
Received XX Month, XXXX; revised XX Month, XXXX; accepted XX Month, XXXX; Date of publication XX Month, XXXX; date of
current version XX Month, XXXX.

Digital Object Identifier 10.1109/OJCOMS.2022.1234567

Localization as a key enabler of 6G
wireless systems: A comprehensive

survey and an outlook
STYLIANOS E. TREVLAKIS1, MEMBER, IEEE, ALEXANDROS-APOSTOLOS A.

BOULOGEORGOS2, SENIOR MEMBER, IEEE, DIMITRIOS PLIATSIOS2, MEMBER, IEEE,
JORGE QUEROL3, MEMBER, IEEE, KONSTANTINOS NTONTIN3, MEMBER, IEEE,

PANAGIOTIS SARIGIANNIDIS2, MEMBER, IEEE, SYMEON
CHATZINOTAS3, FELLOW, IEEE, and MARCO DI RENZO4, FELLOW, IEEE,

1Department of Research and Development, InnoCube P.C., 17th Noemvriou 79, 55535 Thessaloniki, Greece
2Department of Electrical and Computer Engineering, University of Western Macedonia, ZEP Area, 50100 Kozani, Greece

3SnT, University of Luxembourg, Luxembourg
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ABSTRACT When fully implemented, sixth generation (6G) wireless systems will constitute intelligent
wireless networks that enable not only ubiquitous communication but also high-accuracy localization
services. They will be the driving force behind this transformation by introducing a new set of
characteristics and service capabilities in which location will coexist with communication while sharing
available resources. To that purpose, this survey investigates the envisioned applications and use cases of
localization in future 6G wireless systems, while analyzing the impact of the major technology enablers.
Afterwards, system models for millimeter wave, terahertz and visible light positioning that take into
account both line-of-sight (LOS) and non-LOS channels are presented, while localization key performance
indicators are revisited alongside mathematical definitions. Moreover, a detailed review of the state of
the art conventional and learning-based localization techniques is conducted. Furthermore, the localization
problem is formulated, the wireless system design is considered and the optimization of both is investigated.
Finally, insights that arise from the presented analysis are summarized and used to highlight the most
important future directions for localization in 6G wireless systems.

INDEX TERMS 6G, applications, future directions, key performance indicators, localization, machine
learning, methodologies, optimization, use-cases.

I. INTRODUCTION
To satisfy the proliferating demands of next generation
wireless applications, such as multisensory extended reality
(XR) [1]–[3], connected robots [4]–[6], wireless brain com-
puter interactions [7], digital twins [8], industrial internet-
of-things (IoT) [9], [10], tactile IoT [11], [12], internet
of underwater things [13], [14], self-driving ground and
air vehicles [15]–[17], and others, while dealing with the
spectrum scarcity of the radio and microwave bands [18]–
[21], the research, innovation and industrial communities

turned their attention to communications in the millimeter
wave (mmWave) [22]–[27], terahertz (THz) [28]–[31], and
optical bands [32]–[36]. Despite the unprecedented band-
width that high-frequency systems offer, in order to achieve
the promised performance excellence in terms of throughput,
latency, and reliability, in acceptable transmission distances,
both the transmitter (TX) and the receiver (RX) require
knowledge of each others relative position and orienta-
tion [37]–[41]. As a consequence, localization is expected
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to become a vital component of high-frequency wireless
systems.

A. RELATED WORK
Scanning the technical literature, several surveys and tuto-
rials for localization can be identified [42]–[61]. In more
detail, in [42], the authors presented an overview of the
simultaneous localization and mapping (SLAM) approaches
in self-driving vehicles. In [43], the authors reported the re-
quirements, technology enablers, techniques and approaches,
as well as existing system models and their performance
in indoor localization for emergency response scenarios.
In [44], a state-of-the-art (SotA) vehicle localization ap-
proaches comparison and assessment was conducted and
their role to vehicle-to-everything scenarios was discussed.
A list of the enabling localization technologies that were de-
veloped for cellular systems and wireless local area networks
until 2018 was documented in [45]. In [46], the authors pre-
sented an overview of the standardized localization methods
from the first to the fifth generation cellular systems. In [47],
the authors revisited and discussed visible light positioning
(VLP) approaches.

The authors of [48] conducted an overview of the device-
free localization approaches and presented the 2019 research
and development trends. In [49], the authors surveyed the
2019 indoor localization systems and methods account-
ing for different radio technologies. In [50], the authors
revisited and explained multidimensional scaling (MDS)-
based localization techniques. In [51], a review of the
SotA of localization techniques for massive multiple-input
multiple-output (MIMO) systems was conducted. Moreover,
the authors of [52] reviewed machine learning (ML)-based
localization methodologies that employ radio signals. In [53],
a summation of ML-enabled indoor localization approaches
was reported.

The authors of [54] presented a survey of radio frequency
identifier (RFID) based localization techniques. In [55],
the authors focused on the identification of key enabling
technologies and applications of localization in the sixth
generation (6G) networks. In [56], the vision of cm-level
localization was presented and map-based approaches was
identified as possible enablers. In [57], a survey on localiza-
tion fundamental approaches was reported accompanied by
SotA results and future directions. The authors of [58] fo-
cused on the recent developments and applications of SLAM
with emphasis in complex and unstructured agricultural
environments. In [59], the authors overviewed a number of
localization methods for autonomous vehicles. The authors
of [60], [62] conducted a survey on the fundamental limits of
integrated communication and localization systems. Finally,
in [61], the authors provided a survey concerning THz
empowered localization techniques.

Tables 1, 2 and 3 summarize the surveys existing in
literature that investigate localization applications and use
cases as well as the relevant technologies, system models,

key performance indicators (KPIs) and approaches. However,
the focus and aim of each survey is different both in terms of
use cases, technologies and methods enlisted. For instance,
almost every survey includes indoor and outdoor terres-
trial use cases [42]–[61], while only [50], [57], [60] take
into account non-terrestrial networks (NTN) and only [50]
investigates underwater use cases. As far as technology
enablers are concerned, each contribution focuses on specific
subsets of them. Specifically, the majority of the surveys
before 2020 take into account sensors, radars, and cellular
systems [42]–[44], [46]–[50], while the contrary is valid for
contributions between 2020 and 2022 that mainly investi-
gate mmWave/THz technologies [55]–[57], [60], [61]. In
addition, enablers like VLP, beamforming, channel charting
and reconfigurable intelligent surfaces (RISs) are taken into
consideration in a very small number of surveys. From a sys-
tem model point of view, only selected contributions provide
mathematical modelling for the discussed technologies, such
as [45], [47], [51], [56], [60], [61].

B. CONTRIBUTION
Based on the aforementioned, it becomes evident that a
complete survey of the applications, use cases, technology
enablers, system models, KPIs, and methods with focus
on the future 6G wireless networks is missing from the
bibliography. To cover this gap and with respect to the
aforementioned contributions, the overall objective of this
survey is to deliver a timely and comprehensive review
of the localization applications, use cases, system models,
enabling technologies, methods and KPIs in the 6G era
as well as to identify research gaps and highlight possible
research directions. In particular, this survey investigates the
following:

• The main localization-specific applications and use
cases of future 6G wireless networks are presented.

• The localization-enabling technologies are investigated
with regard to their contribution towards advancing the
SotA of wireless systems.

• System models for line-of-sight (LOS) and non-LOS
(NLOS) channels in mmWave/THz and VLP localiza-
tion wireless systems are analyzed taking into account
both classic reflectors and RISs.

• The major KPIs used by localization methods to mea-
sure the performance of the system are discussed and
accompanied by mathematical expressions.

• The SotA of conventional and learning-based locali-
zation methodologies/algorithms are investigated and
conceptual figures are provided to aid the reader in
understanding their basic principles.

• The formulation, system design and optimization of the
localization problem is described.

