no. 6, pp. 1406–1417, Dec. 2016.
J. Zhang, G. Han, N. Sun, and L. Shu, “Path-loss-based fingerprint localization approach for location-based services in indoor environments,” IEEE Access, vol. 5, pp. 13756–13769, 2017.
B. Zhou, Q. Li, Q. Mao, and W. Tu, “A robust crowdsourcingbased indoor localization system,” Sensors, vol. 17, no. 4, p. 864, Apr. 2017.
G. Pecoraro, S. D. Domenico, E. Cianca, and M. D. Sanctis, “CSIbased fingerprinting for indoor localization using LTE Signals,” EURASIP J. Adv. Signal Process., vol. 2018, no. 1, p. 49, Jul. 2018.
Y. Duan et al., “Data rate fingerprinting: A WLAN-based indoor positioning technique for passive localization,” IEEE Sensors J., vol. 19, no. 15, pp. 6517–6529, Aug. 2019.
V. Moghtadaiee, S. A. Ghorashi, and M. Ghavami, “New reconstructed database for cost reduction in indoor fingerprinting localization,” IEEE Access, vol. 7, pp. 104462–104477, 2019.
L. Zhang, E. Ding, Y. Hu, and Y. Liu, “A novel CSI-based fingerprinting for localization with a single AP,” EURASIP J. Wireless Commun. Netw., vol. 2019, no. 1, p. 51, Feb. 2019.
Z. Gao, Y. Gao, S. Wang, D. Li, and Y. Xu, “CRISLoc: Reconstructable CSI fingerprinting for indoor smartphone localization,” IEEE Internet Things J., vol. 8, no. 5, pp. 3422–3437, Mar. 2021.
Y. Li, Z. He, Z. Gao, Y. Zhuang, C. Shi, and N. El-Sheimy, “Toward robust crowdsourcing-based localization: A fingerprinting accuracy indicator enhanced wireless/magnetic/inertial integration approach,” IEEE Internet Things J., vol. 6, no. 2, pp. 3585–3600, Apr. 2019.
Z. Shen, K. Xu, and X. Xia, “2D fingerprinting-based localization for mmWave cell-free massive MIMO systems,” IEEE Commun. Lett., vol. 25, no. 11, pp. 3556–3560, Nov. 2021.
D. Schlegel, M. Colosi, and G. Grisetti, “ProSLAM: Graph SLAM from a programmer’s perspective,” in Proc. IEEE Int. Conf. Robot. Autom. (ICRA), Sep. 2018, pp. 3833–3840.
M. Holder, S. Hellwig, and H. Winner, “Real-time pose graph SLAM based on radar,” in Proc. IEEE Intell. Veh. Symp. (IV), Aug. 2019, pp. 1145–1151.
J. Cui, D. Feng, Y. Li, and Q. Tian, “Research on simultaneous localization and mapping for AUV by an improved method: Variance reduction FastSLAM with simulated annealing,” Defence Technol., vol. 16, no. 3, pp. 651–661, Jun. 2020.
M. L. Rodríguez-Arévalo, J. Neira, and J. A. Castellanos, “On the importance of uncertainty representation in active SLAM,” IEEE Trans. Robot., vol. 34, no. 3, pp. 829–834, Apr. 2018.
M. Lin, C. Yang, D. Li, and G. Zhou, “Intelligent filter-based SLAM for mobile robots with improved localization performance,” IEEE Access, vol. 7, pp. 113284–113297, 2019.
Y. Chen, S. Huang, and R. Fitch, “Active SLAM for mobile robots with area coverage and obstacle avoidance,” IEEE/ASME Trans. Mechatronics, vol. 25, no. 3, pp. 1182–1192, Jun. 2020.
H. Wang, C. Wang, and L. Xie, “Intensity-SLAM: Intensity assisted localization and mapping for large scale environment,” IEEE Robot. Autom. Lett., vol. 6, no. 2, pp. 1715–1721, Feb. 2021.
Y. Chen, S. Huang, L. Zhao, and G. Dissanayake, “Cramér–Rao bounds and optimal design metrics for pose-graph SLAM,” IEEE Trans. Robot., vol. 37, no. 2, pp. 627–641, Jan. 2021.
D. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory, vol. 52, no. 4, pp. 1289–1306, Apr. 2006.
E. J. Candes and M. B. Wakin, “An introduction to compressive sampling,” IEEE Signal Process Mag., vol. 25, no. 2, pp. 21–30, Mar. 2008.
F. Seco, A. R. Jiménez, and P. Peltola, “A review of multidimensional scaling techniques for RSS-based WSN localization,” in Proc. Int. Conf. Indoor Position. Indoor Navig. (IPIN), Nov. 2018, pp. 1–8.
Q. D. Vo and P. De, “A survey of fingerprint-based outdoor localization,” IEEE Commun. Surveys Tuts., vol. 18, no. 1, pp. 491–506, 1st Quart., 2016.
M. I. AlHajri, N. T. Ali, and R. M. Shubair, “Indoor localization for IoT using adaptive feature selection: A cascaded machine learning approach,” IEEE Antennas Wireless Propag. Lett., vol. 18, no. 11, pp. 2306–2310, Nov. 2019.
Y. Peng, W. Fan, X. Dong, and X. Zhang, “An iterative weighted KNN (IW-KNN) based indoor localization method in Bluetooth low energy (BLE) environment,” in Proc. Int. IEEE Conf. Ubiquitous Intell. Comput. Adv. Trust. Comput. Scalable Comput. Commun. Cloud Big Data Comput. Internet People Smart World Congr. (UIC/ATC/ScalCom/CBDCom/IoP/SmartWorld), Jul. 2016, pp. 794–800.
B. Wang, X. Liu, B. Yu, R. Jia, and X. Gan, “An improved WiFi positioning method based on fingerprint clustering and signal weighted Euclidean distance,” Sensors, vol. 19, no. 10, p. 2300, May 2019.