• An exhaustive inventory of the latest 5G/6G
localization-oriented research projects, major testbeds
and experimental platforms, as well as standardization
activities is presented.
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TABLE 1. Summary of recent localization surveys and tutorials (2017-2018)

Year Ref. Applications Use-cases Technologies System models KPIs Algorithms

2017 [42] Autonomous ve-
hicle

Outdoor Sensors – Accuracy, scalability,
availability, recovery,
updatability, dynam-
icity

SLAM

2017 [43] Emergency
response

Indoor
Outdoor

Radio
signals,
Inertial
measurement
units (IMUs)

– Accuracy, informa-
tion accessibility,
adaptability,
scalability, physical
robustness,
assembling
complexity,
equipment’s size
and weight, energy
efficiency, cost

Proximity, Triangulation, Latera-
tion/ trilateration/ multilateration,
Maximum likelihood estimation,
Dead reckoning, Kalman filters,
Centroid, Particle filters, Finger-
printing, Visual analysis, Map
matching

2018 [44] Autonomous ve-
hicles

Outdoor GPS/IMU,
Sensors,
Radio and
microwave
signals, VLP

– Accuracy, Dead
reckoning, Position
error, Odometry,
Packet loss,
Robustness, Time-to-
first-fix

Differential GPS, Assisted GPS,
Real time kinematic based tech-
niques, SLAM, Random sample
consensus, Frequency modulation
continuous wave (FMCW)-based
solutions

2018 [45] Network
planning and
optimization,
Emergency
response

Indoor
Outdoor

Cellular,
WLANs,
Sensors,
mmWave

Cellular Accuracy Probabilistic radio signal strength
(RSS) fingerprint matching, Semi-
supervised and unsupervised learn-
ing, Cell-identifier and GPS po-
sition sequence matching, Hidden
Markov model, Bayesian learning,
Assisted GPS, Advanced forward
link trilateration, RF pattern match-
ing, Intelligent probability hierar-
chy based solutions, SLAM

2018 [46] – Indoor
Outdoor

Radio
signals,
WLAN/
Bluetooth,
Sensors

– Accuracy Cell-ID, RF pattern matching,
Time of arrival (ToA) and time
difference of arrival (TDoA) based
methods, Advanced forward link
trilateration, Stand-alone, Differen-
tial, and Assisted GNSS

2018 [47] – Indoor VLP VLP Cramér-Rao lower
bound (CRLB), Root
mean square error,
Power efficiency

Direct positioning, proximity,
geometric- and statistical-
based approaches, fingerprinting,
mapping

• Directions and insights for the design and improvement
of future 6G wireless systems are discussed.

The reminder of the survey article is organized as follows:
Section II describes the applications of 6G wireless systems,
while Section III delves into the use cases and their relations
with the various 6G applications. Next, the technology en-
ablers of localization are presented in Section IV. Section V
focuses on the system models for mmWave/THz localization
and VLP, while the various KPIs of the localization ap-
proaches are presented in Section VI. Section VIII describes

the SotA of conventional and learning-based localization
methodologies and algorithms that are envisioned to be ap-
plied in future 6G wireless networks. Section VII highlights
the major aspects of the localization problem formulation,
systems design as well as its optimization, while the major
collaborative research efforts are presented in Section IX.
Finally, in Section X, the findings of this contribution are
translated into insights and future directions, while conclud-
ing remarks are provided in Section XI. The structure of this
survey in a glance is reported in Fig. 1.

VOLUME , 3



Trevlakis et al.: Preparation of Papers for IEEE OPEN JOURNALS

TABLE 2. Summary of recent localization surveys and tutorials (2019-2020)

Year Ref. Applications Use-cases Technologies System models KPIs Algorithms

2019 [48] Smart
agriculture,
Smart grid, Smart
media, Smart
cities, Social
computing,
Social IoT,
e-Business,
Affective
computing,
Cyber physical
systems,
Wearable
applications

Indoor
Outdoor

Radio
signals,
Sensors

– Static and dynamic
backscattering
model

Directional and ambient radio
imaging, channel diversity,
Shadowing, Comprehensive
sensing, Radio grid, Diffraction
theory, Extreme learning
machine, Markov model,
Probabilistic classification,
Gradient fingerprinting, Support
vector machine (SVM), Deep
learning, Dictionary learning

2019 [51] – Indoor
Outdoor

mmWave mmWave
MIMO

Accuracy,
Complexity

Indirect localization, Direct locali-
zation, Fingerprinting

2019 [49] Personalized
context-aware
networks, e-
Health, Disaster
management
and recovery,
Security, Asset
management and
tracking

Indoor WiFi,
Bluetooth,
Zigbee,
RFID, VLP,
Acoustic,
Ultrasound

– Availability, Cost,
Energy efficiency,
Reception range,
Accuracy, Latency,
Scalability

Fingerprinting/scene analysis,
RSS, Channel state information
(CSI), Angel of arrival (AoA),
Time of flight (ToF), TDoA,
Return time of flight (RFoF), and
Phase of arrival-based approaches

2019 [50] Disaster
management,
Security, IoT,
Underwater
exploration

Indoor
Outdoor
NTN
Underwater

Cellular,
RFID,
Sensors,
Acoustic,
VLP

– Accuracy,
Complexity

MDS

2020 [52] Autonomous
vehicles,
Mission-critical
applications, IoT,
Beam alignment
in massive
MIMO systems

Indoor
Outdoor

WiFi,
Cellular,
Bluetooth,
Sensors

– Accuracy K-nearest neighbors (KNN), Gaus-
sian processes, Ensemble methods,
Neural networks (NNs), Convolu-
tion NNs (CNNs), Recurrent NNs
(RNNs), Autoencoders, Generative
and statistical models, Deep belief
networks, MDS, Transfer learning

2020 [53] Positioning and
navigation
of indoor
environment,
Nursing
people and
tracking, People
management,
Fire rescue and
other safety
needs

Indoor WiFi,
Bluetooth,
VLP,
Magnetic
field

– Accuracy, latency,
complexity,
coverage,
robustness

Fingerprint

2020 [63]
[64]

Social distancing Indoor
Outdoor
NTN

WiFi, GNSS,
cellular,
bluetooth,
UWB, RFID

– Accuracy, latency,
coverage

Trilateration, Kalman filters, RSS-
based, TDoA-based, Assisted-
GNSS, Enhanced Cell-ID
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TABLE 3. Summary of recent localization surveys and tutorials (2021-2022)

Year Ref. Applications Use-cases Technologies System models KPIs Algorithms

2021 [54] Vehicle localization,
navigation, tracking

Indoor RFID, Sen-
sors

– Accuracy, cost,
energy efficiency,
complexity

–

2021 [55] Environment
mapping, Robot
localization,
Tracking,
Localization
and sensing for
eHealth, Context
awareness, Radar-
based applications

Indoor
Outdoor

mmWave,
THz, RISs

– – Supervised, unsupervised,
reinforcement learning

2021 [56] People, objects, and
vehicles monitoring

Indoor
Outdoor

mmWave,
Cellular

mmWave Accuracy Fingerprinting, Kalman filter, Ex-
tended Kalman filter

2021 [65] Nanonetworks Nanoscale THz – Accuracy, complex-
ity

–

2022 [57] Mutisensory XR,
Tele-presence, Smart
transportation,
Connected robotics
and autonomous
systems, UAVs

Indoor
Outdoor
NTN

mmWave,
THz,
Sensors

– Accuracy, latency,
precision, energy
efficiency

Tracking, SLAM, NNs Extended
Kalman filter

2022 [58] Precision agriculture,
mapping, navigation

Outdoor Sensors – Accuracy Extended Kalman filter SLAM,
Monte Carlo localization, Visual
SLAM, Sensor fusion SLAM

2022 [59] Autonomous
vehicles

Outdoor Sensors – Accuracy, F1 Score Extended Kalman filters, NNs

2022 [60]
[62]

IoT connected
home, Internet
of vehicles, UAV
communications and
navigation, Target
detection

Indoor
Outdoor
NTN

WiFi,
mmWave

Cooperative
and non
localization
with MIMO
and virtual
MIMO

Accuracy, coverage,
complexity, stability

–

2022 [61] – Indoor
Outdoor

mmWave,
THz

THz with and
without RISs

Accuracy, Update
rate, Complexity,
Coverage, Stability,
Latency, Mobility,
Scalability

ToA-based, TDoA-based, AoA-
based, AoD-based, Expected max-
imization, NNs, Kalman filter, Par-
ticle filter

This work Autonomous supply
chain, Smart cities,
Manufacturing, XR,
Earth monitoring,
Network expansion,
Mapping, Sensor
infrastructure web,
Context-aware
networks, Precision
healthcare, Security,
Gesture/motion
recognition, Robots,
Nanoscale, e-Health,
Agriculture

Indoor
Outdoor
NTN
Underwater
Nanoscale

mmWave,
THz,
hardware,
beamform-
ing, RIS,
AI, channel
charting,
radars,
sensors,
VLP

mmWave/THz,
VLP

Accuracy, precision,
latency, coverage,
complexity, stability

Triangulation, Kalman filters,
Compressive sensing, MDS, Direct
localization, Swarm intelligence,
Fingerprinting, SLAM, kNN,
SVM, Decision trees, Gaussian
processes, NNs, Autoencoders,
CNNs, RNNs, Unsupervised
learning, Semi-supervised learning,
clustering, Dimensionality
reduction, Federated learning,
Reinforcement learning (RL),
Deep RL, Transfer learning,
Manifold learning, Cooperative
approaches
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FIGURE 1. The overall structure of this survey.

Abbreviations and notations: The abbreviations that can
be found throughout this survey are presented in Table 4,
given at the top of the next page. Unless stated otherwise,
bold low and capital letters respectively denote vectors and
matrices, (·)T stands for the transpose matrix, | · | denotes
absolute value, ex represents the exponential function, (·)−1

is the inverse matrix, while ab is a in the power of b. In

addition, cos(·), sin(·), arctan 2(·), and arcsin(·) represent
the cosine, sine, 2-argument arctangent, and the arcsine
functions, respectively. Also, log2(·) stands for the binary
logarithm, Hilb[·] represents the Hilbert function, and E[·]
denotes the expected value. Moreover, tr(·) is the trace
of a matrix and I−1(·) denotes the inverse Fisher matrix.
argmin(·) represents the argument of minimum, diag(·) is
the diagonal matrix, and rank(·) denotes the rank of a matrix.
Finally,

√
· represents the root and

∑N
i=1 xi is the sum of xi

with i in the range of [1, N ].

II. APPLICATIONS OF LOCALIZATION IN 6G WIRELESS
NETWORKS
Localization has been completely transformed by the ad-
vancement of multiple technologies, such as radars, sensors,
artificial intelligence (AI), mmWave, THz, VLC, and RISs.
It is expected to play a dominant role in the next generation
of communication networks through its incorporation in
a variety of applications. As illustrated in Fig. 2, some
indicative examples include pinpointing a device’s outdoor
location with cm- to mm-level precision, accurate indoor
localization with reliable interpretation of three dimentional
(3D) data in addition to the two dimentional (2D) data that
are presently available, or the incorporation of roll, pitch,
and yaw into the localization process. To achieve these, 6G
promises to use a combination of radio and VLC localization
to achieve cm- to mm-level accuracy whether the user,
object, or device is inside and/or outside.

Localization and sensing have been recognized as a dis-
tinct usage scenario in the context of 6G. This scenario
necessitates the presence of robust technical enablers, specif-
ically physical layer localization and sensing techniques.
To a certain degree, contemporary 5G networks possess
the capability to function as sensors through the utilization
of specific reference signals. However, the full potential
of localization and sensing can only be realized when
the underlying system architecture is designed with such
capabilities in mind. In order to accomplish this objective,
it is imperative for the 6G network to effectively integrate
these two systems into a unified entity, thereby reducing the
overall expenses, dimensions, and energy usage, all while
satisfying the desired criteria of both functionalities. The
integration is expected to occur not solely at the physical
layer, but also at higher layers, and may have implications for
the core network. This is due to the potential requirement for
additional nodes to facilitate the coordination of localization,
sensing, and communication functions. On a theoretical
level, several challenges remain that must be addressed,
encompassing electromagnetic modeling, particularly in the
near-field, optimal waveform design, joint beamforming,
power conservation mechanisms, and adaptable duplexing
and control [66].

A detailed analysis of specific applications of localization
in 6G wireless systems is presented in the following sections.
In more detail, the first two sections distinguish between
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TABLE 4. Abbreviations

1D One dimensional MND Malicious node detection
2D Two dimensional MR Mixture reality
3D Three dimensional MSE Mean square error
3G Third generation NASA National aeronautics and space administration
4D Four dimensional NG-RAT Next generation radio access technology
4G Forth generation NLOS Non line of sight
5G Fifth generation NN Neural network
6G Sixth generation OFDM Orthogonal frequency division multiplexing
AI Artificial intelligence OTFS orthogonal time-frequency space
AoA Angle of arrival PARP Peak to average power ratio
AoD Angle of departure PCA Principal component analysis
AR Augmented reality PD Photo-detector
BSE Beam split effect QoE Quality-of-experience
CDF Cumulative distribution function QoPE Quality-of-physical-experience
CMOS Complementary metal oxide semiconductor QoS Quality-of-service
CNN Convolutional neural network RaF Random forest
COA Curvature of arrival RBF Radial basis function
CS Compresive sensing RF Radio frequency
CSI Channel state information RGB Red green blue
D2D Device to device RIS Reflective intelligent surfaces
DL Deep learning RL Reinforcement learning
DoA Direction of arrival RMS Root mean square
DoD Direction of departure RRN Recurrent neural network
DOF Degree of freedom RSS Received signal strength
DT Digital twin RTT Round trip time
EMND Enhanced MND RX Receiver
EKF Extended Kalman filter SDG Sustainable development goals
FDM Frequency division multiplexing SDN Software defined network
FIM Fisher information matrix SINR Signal to interference and noise ratio
FL Federated learning SLAM Simultaneous localization and mapping
FMCW Frequency modulated continuous wave SNR Signal to noise ratio
FOV Field of view SotA State of the art
GALILEO European GNSS SVM Support vector machine
GDoP Geometrical dilution of precision TDoA Time-difference of arrival
GLONASS Russian GNSS TDM Time division multiplexing
GNSS Global navigation satellite system THz Terahertz
GP Gaussian process TL Transfer learning
GPS Global positioning system ToA Time of arrival
GRU Gated recurrent units ToF Time of flight
IoT Internet of things TX Transmitter
IVM Import vector machine UAV Unmanned aerial vehicle
KF Kalman filter UFK Unscented Kalman filter
kNN k-nearest neighbors UGV Unmanned ground vehicle
KPI Key performance indicator UN United Nations
LED Light-emitting diode URLLC Ultra-reliable low latency communications
LiDaR Light detection and ranging UWB Ultra wide band
LOS Line of sight VLC Visible light communications
LSTM Long short-term memory VLP Visible light positioning
MDS Multidimensional scaling VNF Virtual network function
MEM Micro-electro-mechanical WiFi Wireless fidelity
MIMO Multiple input multiple output WSN Wireless sensor network
ML Machine learning XLM Extended learning machine
mmWave Millimeter wave XR Extended reality
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FIGURE 2. Localization-assisted applications

the various applications of localization based on the nature
of the utilized hardware. In Section A, the applications
that fall under the sustainable development umbrella are
analyzed, while in Section B, the ones that will lead to
achieving immersive telepresence are detailed. Section C
highlights promising 6G applications that involve setting up
local trust zones for human and machine localization. Finally,
Sections D and E describe the applications of localization
in next-generation massive twinning and robotics settings,
respectively.

A. SUSTAINABLE DEVELOPMENT
In order to achieve the United Nations’ (UN) sustainable
development goals (SDGs) and lessen the environmental
impact, the next generation of radio access technology
(NG-RAT) promises to incorporate measures to protect the
environment and empower people to improve their own lives
and the world around them. NG-RAT is planned to serve
clusters of use cases such as autonomous supply chain,
Earth monitoring, e-health, and personalized context-aware
networks in order to meet the major UN SDG. All these use
cases have a common need for localization, which in turn
have a set of criteria on major KPIs that must be satisfied.

1) AUTONOMOUS SUPPLY CHAIN
With the ability to monitor products from the time they
are created all the way through their final stages of use
and disposal, an autonomous supply chain may guarantee
material and energy savings as well as increased efficiency.
Specifically, 6G-enabled micro-tags may be used to (i)
promote a flexible and adaptable supply chain; (ii) track
and record the whereabouts and condition of all products;
(iii) allow a decentralized, worldwide asset monitoring and
management system; as well as (iv) link all products to
the internet [67]. For example, consequences for the supply
chain sector may be seen in the novel approaches to final-
mile delivery made possible by the widespread use of
computing and mobile communication technologies. Up to
half of total distribution expenses are attributable to the last

mile of the supply chain’s journey [68]. Packages spend
much of their time in transit dead-zone locations, and very
little real-time information is available, as they make their
way from a site of storage, like a warehouse to a point of
sale or straight to the premises of ultimate costumers. Lastly,
a conventional supply chain is unable to meet the demand
for instantaneous delivery for online purchases. Therefore,
the management of supply chains has placed a premium on
innovative technical solutions. Thus, the ongoing maturation
of technologies based on 6G wireless systems and fog
computing will unquestionably provide a plethora of chances
for the next wave of technological innovation [69]. The
latter may provide a wide variety of services due to the
use of virtual network functions (VNFs), software defined
networking (SDN), AI, and resource orchestration that works
with both physical and virtual resources. This will pave the
way for an ideal answer in terms of logistics management,
protocol compatibility, and network architecture for the next-
generation delivery systems, which rely on unmanned aerial
vehicles (UAVs) and robot delivery workers.