X. Guo, S. Zhu, L. Li, F. Hu, and N. Ansari, “Accurate WiFi localization by unsupervised fusion of extended candidate location set,” IEEE Internet Things J., vol. 6, no. 2, pp. 2476–2485, Apr. 2019.
X. Sun, X. Gao, G. Y. Li, and W. Han, “Single-site localization based on a new type of fingerprint for massive MIMO-OFDM systems,” IEEE Trans. Veh. Technol., vol. 67, no. 7, pp. 6134–6145, Jul. 2018.
X. Wang, L. Liu, Y. Lin, and X. Chen, “A fast single-site fingerprint localization method in massive MIMO system,” in Proc. 11th Int. Conf. Wireless Commun. Signal Process. (WCSP), Dec. 2019, pp. 1–6.
B. E. Boudani et al., “Implementing deep learning techniques in 5G IoT networks for 3D indoor positioning: DELTA (deep learningbased co-operative architecture),” Sensors, vol. 20, no. 19, p. 5495, Sep. 2020.
W. Chen, W. Wang, Q. Li, Q. Chang, and H. Hou, “A crowd-sourcing indoor localization algorithm via optical camera on a smartphone assisted by Wi-Fi fingerprint RSSI,” Sensors, vol. 16, no. 3, p. 410, Mar. 2016.
L. Zhang, N. Xiao, J. Li, and W. Yang, “Heterogeneous feature machine learning for performance-enhancing indoor localization,” in Proc. IEEE 87th Veh. Technol. Conf. (VTC Spring), Jun. 2018, pp. 1–5.
A. Ray, S. Deb, and P. Monogioudis, “Localization of LTE measurement records with missing information,” in Proc. IEEE INFOCOM 35th Annu. Int. Conf. Comput. Commun., Jul. 2016, pp. 1–9.
Y.-K. Cheng, H.-J. Chou, and R. Y. Chang, “Machine-learning indoor localization with access point selection and signal strength reconstruction,” in Proc. IEEE 83rd Veh. Technol. Conf. (VTC Spring), Jul. 2016, pp. 1–5.
S. Kram, M. Stahlke, T. Feigl, J. Seitz, and J. Thielecke, “UWB channel impulse responses for positioning in complex environments: A detailed feature analysis,” Sensors, vol. 19, no. 24, p. 5547, Dec. 2019.
X. Yang, F. Zhao, and T. Chen, “NLOS identification for UWB localization based on import vector machine,” Int. J. Electron. Commun., vol. 87, pp. 128–133, Apr. 2018.
S. Zhang, J. Guo, N. Luo, L. Wang, W. Wang, and K. Wen, “Improving Wi-Fi fingerprint positioning with a pose recognitionassisted SVM algorithm,” Remote Sensing, vol. 11, no. 6, p. 652, Mar. 2019.
Z.Wu et al., “Accurate indoor localization based on CSI and visibility graph,” Sensors, vol. 18, no. 8, p. 2549, Aug. 2018.
K. Wu, M. Yang, C. Ma, and J. Yan, “CSI-based wireless localization and activity recognition using support vector machine,” in Proc. IEEE Int. Conf. Signal Process. Commun. Comput. (ICSPCC), Sep. 2019, pp. 1–5.
T. F. Sanam and H. Godrich, “An improved CSI based device free indoor localization using machine learning based classification approach,” in Proc. 26th Eur. Signal Process. Conf. (EUSIPCO), Dec. 2018, pp. 2390–2394.
S. Mahfouz, F. Mourad-Chehade, P. Honeine, J. Farah, and H. Snoussi, “Non-parametric and semi-parametric RSSI/distance modeling for target tracking in wireless sensor networks,” IEEE Sensors J., vol. 16, no. 7, pp. 2115–2126, Apr. 2016.
M. Petric, A. Neskovic, N. Neskovic, and M. Borenovic, “Indoor localization using multi-operator public land mobile networks and support vector machine learning algorithms,” Wireless Pers. Commun., vol. 104, no. 4, pp. 1573–1597, Feb. 2019.
L. Zhang, Y. Li, Y. Gu, and W. Yang, “An efficient machine learning approach for indoor localization,” China Commun., vol. 14, no. 11, pp. 141–150, Nov. 2017.
Y. Rezgui, L. Pei, X. Chen, F. Wen, and C. Han, “An efficient normalized rank based SVM for room level indoor WiFi localization with diverse devices,” Mobile Inf. Syst., vol. 2017, Jul. 2017, Art. no. 6268797.
A. Khalajmehrabadi, N. Gatsis, and D. Akopian, “Modern WLAN fingerprinting indoor positioning methods and deployment challenges,” IEEE Commun. Surveys Tuts., vol. 19, no. 3, pp. 1974–2002, 3rd Quart., 2017.
H. Wang, Z. Zhao, J. Hu, Z. Qu, and H. Feng, “Study on improvement of fingerprint matching algorithm in wireless LAN ba sed indoor positioning system,” in Proc. 17th IEEE/ACIS Int. Conf. Softw. Eng. Artif. Intell. Netw. Parallel Distrib. Comput. (SNPD), Jul. 2016, pp. 275–280.
X. Guo, N. Ansari, F. Hu, Y. Shao, N. R. Elikplim, and L. Li, “A survey on fusion-based indoor positioning,” IEEE Commun. Surveys Tuts., vol. 22, no. 1, pp. 566–594, Nov. 2019.
J. Yan, L. Zhao, J. Tang, Y. Chen, R. Chen, and L. Chen, “Hybrid kernel based machine learning using received signal strength measurements for indoor localization,” IEEE Trans. Veh. Technol., vol. 67, no. 3, pp. 2824–2829, Mar. 2018.
J. Li, I.-T. Lu, J. S. Lu, and L. Zhang, “Robust kernel-based machine learning localization using NLOS TOAs or TDOAs,” in Proc. IEEE Long Island Syst. Appl. Technol. Conf. (LISAT), May 2017, pp. 1–6.