2) EARTH MONITORING
The UN SDGs include global real-time monitoring. In order
to achieve this, a large number of low-cost biodegradable
devices are expected to be deployed to gauge climate, collect
meteorological data, and track species distributions around
the globe. Autonomous and robust placement is required to
map the gathered measurements from the massive deploy-
ment of sensors to the site where the data will be used.
The so-called “Destination Earth” allows for near real-time
observation and monitoring of environmentally important
factors including solute concentrations, biodiversity, and
weather [70]. Environmentally friendly and pervasive sensors
linked together in terrestrial wide area networks and wireless
mesh networks make it possible to conduct such monitoring
tasks. This encourages data collecting even in underdevel-
oped regions with limited access to modern technology.
Cases include conserving endangered ecosystems through
human activities like preventing the spread of disease via
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adjusting climate models and/or monitoring environmental
conditions [71]. As a result, the objectives of future 6G
network should include the development of Earth monitoring
systems. The network is strengthened by the incorporation
of tiny sensors that work together to build a “sensor in-
frastructure web”, which incorporates a worldwide sensor
network for tracking the state of the planet’s ecosystem.
The sustainability of human existence on Earth is specifically
threatened by climate change. To this end, the climate deal
aims for net positive benefits on the climate budget. Due to
the exponential growth of data, future networks will need to
significantly lower their energy footprint. To this end, green
localization approaches are perfectly suited for energy-saving
usage in this context.

3) E-HEALTH
By using low-cost 6G networks, it is possible to increase
access to healthcare for a huge fraction of the world’s pop-
ulation. Remote healthcare is widely used all over the world
to serve people who live in remote areas or who are unable
to travel for medical treatment. The use of telemedicine and
other forms of remote health monitoring make this service
possible [72]. Telemedicine is the practise of treating, diag-
nosing, and evaluating patients remotely. Using AR/VR/XR,
a patient and doctor may have a conversation that is almost
identical to the one that would take place during a face-
to-face visit. Telemedicine now makes use of high-quality
video teleconferencing; but, with the fast development of
holographic technology, is anticipated to be employed in
the near future. Wireless body area networks and wearable
devices are only two examples of the Internet-of-Medical-
Things technologies that have begun to see widespread
deployment for remote health monitoring [73]. The same
way that real-time monitoring systems benefit society as a
whole by tracking emergency situations, future 6G-enabled
e-Health systems will be able to provide immediate treat-
ment. However, there is a significant barrier to this aim
caused by the slow rate of acceptance of new technologies.
Also, those who require constant monitoring, like diabetics,
may rest easy as their dosages can be modified with the help
of digital medication. Finally, sample collection for testing
may be facilitated by deploying drones to out-of-the-way
locations. Strict requirements on localization precision in the
range of 0.1− 0.3 m in the vertical and 0.1− 0.5 m in the
horizontal plane need to be satisfied to guarantee a valid
sample collection by deploying drones to improve remote
health care. For tracking purposes, especially during landing
and sample collection/delivery operations, a high level of
availability of up to 99.99% is required.

4) PERSONALIZED CONTEXT-AWARE NETWORKS
6G is envisioned to allow contextual interpretations in both
communication and localization protocols. Humans are able

to comprehend and understand their activities because of
the organizational, cultural, and physical circumstances in
which they participate. This is accomplished by a combined
comprehension of time and activity components of an action
along with the quantitative characterisation of entities, like
things, places, or people. The ability to recognize human and
technological contexts is equally crucial for the realization
of 6G networks [55].

Contextual understanding will be useful in several 6G ap-
plications. By communicating only when it is most efficient
applications may significantly reduce their overall energy
footprint. Insightful prediction of data transmission based on
context paves the way for increased throughput on demand.
To achieve hyper-personalization, context-awareness may be
utilized to intelligently relocate personalization algorithms
and sensor data to portions of the network, where storage and
computing are quick and practical. For instance, in healthcare
contexts, it is crucial to fuse sensor data in order to discover
patterns and deviations, and this is made possible by in-
telligent storage and distributed processing capabilities [74],
[75]. Additionally, multi-modal localization is made possible
by context-awareness, allowing mobile devices to transition
between channels and communication technologies based
on their present location. With multi-modality, devices may
choose between national and private technologies, reducing
power consumption and improving service quality. This
diversity in communication styles necessitates the use of
context-aware localization approaches [76].

The following developments in awareness of context is
expected to benefit from 6G networks. Context awareness
techniques will be able to keep track of history and interpret
temporal data, allowing them to spot patterns and outliers,
which, in turn, can improve anomaly detection protocols.
For instance, this is essential in hyper-personalization, where
instantaneous changes in a user’s status are tracked. In addi-
tion, there are unique privacy risks with sophisticated tempo-
ral context detection algorithms since they integrate private
information, i.e., human physiological data, with publicly
available information, such a as environmental variables.
Intelligent security solutions are needed to store and analyze
this data in various portions of the infrastructure. Finally, a
lot of standardization of context parameters is needed for dis-
tributed context awareness. It is hard to construct networks
that can transform the context into assets for applications
without defined interpretation rules for context parameters.
Standardizing context operating rules and parameters to
achieve a fair data economy that permits the combinations
and flow of multiple data sources, which are regulated by
a diverse ecosystem, poses a significant challenge to the
implementation and adoption of such context-aware features.

B. IMMERSIVE TELEPRESENCE
Immersive telepresence enables users to interact with a dis-
tant environment, including devices, people, and/or objects,
utilising all of their senses. The foundations of a fully-
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cyberphysical world would be strengthened by its capacity to
provide unobstructed near-real-time holographic experience
and mixed reality. This enhanced capacity is expected to be
useful for mixed reality work, as well as fully immersive
entertainment, such as sports, gaming, live events, etc. All
of the use cases under the telepresence umbrella have one
thing in common: the need for localization in order to enable
features such as gesture and motion recognition and XR.

1) GESTURE AND MOTION RECOGNITION
6G’s higher frequency range provides improved precision
and resolution, allowing for the capturing of finer gestures
and actions. With the advent of advanced computer technol-
ogy and pervasive AI methods [77], a new age of gesture
and activity recognition has begun. Localization and sensing
in the near future will not be confined to a single space,
but rather a massive and complex setting. This allows for
widespread gesture recording and activity detection without
the need for any additional devices. Each base station is
envisioned to serve as a sensor that works together with user
devices to get a more complete picture of their environment,
leading to a significant increase in performance.

A smart environment could use high classification accu-
racy to include features like behaviour detection, gesture
and motion recognition, intruder detection, and more [78].
Likewise, patients in a smart hospital may benefit from
automated patient monitoring thanks to the facility’s medical
rehabilitation system. In such environments, improper ges-
tures or actions will trigger notifications, greatly enhancing
security as well as the provided services (i.e., rehabilitation).
More accurate localization capabilities and high classifi-
cation precision would be necessary for certain superior
contactless activities like playing virtual piano. Assuming
that the black keys have an average width of 10 − 11 mm,
the expected accuracy for determining the finger’s vertical
distance from the board and its horizontal location in relation
to the virtual keys is 3 mm. In addition, the recognition
probability should be higher than 99% for a pleasant tune.