H. Ahmadi and R. Bouallegue, “RSSI-based localization in wireless sensor networks using regression tree,” in Proc. Int. Wireless Commun. Mobile Comput. Conf. (IWCMC), Oct. 2015, pp. 1548–1553.
B. A. Akram, A. H. Akbar, and O. Shafiq, “HybLoc: Hybrid indoor Wi-Fi localization using soft clustering-based random decision forest ensembles,” IEEE Access, vol. 6, pp. 38251–38272, 2018.
X. Guo, N. Ansari, L. Li, and H. Li, “Indoor localization by fusing a group of fingerprints based on random forests,” IEEE Internet Things J., vol. 5, no. 6, pp. 4686–4698, Feb. 2018.
M. Malmstróm, I. Skog, S. M. Razavi, Y. Zhao, and F. Gunnarsson, “5G positioning—A machine learning approach,” in Proc. 16th Workshop Position. Navig. Commun. (WPNC), Mar. 2019, pp. 1–6.
W. Y. Al-Rashdan and A. Tahat, “A comparative performance evaluation of machine learning algorithms for fingerprinting based localization in DM-MIMO wireless systems relying on big data techniques,” IEEE Access, vol. 8, pp. 109522–109534, 2020.
A. Musa, G. D. Nugraha, H. Han, D. Choi, S. Seo, and J. Kim, “A decision tree-based NLOS detection method for the UWB indoor location tracking accuracy improvement,” Int. J. Commun. Syst., vol. 32, no. 13, Jun. 2019, Art. no. e3997.
M. N. de Sousa, “Enhanced localization systems with multipath fingerprints and machine learning,” in Proc. IEEE 30th Annu. Int. Symp. Pers. Indoor Mobile Radio Commun. (PIMRC), Nov. 2019, pp. 1–6.
Y. Zhang, D. Li, and Y. Wang, “An indoor passive positioning method using CSI fingerprint based on Adaboost,” IEEE Sensors J., vol. 19, no. 14, pp. 5792–5800, Jul. 2019.
P. Chen, J. Shang, and F. Gu, “Learning RSSI feature via ranking model for Wi-Fi fingerprinting localization,” IEEE Trans. Veh. Technol., vol. 69, no. 2, pp. 1695–1705, Feb. 2020.
G. H. Apostolo, I. G. B. Sampaio, and J. Viterbo, “Feature selection on database optimization for Wi-Fi fingerprint indoor positioning,” Procedia Comput. Sci., vol. 159, pp. 251–260, Oct. 2019.
V. Savic, E. G. Larsson, J. Ferrer-Coll, and P. Stenumgaard, “Kernel methods for accurate UWB-based ranging with reduced complexity,” IEEE Trans. Wireless Commun., vol. 15, no. 3, pp. 1783–1793, Mar. 2016.
K. S. V. Prasad, E. Hossain, and V. K. Bhargava, “A numerical approximation method for RSS-based user positioning in distributed massive MIMO,” in Proc. IEEE Int. Conf. Adv. Netw. Telecommun. Syst. (ANTS), Jun. 2017, pp. 1–6.
K. N. R. S. V. Prasad, E. Hossain, and V. K. Bhargava, “Machine learning methods for RSS-based user positioning in distributed massive MIMO,” IEEE Trans. Wireless Commun., vol. 17, no. 12, pp. 8402–8417, Dec. 2018.
S. Kumar, R. M. Hegde, and N. Trigoni, “Gaussian process regression for fingerprinting based localization,” Ad Hoc Netw., vol. 51, pp. 1–10, Sep. 2016.
K. Yu, K. Wen, Y. Li, S. Zhang, and K. Zhang, “A novel NLOS mitigation algorithm for UWB localization in harsh indoor environments,” IEEE Trans. Veh. Technol., vol. 68, no. 1, pp. 686–699, Jan. 2019.
X. Wang, M. Patil, C. Yang, S. Mao, and P. A. Patel, “Deep convolutional Gaussian processes for mmWave outdoor localization,” in Proc. IEEE Int. Conf. Acoust. Speech Signal Process. (ICASSP), Jun. 2021, pp. 8323–8327.
K. N. R. S. V. Prasad, E. Hossain, V. K. Bhargava, and S. Mallick, “Analytical approximation-based machine learning methods for user positioning in distributed massive MIMO,” IEEE Access, vol. 6, pp. 18431–18452, 2018.
E. Homayounvala, M. Nabati, R. Shahbazian, S. A. Ghorashi, and V. Moghtadaiee, “A novel smartphone application for indoor positioning of users based on machine learning,” in Proc. ACM Int. Joint Conf. Pervasive Ubiquitous Comput. ACM Int. Symp. Wearable Comput., Sep. 2019, pp. 430–437.
W. Sun, M. Xue, H. Yu, H. Tang, and A. Lin, “Augmentation of fingerprints for indoor WiFi localization based on Gaussian process regression,” IEEE Trans. Veh. Technol., vol. 67, no. 11, pp. 10896–10905, Nov. 2018.
J. Zhao, X. Gao, X. Wang, C. Li, M. Song, and Q. Sun, “An efficient radio map updating algorithm based on K-Means and Gaussian process regression,” J. Navig., vol. 71, no. 5, pp. 1055–1068, Apr. 2018.
S. Yiu, M. Dashti, H. Claussen, and F. Perez-Cruz, “Wireless RSSI fingerprinting localization,” Signal Process., vol. 131, pp. 235–244, Feb. 2017.
S.-H. Fang, C.-C. Li, W.-C. Lu, Z. Xu, and Y.-R. Chien, “Enhanced device-free human detection: Efficient learning from phase and amplitude of channel state information,” IEEE Trans. Veh. Technol., vol. 68, no. 3, pp. 3048–3051, Mar. 2019.
S. Wu, S. Zhang, K. Xu, and D. Huang, “Neural network localization with TOA measurements based on error learning and matching,” IEEE Access, vol. 7, pp. 19089–19099, 2019.
X. Wang, L. Gao, S. Mao, and S. Pandey, “CSI-based fingerprinting for indoor localization: A deep learning approach,” IEEE Trans. Veh. Technol., vol. 66, no. 1, pp. 763–776, Jan. 2017.
X. Wang, L. Gao, and S. Mao, “PhaseFi: Phase fingerprinting for indoor localization with a deep learning approach,” in Proc. IEEE Global Commun. Conf. (GLOBECOM), Dec. 2015, pp. 1–6.
A. Belmonte-Hernández, G. Hernández-Peñaloza, D. M. Gutiérrez, and F. Alvarez, “SWiBluX: Multi-sensor deep learning fingerprint for precise real-time indoor tracking,” IEEE Sensors J., vol. 19, no. 9, pp. 3473–3486, Jan. 2019.
Z. Feng, Y. Cao, and J. Yan, “A received signal strength based indoor localization algorithm using ELM technique and ridge regression,” in Proc. IEEE 2nd Int. Conf. Electron. Inf. Commun. Technol. (ICEICT), Jan. 2019, pp. 599–603.
J. Yang, S. Jin, C.-K. Wen, J. Guo, and M. Matthaiou, “3-D positioning and environment mapping for mmWave communication systems,” Aug. 2019, arXiv:1908.04142.
J.-Y. Lee, C. Eom, Y. Kwak, H.-G. Kang, and C. Lee, “DNNbased wireless positioning in an outdoor environment,” in Proc. IEEE Int. Conf. Acoust. Speech Signal Process. (ICASSP), Sep. 2018, pp. 3799–3803.
H. Ge, F. Jiang, and Z. Zhang, “A hybrid localization algorithm of RSS and TOA based on an ensembled neural network,” in Proc. IEEE 8th Joint Int. Inf. Technol. Artif. Intell. Conf. (ITAIC), Aug. 2019, pp. 1280–1284.
R. H. Jaafar and S. S. Saab, “A neural network approach for indoor fingerprinting-based localization,” in Proc. 9th IEEE Annu. Ubiquitous Comput. Electron. Mobile Commun. Conf. (UEMCON), Aug. 2018, pp. 537–542.
A. Sobehy, E. Renault, and P. Mühlethaler, “CSI based indoor localization using ensemble neural networks,” in Proc. Int. Conf. Mach. Learn. Netw., Apr. 2019, pp. 367–378.
A. Decurninge et al., “CSI-based outdoor localization for massive MIMO: Experiments with a learning approach,” in Proc. IEEE 15th Int. Symp. Wireless Commun. Syst. (ISWCS), Oct. 2018, pp. 1–6.
M. Orabi, A. A. Abdallah, J. Khalife, and Z. M. Kassas, “A machine learning multipath mitigation approach for opportunistic navigation with 5G signals,” in Proc. 34th Int. Tech. Meeting Satellite Division Inst. Navig. (ION GNSS), Oct. 2021, p. 5.
J. Gante, G. Falcão, and L. Sousa, “Deep learning architectures for accurate millimeter wave positioning in 5G,” Neural Process. Lett., vol. 51, no. 1, pp. 487–514, Aug. 2019.
M. Z. Comiter, M. B. Crouse, and H. T. Kung, “A datadriven approach to localization for high frequency wireless mobile networks,” in Proc. IEEE Global Commun. Conf. (GLOBECOM), Jan. 2017, pp. 1–7.
Y. Zhang and K. Psounis, “Efficient indoor localization via switchedbeam antennas,” IEEE Trans. Mobile Comput., vol. 19, no. 9, pp. 2101–2115, Sep. 2019.
Z. E. Khatab, A. Hajihoseini, and S. A. Ghorashi, “A fingerprint method for indoor localization using autoencoder based deep extreme learning machine,” IEEE Sensors Lett., vol. 2, no. 1, pp. 1–4, Dec. 2017.
K. S. Kim, “Hybrid building/floor classification and location coordinates regression using a single-input and multi-output deep neural network for large-scale indoor localization based on Wi-Fi fingerprinting,” in Proc. IEEE 6th Int. Symp. Comput. Netw. Workshops (CANDARW), Dec. 2018, pp. 196–201.
X. Song et al., “A novel convolutional neural network based indoor localization framework with WiFi fingerprinting,” IEEE Access, vol. 7, pp. 110698–110709, 2019.
S. BelMannoubi, H. Touati, and H. Snoussi, “Stacked auto-encoder for scalable indoor localization in wireless sensor networks,” in Proc. 15th Int. Wireless Commun. Mobile Comput. Conf. (IWCMC), Jun. 2019, pp. 1245–1250.
W. Zhang, R. Sengupta, J. Fodero, and X. Li, “DeepPositioning: Intelligent fusion of pervasive magnetic field and WiFi fingerprinting for smartphone indoor localization via deep learning,” in Proc. 16th IEEE Int. Conf. Mach. Learn. Appl. (ICMLA), Dec. 2017, pp. 7–13.
P. Yazdanian and V. Pourahmadi, “DeepPos: Deep supervised autoencoder network for CSI based indoor localization,” Nov. 2018, arXiv:1811.12182.
M. Abbas, M. Elhamshary, H. Rizk, M. Torki, and M. Youssef, “WiDeep: WiFi-based accurate and robust indoor localization system using deep learning,” in Proc. IEEE Int. Conf. Pervasive Comput. Commun. (PerCom), Jul. 2019, pp. 1–10.
X. Wang, L. Gao, and S. Mao, “BiLoc: Bi-modal deep learning for indoor localization with commodity 5GHz WiFi,” IEEE Access, vol. 5, pp. 4209–4220, 2017.