2) XR
Across the whole AR/VR spectrum, XR will provide several
applications for 6G. Due to their limitation to provide
extremely low latencies for data rate-heavy applications,
upcoming 5G systems still fall short of offering a fully
immersive XR experience that captures all sensory inputs.
Creating an immersive AR/VR/XR experience calls for a col-
laborative design that takes into account not just technical but
also perceptual considerations. Engineering methods have to
account for both the maximum and minimum boundaries
of human perception. To achieve this goal, traditional QoS,
i.e., rate and latency, and quality of experience (QoE),
like mean opinion score, inputs need to be combined with
physical elements from the users themselves, necessitating a

new notion of quality-of-physical-experience (QoPE) metric.
QoPE may be influenced by a number of actions, such as
non-verbal cues, physical processes, and mental processing.
In [79], for instance, it is demonstrated that under the ultra-
reliable low latency communications (URLLC) regime, the
human brain may not be able to differentiate between various
latency metrics. Meanwhile, as shown in [80] the sensory
input, particularly touch and sight, is critical for optimizing
use of available resources. Furthermore, with XR, it is
possible to test out ideas before committing to a final design,
and it allows corporations to provide customers services that
are tailored to their own needs and circumstances. To offer
an XR solution that is both appropriate and realistic for
the user’s current location, 6G localization of the device
providing the service is essential. Thus, an XR user would
require accurate localization in order for the device to receive
the correct data. A shopper, for instance, may employ XR-
enhanced advertising while strolling through a retail centre.
As another use case, XR can superimpose a computer-
generated image or simulation onto the real world. However,
much greater precision is needed in this particular setting.

C. LOCAL TRUST ZONES
Local trust zones related use cases highlight the need of a
framework that calls for the NG-RAT to enable adaptable
architectures that let enterprises and services to keep their
most sensitive data inside their own networks. Some exam-
ples that fall within this broad category are: (i) infrastructure-
less network extensions; (ii) sensor infrastructure web; (iii)
precision healthcare; and (iv) security and privacy. Localiza-
tion is required in all the aforementioned use cases clusters.

1) INFRASTRUCTURE-LESS NETWORK EXTENSIONS
This use case requires extending the network coverage tem-
porarily, particularly if the number of devices to be served
are located near the network’s edge. Use cases are almost
ubiquitous. Normal instances take place in rural locations,
where coverage is restricted and performance levels are
inconsistent. In production settings, bigger populations of
the same vendor’s modules, computers, and vehicles may
be linked together via infrastructure-free networks that serve
as an underlay for the infrastructure network and require
the adaptive and fast solution of geometric consensus prob-
lems [81]. For example, autonomous vehicle platoons have
been used for agricultural harvesting. Each vehicle should
keep its distance from the others to prevent accidents and
work together to find their way around the operational
area. It is also important to guarantee the vehicles’ safe
operation even when on the borders of the coverage area.
The application will need an update rate proportional to the
current pace of the cars’ movement. Cooperating localization
is a term that is occasionally used to describe these kinds
of applications. Finally, most of these use cases include
either a population of nodes that make up the infrastructure-
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free network and may move independently to enable direct
device-to-device connection, or a collection of sensor nodes
travelling along strongly linked trajectories.

2) SENSOR INFRASTRUCTURE WEB
The sensor infrastructure web was introduced by NASA [82].
It consists of smart infrastructure that enables coordinated
localization and sensing. It is made up of disparate nodes
equipped with sensors that not only gather information,
but also communicate with each other to modify their
behaviour [83]. Tens of millions of mobile, airborne, in-
situ, and space-borne sensors have been deployed in diverse
domains and for varied purposes recently due to the growth
of IoT, smart cities, and the Global Earth Observation System
of Systems (GEOSS). Earth’s urban areas have never been
detected so dynamically and in-depth in the past. To accom-
modate this scenario, 6G is expected to provide localization
data to devices with almost zero sensing capabilities, such
as guiding a vehicle through an unfamiliar area that has
inadequate on-board sensors to comprehend its surroundings.
Accurate device localization is required to convey relevant
sensing information to devices lacking sensing capabilities,
which is necessary to enable such use cases. For example,
in disaster management application, the sensor infrastructure
web is able to use a combination of in-situ and space sensors
in order to collect data for volcano hazard monitoring, or
use orbital space sensors, like satellites, to locate flooding
indicators or wildfire hot-spots [84].

3) PRECISION HEALTHCARE
Precision medicine has emerged as a mean to treat and
prevent illness in an individualised fashion. Dispensing med-
ication with the help of wireless nano-scale robots that
move within the human body’s soft tissues is fundamental to
the individualised therapy, which differs from the standard
one-size-fits-all method. To monitor a patient’s health, 6G
connection will be used to gather sensor-based data [85].
Utilizing the massive coverage area provided by 6G, patient
monitoring and tracking may be utilised to ensure the
safety of patients regardless of the nature of their illness or
their current health status. The anticipated 6G localization
capacity benefits all these distinct applications by providing
enhanced precision healthcare, such as medical equipment
placement on the body, small-scale robots, patient monitor-
ing and tracking, as well as telesurgery.

From the aforementioned applications, telesurgery is a
unique use case of cutting-edge precision healthcare that
employs a surgeon and an expert operator stationed in a
different location to operate one or more robotic arms [86].
Data for receiving feedback and controlling the surgical tools
must be reliably sent between distant locations. High-data
rate URLLCs that are expected to be made possible by 6G
technology will allow robotic arms to mirror the surgeon’s

natural hand motions and offer haptic input, boosting the
surgeon’s senses and dexterity. More advanced technologies,
known as cooperative surgical systems, let doctors and
machines work together to achieve better results during
procedures. The tissues and surgical equipment both need
to be precisely localised for successful remote surgery.

4) NANOSCALE LOCALIZATION
Recent breakthroughs in nanotechnology are bringing light
to nanometer-size devices that will allow a multitude of
innovative applications [87]. Among the many fascinating
fields where nanotechnology is predicted to reap benefits is
in-body treatment. Antibiotic resistance might be detected at
the molecular level, drugs could be delivered with pinpoint
accuracy, and neurosurgery could be performed on specific
areas of the brain. In order to implement such applications,
a network of nanodevices will need to be created within
the body, which will then travel through the circulatory
system, respond in response to orders at specific areas, and
report their findings to a more robust body area network
(BAN) [88]. Nanodevices in this context are assumed to have
dimensions similar to those of red blood cells in order to
prevent clotting as a result of their entry into the circulation.
Because of their little size, these nanonodes are likely to
rely only on energy harvesting for their operation [89]. These
nanonodes are expected to be passively flowing, i.e., without
the potential of mechanical guiding toward the specified
point, due to their limited energy and small form factors.

Based on the aforementioned, localizing the nanonodes is
of great importance for regulating their operation. To issue
control commands, for example, two way communication
between the nanonodes and the outside world is essential.
THz communications constitutes a viable technology enabler
in such scenarios as the primary prerequisite for in-body
nanonodes, namely small transceiver form-factors, is only
possible with transmission at these frequencies. The THz
band, however, is entangled with various limitations, such
as high scattering and spreading losses that limit the propa-
gation distance of THz waves. The main challenges of THz-
enabled nanoscale localization include:(i) maintaining low
complexity and energy demands of nanonodes; (ii) overcom-
ing the substantial attenuation of in-body THz propagation;
and (iii) allowing network scalability [65].

Research on nanoscale networks and their localization
approaches is currently limited and constrained in tackling
a subset of these challenges. Specifically, a THz-enabled
network architecture was proposed in [90], which enables
fine-grained localization of the energy-harvesting in-body
nanonodes, as well as their two-way communication with
the outside world. This approach enlisted software-defined
metamaterials and location-aware and wake-up radio-based
wireless nanocommunication paradigms to enable the novel
energy-harvesting capabilities for in-body nanonetworks.
The authors suggested that the proposed design can take
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advantage of the large number of nanonodes, surpassing the
limitations of limited range of THz in-body propagation and
severely confined nanonodes. Moreover, in [91], [92], the
authors explore the potential for flowing nanosensors in the
blood flow to identify and localize and report anomalies in
the human body. This work focuses on the identification of
quorum sensing molecules and evaluate their performance.
The authors use a Markov chain model to simulate the
nanosensors’ motion through the blood arteries, and apply
ML models to predict their trajectory. The results validate
the detection and localization capabilities of the investigated
method across a variety of body areas, demonstrating their
utility in identifying vascular anomalies.