J.-W. Jang and S.-N. Hong, “Indoor localization with WiFi fingerprinting using convolutional neural network,” in Proc. IEEE 10th Int. Conf. Ubiquitous Future Netw. (ICUFN), Aug. 2018, pp. 753–758.
T. Ebuchi and H. Yamamoto, “Vehicle/pedestrian localization system using multiple radio beacons and machine learning for smart parking,” in Proc. Int. Conf. Artif. Intell. Inf. Commun. (ICAIIC), Mar. 2019, pp. 86–91.
M. Ibrahim, M. Torki, and M. ElNainay, “CNN based indoor localization using RSS time-series,” in Proc. IEEE Symp. Comput. Commun. (ISCC), Nov. 2018, pp. 1044–1049.
B. Soro and C. Lee, “Joint time-frequency RSSI features for convolutional neural network-based indoor fingerprinting localization,” IEEE Access, vol. 7, pp. 104892–104899, 2019.
H. Chen, Y. Zhang, W. Li, X. Tao, and P. Zhang, “ConFi: Convolutional neural networks based indoor Wi-Fi localization using channel state information,” IEEE Access, vol. 5, pp. 18066–18074, 2017.
X. Wang, X. Wang, and S. Mao, “Deep convolutional neural networks for indoor localization with CSI images,” IEEE Trans. Netw. Sci. Eng., vol. 7, no. 1, pp. 316–327, Jan.–Mar. 2020.
Y. Jing, J. Hao, and P. Li, “Learning spatiotemporal features of CSI for indoor localization with dual-stream 3D convolutional neural networks,” IEEE Access, vol. 7, pp. 147571–147585, 2019.
H. Li, X. Zeng, Y. Li, S. Zhou, and J. Wang, “Convolutional neural networks based indoor Wi-Fi localization with a novel kind of CSI images,” China Commun., vol. 16, no. 9, pp. 250–260, Sep. 2019.
C. Wu et al., “Learning to localize: A 3D CNN approach to user positioning in massive MIMO-OFDM systems,” IEEE Trans. Wireless Commun., vol. 20, no. 7, pp. 4556–4570, Jul. 2021.
J. Vieira, E. Leitinger, M. Sarajlic, X. Li, and F. Tufvesson, “Deep convolutional neural networks for massive MIMO fingerprint-based positioning,” in Proc. IEEE 28th Annu. Int. Symp. Pers. Indoor Mobile Radio Commun. (PIMRC), Feb. 2017, pp. 1–6.
Z. Liu, B. Dai, X. Wan, and X. Li, “Hybrid wireless fingerprint indoor localization method based on a convolutional neural network,” Sensors, vol. 19, no. 20, p. 4597, Oct. 2019.
H. Huang and S. Lin, “WiDet: Wi-Fi based device-free passive person detection with deep convolutional neural networks,” in Proc. 21st ACM Int. Conf. Model. Anal. Simulat. Wireless Mobile Syst., Dec. 2018, pp. 53–60.
K. Bregar and M. Mohorcic, “Improving indoor localization using convolutional neural networks on computationally restricted devices,” IEEE Access, vol. 6, pp. 17429–17441, 2018.
A. Mittal, S. Tiku, and S. Pasricha, “Adapting convolutional neural networks for indoor localization with smart mobile devices,” in Proc. Great Lakes Symp. VLSI, May 2018, pp. 117–122.
A. Niitsoo, T. Edelhäußer, E. Eberlein, N. Hadaschik, and C. Mutschler, “A deep learning approach to position estimation from channel impulse responses,” Sensors, vol. 19, no. 5, p. 1064, Mar. 2019.
H. Turabieh and A. Sheta, “Cascaded layered recurrent neural network for indoor localization in wireless sensor networks,” in Proc. 2019 2nd Int. Conf. New Trends Comput. Sci. (ICTCS), Dec. 2019, pp. 1–6.
Y. Zhang, Y. Xiao, K. Zhao, and W. Rao, “DeepLoc: Deep neural network-based telco localization,” in Proc. 16th EAI Int. Conf. Mobile Ubiquitous Syst. Comput. Netw. Services, Nov. 2019, pp. 258–267.
L. Wu, C.-H. Chen, and Q. Zhang, “A mobile positioning method based on deep learning techniques,” Electronics, vol. 8, no. 1, p. 59, Jan. 2019.
J. Yu, H. M. Saad, and R. M. Buehrer, “Centimeter-level indoor localization using channel state information with recurrent neural networks,” in Proc. IEEE/ION Position Location Navig. Symp. (PLANS), Jun. 2020, pp. 1317–1323.
G. B. Tarekegn, H.-P. Lin, A. B. Adege, Y. Y. Munaye, and S.- S. Jeng, “Applying long short-term memory (LSTM) mechanisms for fingerprinting outdoor positioning in hybrid networks,” in Proc. IEEE 90th Veh. Technol. Conf. (VTC-Fall), Nov. 2019, pp. 1–5.
V. C. Paterna, A. C. Auge, J. P. Aspas, and M. A. P. Bullones, “A Bluetooth low energy indoor positioning system with channel diversity, weighted trilateration and Kalman filtering,” Sensors, vol. 17, no. 12, p. 2927, Dec. 2017.
H. Rizk, “SoloCell: Efficient indoor localization based on limited cell network information and minimal fingerprinting,” in Proc. 27th ACM SIGSPATIAL Int. Conf. Adv. Geograph. Inf. Syst., Nov. 2019, pp. 604–605.
H. Rizk and M. Youssef, “MonoDCell: A ubiquitous and lowoverhead deep learning-based indoor localization with limited cellular information,” in Proc. 27th ACM SIGSPATIAL Int. Conf. Adv. Geograph. Inf. Syst., Jul. 2019, pp. 109–118.
Z. Chen, H. Zou, J. Yang, H. Jiang, and L. Xie, “WiFi fingerprinting indoor localization using local feature-based deep LSTM,” IEEE Syst. J., vol. 14, no. 2, pp. 3001–3010, Jun. 2020.
W. Qian, F. Lauri, and F. Gechter, “Convolutional mixture density recurrent neural network for predicting user location with WiFi fingerprints,” Nov. 2019, arXiv:1911.09344.
A. B. Adege, H.-P. Lin, and L.-C. Wang, “Mobility predictions for IoT devices using gated recurrent unit network,” IEEE Internet Things J., vol. 7, no. 1, pp. 505–517, Jan. 2020.
D. V. Le, N. Meratnia, and P. J. Havinga, “Unsupervised deep feature learning to reduce the collection of fingerprints for indoor localization using deep belief networks,” in Proc. IEEE Int. Conf. Indoor Position. Indoor Navig. (IPIN), Sep. 2018, pp. 1–7.
D. Sikeridis, B. P. Rimal, I. Papapanagiotou, and M. Devetsikiotis, “Unsupervised crowd-assisted learning enabling location-aware facilities,” IEEE Internet Things J., vol. 5, no. 6, pp. 4699–4713, Dec. 2018.
N. Saeed and H. Nam, “Cluster based multidimensional scaling for irregular cognitive radio networks localization,” IEEE Trans. Signal Process., vol. 64, no. 10, pp. 2649–2659, May 2016.
Z. Gao, Y. Ma, K. Liu, X. Miao, and Y. Zhao, “An indoor multi-tag cooperative localization algorithm based on NMDS for RFID,” IEEE Sensors J., vol. 17, no. 7, pp. 2120–2128, Apr. 2017.
J. Choi, Y.-S. Choi, and S. Talwar, “Unsupervised learning techniques for trilateration: From theory to Android app implementation,” IEEE Access, vol. 7, pp. 134525–134538, 2019.
J. Choi, Y.-S. Choi, and S. Talwar, “Unsupervised learning technique to obtain the coordinates of Wi-Fi access points,” in Proc. IEEE Int. Conf. Indoor Position. Indoor Navig. (IPIN), Nov. 2019, pp. 1–6.
B. Jang and H. Kim, “Indoor positioning technologies without offline fingerprinting map: A survey,” IEEE Commun. Surveys Tuts., vol. 21, no. 1, pp. 508–525, 1st Quart., 2019.
Y. Ye and B. Wang, “RMapCS: Radio map construction from crowdsourced samples for indoor localization,” IEEE Access, vol. 6, pp. 24224–24238, 2018.
S. Niknam, H. S. Dhillon, and J. H. Reed, “Federated learning for wireless communications: Motivation, opportunities, and challenges,” IEEE Commun. Mag., vol. 58, no. 6, pp. 46–51, Jun. 2020.
L. Chen et al., “Robustness, security and privacy in locationbased services for future IoT: A survey,” IEEE Access, vol. 5, pp. 8956–8977, 2017.
W. Li, C. Zhang, and Y. Tanaka, “Pseudo label-driven federated learning-based decentralized indoor localization via mobile crowdsourcing,” IEEE Sensors J., vol. 20, no. 19, pp. 11556–11565, May 2020.
D. C. Nguyen, M. Ding, P. N. Pathirana, A. Seneviratne, J. Li, and H. V. Poor, “Federated learning for Internet of Things: A comprehensive survey,” IEEE Commun. Surveys Tuts., vol. 23, no. 3, pp. 1622–1658, Apr. 2021.
Y. Liu, H. Li, J. Xiao, and H. Jin, “FLoc: Fingerprint-based indoor localization system under a federated learning updating framework,” in Proc. 15th Int. Conf. Mobile Ad-Hoc Sensor Netw. (MSN), Apr. 2019, pp. 113–118.
F. Yin et al., “FedLoc: Federated learning framework for data-driven cooperative localization and location data processing,” IEEE Open J. Signal Process., vol. 1, pp. 187–215, 2020.
W. Shao, H. Luo, F. Zhao, Y. Ma, Z. Zhao, and A. Crivello, “Indoor positioning based on fingerprint-image and deep learning,” IEEE Access, vol. 6, pp. 74699–74712, 2018.
Y. Li, X. Hu, Y. Zhuang, Z. Gao, P. Zhang, and N. El-Sheimy, “Deep reinforcement learning (DRL): Another perspective for unsupervised wireless localization,” IEEE Internet Things J., vol. 7, no. 7, pp. 6279–6287, Jul. 2020.
F. Dou, J. Lu, Z. Wang, X. Xiao, J. Bi, and C.-H. Huang, “Top-down indoor localization with Wi-fi fingerprints using deep Q-network,” in Proc. IEEE 15th Int. Conf. Mobile Ad Hoc Sensor Syst. (MASS), Dec. 2018, pp. 166–174.
V. F. Mirama, L. E. Diez, A. Bahillo, and V. Quintero, “A survey of machine learning in pedestrian localization systems: Applications, open issues and challenges,” IEEE Access, vol. 9, pp. 120138–120157, 2021.
M. Fahad, Z. Chen, and Y. Guo, “Learning how pedestrians navigate: A deep inverse reinforcement learning approach,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Jan. 2018, pp. 819–826.
S. De Bast, A. P. Guevara, and S. Pollin, “CSI-based positioning in massive MIMO systems using convolutional neural networks,” in Proc. IEEE 91st Veh. Technol. Conf. (VTC-Spring), Jun. 2020, pp. 1–5.
P. Li et al., “Deep transfer learning for WiFi localization,” in Proc. IEEE Radar Conf. (RadarConf21), Jun. 2021, pp. 1–5.
H. Zou, Y. Zhou, H. Jiang, B. Huang, L. Xie, and C. Spanos, “Adaptive localization in dynamic indoor environments by transfer kernel learning,” in Proc. IEEE Wireless Commun. Netw. Conf. (WCNC), Mar. 2017, pp. 1–6.