5) SECURITY AND PRIVACY
Addressing the security elements of localization is a growing
area of study alongside enhancing localization precision,
sampling efficiency, and resilience against intermittent con-
nection loss. Jamming and spoofing are two versions of
intentional interference that degrades or prevents the cal-
culation of a GNSS signal [93]. In this context, protecting
personal privacy entails blocking the functioning of GNSS
receivers that may track the user’s whereabouts and com-
municate such information to other parties. In case jamming
signals are not correctly identified and their consequences are
not mitigated, the employment of jammers leads in reduced
positioning accuracy or complete loss of GNSS signals,
which may result in catastrophic damage. Intentional inter-
vention is also done by political activists, cybercriminals, and
foreign nations to disrupt the networks of others. Spoofing,
on the other hand, refers to the malicious broadcast of false
GNSS-like signals that trick the receiver. The hardest part of
spoofing is its identification. Fortunately, the attacker must
be able to produce authentic GNSS signals, including data,
modulation, and timing, maintain temporal synchronisation
near to authentic GNSS time, and modify the signal power
levels to correspond to those of the authentic signals in order
to be able to conduct a realistic spoofing assault.

There are a plethora of localization approaches that take
security into account. SotA security-aware techniques fre-
quently have large computing needs, prioritize structure-
based assaults, assume static networks and even make bold
assumptions that may not hold true under real-world circum-
stances. A common problem is that when harmful conduct
from anchor or unknown nodes is expected, either no explicit
attack model is supplied or detection of such hostile nodes
is all that is defined, with no further treatment of the
discovered nodes being specified. For instance, exploiting the
noise characteristics induced by external distance assaults,
the authors of [94] suggested a lightweight secure ToA-
based localization technique that enables protection against
impersonation attacks in WSNs.

Clustering and consistency evaluation-based malicious
node detection (MND) and its improved and secure variant,

enhanced MND (EMND), constitute a solution to identify
the anomalous node clusters by applying spatial clustering
based on density [95]. Afterwards, they utilize a sequential
probability ratio test to find the bad actors in the networks.
Simulations reveal that the proposed algorithms are more
accurate and efficient than current SotA approaches. One
downside of the proposed algorithms is that there is no way
for maliciously labeled anchor nodes to redeem themselves
and reclaim their trusted status in the network. In addition,
in [96], the authors present an extremely computationally-
lightweight while yet retaining the benefits of range-free
techniques including low cost and complexity of deployment
as well as increased resilience against assaults of secure
localization systems. Due to the distributed nature of this
approach, it relies on no external resources or single points
of failure, thus being able to identify and filter out malicious
or malfunctioning anchor nodes, improving localization pre-
cision.

Finally, intruders might exploiting security flaws to harass
the users, break into their homes, steal their identities, and
more. Privacy concerns about the impending proliferation
of THz communications on smartphones and wearables
have been voiced several time in the past [97]. THz-based
remote sensing and see-through imaging may be used by an
attacker or malicious equipment, which might compromise
users’ privacy. Also, radar-like localization systems are be-
ing developed using 4G and 5G signals and developments
in full-duplex communications [98], with the potential for
expansion beyond 5G. Radio frequency fingerprinting [99],
[100] may identify user devices even without providing
a device identifier, highlighting the potential privacy risks
of combining high-resolution photography with machine
learning algorithms.

D. MASSIVE TWINNING
Future RAN aims to bridge the gap between the physical and
digital worlds, making it possible to create a digital coun-
terpart of anything in the actual world [101]. The ability to
create a trustworthy, efficient, and effective digital duplicate
of any physical object will open up hitherto inconceivable
avenues of exploration, such as (i) more effective use of
resources has a positive effect on the long-term viability of
agriculture; (ii) to facilitate a fully smart city by developing
4D spatio-temporal interactive maps; and (iii) tracking the
operations at every corner of a smart factory at once by
constructing a digital map of the space.

The development of a digital twin (DT) may fundamen-
tally benefit from data about events occurring in the real
world at a certain time and place. 6G-connected tags may
be affixed to real-world items to generate a digital duplicate,
with the added benefit of gathering sensory data that can
be paired with time instances to show exactly when the
data was gathered [101]. There are, however, difficulties
in correctly localising these devices, particularly when they
are installed in GPS-denied locations. 6G WANs are being
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constructed to handle the communication demands of DTs;
these networks might be used for localization as well, solving
this issue [102]. In addition, localization and detection of
items that are not linked to the digital world via 6G tags
or other 6G-enabled devices is required in certain use cases.
Radio-signal-based sensing may be used in this context to
gather data about passive items, such as their position and
the time they were present. Adding data on inactive things is
a useful supplement to the DT, which typically only includes
digital copies of network-accessible physical items.

1) AGRICULTURE
Numerous advancements have been made in the study and
use of robotic solutions for the agricultural industry, and
fresh contributions are anticipated in the near future [103].
Farmers are becoming more aware of its influence on
agriculture, which has increased the need for autonomous
machinery in this field. A wide range of duties, including
application of fertilisers, watering, harvesting, planting, and
more, are being carried out by robots [104]. The design and
development of technological concepts that enable robots to
travel safely across various settings is crucial in this situation.
The fundamental necessity imposed by these advancements
is to localise the robots in various agricultural settings. Using
Global Navigation Satellite System (GNSS) is the most
typical technology used so far [105]. The use of GNSS is
questionable in many agricultural areas due to signal block-
ing and multi-reflection of satellite signals [106]. Therefore,
it is crucial to investigate and create intelligent systems that
calculate the robot’s localization using a variety of sensor
modalities and data sources. The most advanced method for
doing this is SLAM [107]. This method involves mapping
the immediate area while also predicting the status of a robot.
The robot model often includes the robot’s position as well
as, in certain situations, its velocity, calibration factors, and
sensor offsets. The map is a 3D depiction of the agents that
the robot’s onboard sensors have detected and are used as
a guide throughout the localization process. Creating a map
is often crucial to provide details about the surroundings.
Additionally, maps may be updated and reused by the robots
each time they go across the environment. Finally, visual
odometry is one of the most popular alternatives to SLAM,
which is capable of predicting the motion of the on-board
camera using just image data as input [108].

2) SMART CITIES
To improve the quality of life in a city, a comprehensive
smart city must give a wealth of data, such as a digital re-
production of the city with real-time data on control utilities,
pollution maps, traffic, etc [109]. An interactive 4D map is
a key component of an immersive smart city, since it can be
used to better organise and design essential infrastructure and
services, like transportation, waste management, plumbing,

electrical wiring, and more [110]. Sensors installed to track,
monitor, and update status of these services must be localised
for this kind of dynamic map to be possible. Moreover,
units may be stationed by the side of the road to aid in
communication, while simultaneously operating as traffic
monitors in various sections of the city.

Radio signals received by a user at a certain position
are impacted by the features of their immediate physical
surroundings in a predictable manner [111]. For instance,
because of the existence of urban infrastructure, such as
buildings, a user’s device in the street level may pick up
a signal that has travelled by way of several reflections.
The presence of trees near the target causes a reflection
of radio signals. By inferring the sort of topography at the
user’s position, we can better map the terrain around the cell
towers. Finally, due to the virtual depiction of each piece of
infrastructure, huge digital twining may be of great use in the
smart buildings of the future. To do this, you must determine
the precise location of every heater, lamp, light switch, and
other controlled fixture in the facility. Not only will it be put
to use in the daily running of the building, but its intelligence
and automation will also allow for a significant decrease in
the cost of the building’s commissioning.

3) MANUFACTURING
As we go towards Industry 5.0, machines and robots will
become more self-sufficient, with only little human over-
sight [112]. As a result, cutting-edge control mechanisms
are essential for high-precision production processes. In
particular, connection density of 107/km2, latency on the
scale of hundreds of microseconds, and data speeds on the
order of Tbps are required for the fast development industrial
systems as well as the automation of their operations [113].
THz networks are a natural solution for achieving such high
data speeds. However, there are several obstacles that need
to be addressed when using THz networks for Industry 5.0
applications, such as precision-driven control mechanisms,
dense coverage, and zero-latency. Moreover, the positioning
capabilities of 6G networks have the greatest potential to
advance industrial use cases [114]. Many different industries,
from logistics and manufacturing to mining and transporta-
tion, will benefit from using position data to improve and
automate their operations [115]. Both the (mobile) terminals
and robots as well as the whole network will benefit greatly
from location data in factory automation and industrial
control. The former can better allocate and regulate resources
and boost processing efficiency, while the latter can better
direct the movement of the terminals.