M. Zhou, Y. Tang, W. Nie, L. Xie, and X. Yang, “GrassMA: Graph-based semi-supervised manifold alignment for indoor WLAN localization,” IEEE Sensors J., vol. 17, no. 21, pp. 7086–7095, Nov. 2017.
A. P. Behera, A. Singh, S. Verma, and M. Kumar, “Manifold learning with localized procrustes analysis based WSN localization,” IEEE Sens. Lett., vol. 4, no. 10, pp. 1–4, Oct. 2020.
J. Yoo, “Time-series Laplacian semi-supervised learning for indoor localization,” Sensors, vol. 19, no. 18, p. 3867, Sep. 2019.
E. Lei, O. Castañeda, O. Tirkkonen, T. Goldstein, and C. Studer, “Siamese neural networks for wireless positioning and channel charting,”
in Proc. IEEE 57th Annu. Allerton Conf. Commun. Control Comput. (Allerton), Sep. 2019, pp. 200–207.
L. Xiao, A. Behboodi, and R. Mathar, “Learning the localization function: Machine learning approach to fingerprinting localization,” Mar.
2018, arXiv:1803.08153.
K. Liu et al., “Toward low-overhead fingerprint-based indoor localization via transfer learning: Design, implementation, and evaluation,” IEEE Trans. Ind. Informat., vol. 14, no. 3, pp. 898–908, Sep. 2017.
X. Zhang, Y. Mei, H. Jin, and D. Liang, “TL-FCMA: Indoor localization by integrating fuzzy clustering with transfer learning,” in Proc. Int. Conf. Netw. Infrastruct. Digit. Content (IC-NIDC), Aug. 2018, pp. 372–377.
H. Xu, “Semi-supervised manifold learning based on polynomial mapping for localization in wireless sensor networks,” Signal Process., vol. 172, May 2020, Art. no. 107570.
M. Zhou, Y. Tang, Z. Tian, L. Xie, and W. Nie, “Robust neighborhood graphing for semi-supervised indoor localization with light-loaded location fingerprinting,” IEEE Internet Things J., vol. 5, no. 5, pp. 3378–3387, Oct. 2017.
D. Sánchez-Rodríguez, P. Hernández-Morera, J. M. Quinteiro, and I. Alonso-González, “A low complexity system based on multiple weighted decision trees for indoor localization,” Sensors, vol. 15, no. 6, pp. 14809–14829, Jun. 2015.
J. Wang, X. Zhang, Q. Gao, H. Yue, and H. Wang, “Device-free wireless localization and activity recognition: A deep learning approach,” IEEE Trans. Veh. Technol., vol. 66, no. 7, pp. 6258–6267, Jul. 2017.
L. Zhao, H. Huang, X. Li, S. Ding, H. Zhao, and Z. Han, “An accurate and robust approach of device-free localization with convolutional autoencoder,” IEEE Internet Things J., vol. 6, no. 3, pp. 5825–5840, Jun. 2019.
L. Zhao, H. Huang, S. Ding, and X. Li, “An accurate and efficient device-free localization approach based on Gaussian Bernoulli restricted Boltzmann machine,” in Proc. IEEE Int. Conf. Syst. Man Cybern. (SMC), Oct. 2018, pp. 2323–2328.
H. Rizk, “Device-invariant cellular-based indoor localization system using deep learning,” in Proc. ACM MobiSys Rising Stars Forum, Jun. 2019, pp. 19–23.
X. Jiang, Y. Chen, J. Liu, Y. Gu, and L. Hu, “FSELM: Fusion semisupervised extreme learning machine for indoor localization with Wi-Fi and Bluetooth fingerprints,” Soft Comput., vol. 22, no. 11, pp. 3621–3635, Apr. 2018.
“Locus project website.” Accessed: May 15, 2023. [Online]. Available: https://www.locus-project.eu/
“5G-clarity project website.” Accessed: May 15, 2023. [Online]. Available: https://www.5gclarity.com/
“5GTrack project website.” Accessed: May 15, 2023. [Online]. Available: https://research.chalmers.se/en/project/9458
“RISE-6G project website.” Accessed: May 15, 2023. [Online]. Available: https://rise-6g.eu/
J. A. del Peral-Rosado et al., “Proof-of-concept of dedicated aerial 5G and GNSS testbed for enhanced hybrid positioning,” in Proc. Int. Techn. Meeting Satellite Division Inst. Navig., 2022, p. 5.
E. J. Khatib, C. S. A. Merino, H. Q. Luo-Chen, and R. B. Moreno, “Designing a 6G testbed for location: Use cases, challenges, enablers and requirements,” IEEE Access, vol. 11, pp. 10053–10091, 2023.
A. Minetto et al., “A testbed for GNSS-based positioning and navigation technologies in smart cities: The hansel project,” Smart Cities, vol. 3, no. 4, pp. 1219–1241, Oct. 2020. [Online]. Available: http:// dx.doi.org/10.3390/smartcities3040060
I. Palamá, S. Bartoletti, G. Bianchi, and N. B. Melazzi, “5G positioning with SDR-based open-source platforms: Where do we stand?” in Proc. IEEE 11th IFIP Int. Conf. Perform. Eval. Model. Wireless Wired Netw. (PEMWN), 2022, pp. 1–6.