E. ROBOT COORDINATION AND INTERACTION
Local pose tracking and global localization are two basic
types of the localization challenge for mobile robots. Once
the robot’s starting stance has been determined, the local
pose tracking problem may focus on maintaining that pose
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over time. In contrast, the global localization issue requires
the robot to independently localise itself and minimise the
uncertainties in its posture predictions. A mobile robot’s first
posture estimate at startup is required for relocating the robot
in the event of a pose tracking failure, autonomously navi-
gating, and more. Moreover, numerous localization strategies
have been investigated over the last several decades, but
probabilistic methods using Bayes filters, Monte Carlo parti-
cle filters, Markov particle filter, and extended Kalman filter
are now the most popular and well-proven options [116].
There are two main uses for localization with respect to
robots: (i) interaction with humans in order to accomplish
goals in the everyday life and industrial settings, and (ii)
localization and mapping of the environment, where robots
may determine where they are located in space and how
they are oriented in relation to one another as well as their
surroundings.

1) INTERACTIONS
It is anticipated that 6G wireless systems will offer the
means through which a technological basis for human-robot
collaboration may be laid. As a result, collaborative robots
(cobots) will be used extensively in both the domestic and
commercial settings. Moreover, cobots will become more im-
portant in the home and consumer sectors, evolving beyond
the robotic household helpers that they are today. Cobots will
also be used in the manufacturing sector to facilitate flexible
production of a wide variety of items, including those with
a high level of personalization and customization. Accurate
3D localization of cobots that supports high update rates
is essential for their efficient operation, as are capabilities
to perceive the environment, with the former in particular
allowing for synchronised, uninterrupted, and smooth col-
laboration. Cobots are expected to use this data as input to
plan and conduct actions, either alone or in swarms in order
to achieve their goal. Additionally, the cobots use a symbiotic
autonomy technique, where the robots are self-aware of their
perceptual, motor, and cognitive limits and actively seek
human assistance for tasks like object manipulation. The
cobots’ success in the 1,000-km challenge demonstrates their
localization system’s stability and accuracy during long-term
deployments [117], despite the existence of environmental
fluctuations. To achieve this, a monitoring script running on
the robots would follow the status of the tasks’ execution and
contact researchers in the occasions when the robots required
help. As a result, over ninety percent of deployments of
robots did not need human involvement to reset the robot
localization.

2) MAPPING
When the GPS signal is poor or unavailable, a mobile robot
may use SLAM to create a consistent map of its surroundings
and simultaneously calculate its position [118]. In the realm

of autonomous navigation and localization, SLAM is widely
recognized as a crucial challenge [58]. The autonomous
capability of mobile robots in unfamiliar surroundings is
greatly enhanced by the solution of the robust long-term
and real-time SLAM issue, which focuses on two primary
components: localization and mapping [119]. Through ac-
curate and reliable localization, the robot’s present location
in space is determined. Simultaneous mapping without prior
knowledge of the robot’s position unifies the fragmented un-
derstanding of the surroundings into a coherent whole [120].
Autonomous mobile robots equipped with powerful SLAM
algorithms have played an important role in a wide variety
of application scenes, including exploration in hostile envi-
ronments such as aerial space, underground mining, rough
terrain, and underwater surveillance [121].

Since its introduction in the 1980s, SLAM has evolved sig-
nificantly over the course of more than three decades [122].
There has been a shift from filter-based to optimization-based
algorithms and from single to multi thread methods. Sonar
has been replaced by 2D/3D light detection and ranging
(Lidar) systems and monocular, stereo, RGB-D, time of
flight (ToF), and other cameras. There are now three primary
SLAM methods in use: Visual SLAM, multi-Sensor Fusion
SLAM, and Lidar SLAM. Visual SLAM estimates its posture
with the use of prior knowledge of multi-frame pictures
and multi-view geometry, and then utilizes this estimate
together with depth information derived from the accumu-
lation of pose changes. Most notably, RGBD cameras can
get depth data without any further processing. To complete
localization, the SLAM algorithm in Lidar SLAM matches
and compares Point Cloud at various periods to determine
the distance traveled by the robot as it moves relative to
the surroundings and as its attitude changes. Due to the
limitations of individual 2D/3D Lidar or cameras, multi-
Sensor Fusion SLAM has gained popularity in recent years.
The most common sensors for fusion algorithms include
Lidar, cameras, IMUs, wheel odometers, and GNSS.

SLAM technology is in high demand for use in a wide
variety of applications, including but not limited to un-
manned aerial vehicle (UAVs) [123], unmanned ground vehi-
cle (UGVs) [124], indoor autonomous mobile robots [125],
and VR/AR hardware [126]. The vast majority of AR sys-
tems need pre-existing knowledge about their surroundings
in order to function. In contrast, the advancement of SLAM
algorithms and hardware has allowed sensors to rebuild free-
form interior scenes without the need for real-time map
initialization. Since GNSS signals cannot completely pene-
trate buildings, it is more challenging to place robots inside,
and conventional localization relies on community land-
marks and signage. With SLAM and inertia measurement
units working together, we can solve this issue [125]. For
UGVs and UAVs, SLAM is also a crucial tool. Specifically,
Sensor Fusion SLAM is quickly replacing other methods
for building the map concurrently, positioning unmanned
vehicles, and implementing autonomous navigation in an
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uncharted area [123], [124]. All things considered, SLAM
has been heavily used across many different disciplines and
has promising future applications.

III. LOCALIZATION USE CASES
In this section, the use cases of future wireless systems
are described based on the localization requirements and
applications mentioned in Section II. To this end, Fig. 3,
which is given at the top of the next page, illustrates each
application alongside its corresponding KPIs and related use
cases [127].

A. INDOOR
Services such as indoor localization have emerged as a
consequence of the rapid use of wireless devices in recent
years. Obtaining the position of a person or device within
a building is referred to as “indoor localization”. Extensive
studies on indoor device localization have been conducted
over the last decade, mostly in industrial settings and for
wireless sensor networks and robotics. Since the widespread
adoption of smartphones and wearable devices with wireless
communication capabilities, the localization and tracking of
such devices has become synonymous with the localization
and tracking of the corresponding users, enabling a vast
ecosystem of related applications and services. The ability to
precisely pinpoint the location of a user or device has several
practical applications in the fields of autonomous supply
chain, e-Health, precision healthcare, personalized context-
aware networks, XR, gesture and motion recognition, sensor
infrastructure web, security and privacy, agriculture, smart
cities, manufacturing, as well as robotic interactions and
mapping.

B. OUTDOOR
Accurate positioning data is essential for many outdoor
applications, such as navigating in uncharted territory and
monitoring the location of company vehicles. However, in
urban canyons with high-rise buildings or subterranean park-
ing lots, where building walls obstruct the GNSS reference
signal, GNSS coverage is limited. Current mmWave cellular
networks and upcoming sub-THz cellular networks offer
good prospects for localization where GNSS fails to fulfill
the application’s KPIs. At mmWave frequencies, adjustable
channel bandwidths of up to 400 MHz are possible in 5G
and phased arrays with hundreds of antenna components and
narrow half power beamwidths are commercially available.
Future 6G wireless systems will migrate to frequencies
greater than 100 GHz, when channel allocations lasting
several gigahertz are possible. Strategies that take the es-
timated condition of the wireless propagation channel into
account have been the focus of research in wireless systems’
localization. Channel impulse response, propagation delay,
AoA, and RSS are only some of the propagation parameters
that are measured or estimated by networks at one or more
locations, usually base stations and user equipment. More-

over, user-location fingerprinting has also been interpreted
geometrically, compared to existing databases, or used to
locate the user on maps. Finally, the outdoor localization
use case includes all applications discussed in the present
contribution.

C. NON-TERRESTRIAL
Non-terrestrial localization has become ubiquitous as a result
of the fast advancement of satellite localization technology,
making formerly inconvenient tasks easier for the general
public. When it comes to non-terrestrial localization, GNSS
is the most applied solution and is made up of constella-
tions of artificial satellites in geosynchronous orbit, trans-
mitting real-time position and timing information. During
the time of writing, four major not-terrestrial systems are
in use: (i) Europe’s Galileo, (ii) the United States’ GPS,
(iii) China’s Beidou, and (iv) Russia’s GLONASS. These
systems provide of 1 − 10 m accuracy and low device
autonomy. GPS, which was originally designed for use by
the United States Navy, is a radio navigation and positioning
system that contains location and time information, while
GLONASS, a second-generation military satellite navigation
system is technologically superior to GPS in its capacity to
withstand interference, yet it lacks GPS’s pinpoint single-
point precision. Moreover, BDS is a Chinese-created satellite
navigation system with worldwide coverage and GALILEO,
which uses two ground control centres and 30 satellites, is
more widespread in Europe. Based on these, non-terrestrial
localization applications of future wireless systems include
autonomous supply chain, Earth monitoring, e-Health, per-
sonalized context-aware networks, agriculture, smart cities,
robotics-enabled mapping, infrastructure-less network ex-
pansion, sensor infrastructure web, precision healthcare, as
well as security and privacy.