“SRSRAN website.” Accessed: May 15, 2023. [Online]. Available: https://www.srslte.com/
X. Lin. “An overview of 5G advanced evolution in 3GPP release 18.” 2022. [Online]. Available: https://arxiv.org/abs/2201.01358
Location Services (LCS); Service Description; Stage 1, Version 17.0.0, 3GPP Standard TS 22.071, Mar. 2022. [Online]. Available: https://portal.3gpp. org/desktopmodules/Specifications/ SpecificationDetails.aspx?specificationId=584
5G System (5GS) Location Services (LCS); Stage 2, Version 18.1.0, 3GPP Standard TS 23.273, Mar. 2023. [Online]. Available: https://portal.3gpp. org/desktopmodules/Specifications/SpecificationDetails. aspx?specificationId=3577
NG Radio Access Network (NG-RAN); Stage 2 Functional Specification of User Equipment (UE) Positioning in NG-RAN, Version 17.4.0, 3GPP Standard TS 38.305, Mar. 2023. [Online]. Available: https://portal.3gpp. org/desktopmodules/Specifications/ SpecificationDetails.aspx?specificationId=3310
“ITU-R WP 5D: Future technology trends of terrestrial International Mobile Telecommunications systems towards 2030 and beyond.” Accessed: May 15, 2023. [Online]. Available: https://www.3gpp. org/ ftp/tsg_ran/TSG_RAN/TSGR_99/Docs/RP-230050.zip
E. N. Papasotiriou, A.-A. A. Boulogeorgos, K. Haneda, M. F. de Guzman, and A. Alexiou, “An experimentally validated fading model for THz wireless systems,” Sci. Rep., vol. 11, no. 1, Sep. 2021, Art. no. 18717.
A.-A. A. Boulgoeorgos and A. Alexiou, Statistical Modeling of Reliability Structures and Industrial Processes (Reconfigurable Intelligent Surfaces for Exploitation of the Randomness of Wireless Environments). Hoboken, NJ, USA: CRC Press, Sep. 2022, p. 22.
A.-A. A. Boulogeorgos and A. Alexiou, “Performance evaluation of the initial access procedure in wireless THz systems,” in Proc. 16th Int. Symp. Wireless Commun. Syst. (ISWCS), Oct. 2019, pp. 422–426.
E. N. Papasotiriou, A.-A. A. Boulogeorgos, and A. Alexiou, “Outdoor THz fading modeling by means of Gaussian mixture distribution,” Res. Square, vol. 13, p. 6385, Apr. 2023.
P. Xu, G. Chen, Z. Yang, and M. Di Renzo, “Reconfigurable intelligent surfaces-assisted communications with discrete phase shifts: How many quantization levels are required to achieve full diversity?” IEEE Wireless Commun. Lett., vol. 10, no. 2, pp. 358–362, Feb. 2021.
J. An, C. Xu, L. Gan, and L. Hanzo, “Low-complexity channel estimation and passive beamforming for RIS-assisted MIMO systems relying on discrete phase shifts,” IEEE Trans. Commun., vol. 70, no. 2, pp. 1245–1260, Feb. 2022.
P. Xu, G. Chen, G. Pan, and M. Di Renzo, “Ergodic secrecy rate of RIS-assisted communication systems in the presence of discrete phase shifts and multiple eavesdroppers,” IEEE Wireless Commun. Lett., vol. 10, no. 3, pp. 629–633, Mar. 2021.
W. Shi, J. Xu, W. Xu, M. Di Renzo, and C. Zhao, “Secure outage analysis of RIS-assisted communications with discrete phase control,” IEEE Trans. Veh. Technol., vol. 72, no. 4, pp. 5435–5440, Apr. 2023.
H. Taghvaee, A. Cabellos-Aparicio, J. Georgiou, and S. Abadal, “Error analysis of programmable metasurfaces for beam steering,” IEEE J. Emerg. Sel. Topics Circuits Syst., vol. 10, no. 1, pp. 62–74, Mar. 2020.
F. Liu et al., “Integrated sensing and communications: Toward dualfunctional wireless networks for 6G and beyond,” IEEE J. Sel. Areas Commun., vol. 40, no. 6, pp. 1728–1767, Jun. 2022.
J. He, F. Jiang, K. Keykhosravi, J. Kokkoniemi, H. Wymeersch, and M. Juntti, “Beyond 5G RIS mmWave systems: Where communication and localization meet,” IEEE Access, vol. 10, pp. 68075–68084, 2022.
Y. Liu et al., “Robotic communications for 5G and beyond: Challenges and research opportunities,” IEEE Commun. Mag., vol. 59, no. 10, pp. 92–98, Oct. 2021.
G. Ghatak, R. Koirala, A. De Domenico, B. Denis, D. Dardari, and B. Uguen, “Positioning data-rate trade-Off in mm-Wave small cells and service differentiation for 5G networks,” in Proc. IEEE 87th Veh. Technol. Conf. (VTC Spring), Jun. 2018, pp. 1–5.
S. Jeong, O. Simeone, A. Haimovich, and J. Kang, “Beamforming design for joint localization and data transmission in di stributed antenna system,” IEEE Trans. Veh. Technol., vol. 64, no. 1, pp. 62–76, Jan. 2015.
G. Destino and H. Wymeersch, “On the trade-off between positioning and data rate for mm-wave communication,” in Proc. IEEE Int. Conf. Commun. Workshops (ICC Workshops), Jul. 2017, pp. 797–802.
G. Destino, J. Saloranta, H. Wymeersch, and G.-S. Granados, “Impact of imperfect beam alignment on the rate-positioning trade-off,” in Proc. IEEE Wireless Commun. Netw. Conf. (WCNC), Apr. 2018, pp. 1–5. 508] A. Dammann, T. Jost, R. Raulefs, M. Walter, and S. Zhang, “Optimizing waveforms for positioning in 5G,” in Proc. IEEE 17th Int. Workshop Signal Process. Adv. Wireless Commun. (SPAWC), Jul. 2016, pp. 1–5.
R. Raulefs, A. Dammann, T. Jost, M. Walter, and S. Zhang, “The 5G localization waveforms,” in Proc. ETSI Workshop Future Radio Technol. Focusing Air Interfaces, Jan. 2016, pp. 1–6.
R. Hadani et al., “Orthogonal time frequency space (OTFS) modulation for millimeter-wave communications systems,” in Proc. IEEE MTT-S Int. Microw. Symp. (IMS), Oct. 2017, pp. 681–683.