D. UNDERWATER
Due to the restricted progress of underwater wireless com-
munications, underwater communication is still accom-
plished today using communication cables [128]. However,
the deployment of a sensor network is expensive as a
consequence of the necessity of cables to provide con-
nectivity between sensor nodes at the ocean floor. The
scientific community has increased interest in underwater
wireless communication because of this. As a result, when
compared to terrestrial cable or wireless connections, water
is recognised as a problematic communication medium since
advanced transceivers are used to achieve a low transmission
rate over a short distance. Additionally, the maritime environ-
ment is distinguished by a number of unique characteristics
that set it apart from the atmospheric environment, where
typical terrestrial communication is carried out. In recent
years, underwater wireless systems have applied localization
techniques for many different purposes [129]. Each imple-
mentation is crucial in its own field, while some of them
can advance ocean exploration to accommodate a range of
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FIGURE 3. Localization use cases

underwater applications, such as underwater surveillance,
natural disasters alert systems, oceanographic data collection,
assisted navigation, etc. For instance, sensors may evaluate
specific characteristics, such as base intensity and mooring
tension, for offshore engineering applications to monitor
the structural condition of the mooring environment [130].
Therefore, the basic applications of underwater localization
wireless systems include Earth monitoring, sensor infrastruc-
ture web, personalized context-aware networks, mapping,
security and privacy, as well as infrastructure-less network
expansion.

E. NANOSCALE
THz nanonetworks are expected to enable a wide variety
of applications, many of which will need localization or
even tracking of the nanonodes. As a result of the nanoscale

nature of the nodes, it is essential that localization and
tracking capabilities work under very tight energy budgets
while yet maintaining a high degree of precision due to
the small sizes of the nanonodes. Furthermore, because of
the limited range of THz band nano-communication, multi-
hopping may be required for localization, which has the
disadvantage of increasing localization error with each hop.
Few efforts have been made towards localization of THz-
operating nanonodes, with the most notable ones using range
and hop counting to make educated guesses about where all
nanonodes are positioned in a given region. In the former,
the locations of the two examined nanonodes are calculated
by counting the number of hops between them, while the
latter assumes that all nanonodes are clustered together to
cut down on overhead and energy dissipation. One limitation
of these techniques is that, as the number of hops rises,
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their accuracy will inevitably decrease due to the spread of
localization errors. The main KPIs of nanoscale localization
are low energy consumption and high precision, while the
related open challenges include modeling of such systems
in non-free space propagation, hardware imperfections, and
frequency- and angle-dependent response of the nanonodes.

IV. TECHNOLOGY ENABLERS FOR 6G WIRELESS
LOCALIZATION SYSTEMS
This section aims to shine light into the key technology
enablers of localization in future 6G networks. Specifically,
Section A presents the current SotA of mmWave and THz lo-
calization techniques. Next, in Sections B and C illustrate the
role of beamforming and RIS in the localization paradigm of
future 6G networks. The impact of AI and channel charting
approaches are presented in Sections D and E, respectively.
Section F discusses radar-based technologies that enable
localization applications, while Section G sensor-based ones.
Finally, visible light-based localization methods are analyzed
in Section H.

A. MMWAVE/THZ LOCALIZATION
With the explosion of cellular services in recent years comes
a surge in demand for higher data transfer speeds [131].
Using the vast amount of unstandardized bandwidth available
in the mmWave and THz range, mmWave and THz wireless
systems hold great potential for meeting the data rate need.
However, substantial channel attenuations hinder commu-
nications at these frequencies [132]. mmWave and THz
systems counteract these higher losses by using pencil-beams
made from massive antenna arrays at both the transmitter
and the receiver side [133], [134]. As a result, mmWave and
THz links are highly directional. In order to ensure high-
reliability and avoid defects, the base station must know and
monitor the orientation of the user equipment (UE).

Due to the complementarity between mmWave and THz
systems, the need arises to compare the benefits and draw-
backs of these technologies in various diverse localization
scenarios especially since THz are likely to be utilized as an
extension of mmWave systems [135]. We anticipate bigger
array sizes, smaller footprints, wider bandwidths, and higher
frequencies as we move towards 6G networks. Thus, new
possibilities are enabled both in the sense of larger arrays
with the same dimensions as well as antennas with con-
straint sizes. Moreover, increased availability of bandwidth
in conjunction with higher frequencies result in robust delay
estimation, lower path loss, and decreased multipath.

The aforementioned changes will impact a plethora of
features of future networks. For instance, new synchroniza-
tion problems emerge and hardware needs to keep up with
novel mmWave and THz-enabled system designs. Another
already reported problem is the requirement for increased
peak to average power ratio (PAPR) compared to 5G sys-
tems, which may render the classic orthogonal frequency
division multiplexing (OFDM) inappropriate [136]. Another

important aspect that needs to be taken into account in the
development of next generation localization algorithms is
the impact of near-field circumstances along with the beam-
split effect (BSE) that can greatly influence the geometry
of MIMO channel localization models. Finally, the high
path loss that characterizes mmWave and THz channels
can greatly influence the energy-efficiency of the overall
system. All in all, the increased performance anticipated
by mmWave and THz networks comes hand in hand with
important difficulties in complexity, overhead, area coverage,
and hardware architectures that this affects.

THz localization is already the subject of active study,
with researchers delving into simulation environments, loca-
lization methods, and system architectures. For instance, a
high level of estimated accuracy and reduced deafness in 2D
settings are sought for with the proposal of cooperation-aided
localization procedures [131]. Also, Kalman filtering-based
indoor localization approaches have been proven to offer
great advantages for time-variant channel modeling [137].
Another example is the AoA estimation by a forward-
backward algorithm that offers improved localization and
human motion characterization [138], while a near-field
model with massive antenna arrays has been examined for
the purpose of using the curvature of arrival (COA) as a
sixth degree of freedom (DOF) in determining the location
of the source [139]. Furthermore, by adopting a beam
zooming mechanism combined with delay-phase precoding
for mmWave and THz beam tracking, it is possible to
monitor numerous users and blockers using a single RF chain
with significantly reduced beam training overhead [140].
Finally, in addition to geometry-based strategies, DL-based
strategies show great potential for 3D mmWave and THz
indoor localization by enhancing the localization accuracy
by approximately 60% [141]. Each of the aforementioned
localization efforts addresses a unique issue associated with
mmWave and THz localization, namely near-field effects,
tracking, improper alignment, and BSE. Despite these ad-
vances, important gaps in our understanding still need to be
filled. It is yet unclear how signals in the mmWave- and
THz-band might boost localization accuracy in both active
and passive approaches [61].

B. BEAMFORMING
Data transmission towards a specific direction in order to
increase the SNR and consequently the throughput (beam-
forming) is a fundamental requirement in high-frequency
wireless systems [55]. For mmWave and microwaves, 3D
beamforming is a useful tool for mitigating the detrimental
effects of high pathloss and for improving SNR. In or-
der to localize and sense objects or people, the gathered
channel response can be analyzed for any geographical
information about the relationship with them. The channel
estimation, which includes the angular and delay domain
characteristics that are necessary for localization algorithms,
is a prerequisite for beamspace processing [142], especially
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in challenging NLOS and high-mobility conditions [143].
Beams are dynamically controlled based on the estimate
of the AoA and AoD to find and track mobile users in a
dynamic environment [144].

Beamspace processing for locating mobile users in NLOS
and LOS settings is a significant challenge; “device-free”
localization presents an even greater one [145]. Here, ad-
ditional environment indicators are required so that the
target(s)’ spatial characterisation may be differentiated from
that of the background objects. This is made more chal-
lenging as the number of targets increases [143] and the
complexity and computational requirements for identifying
said targets increase exponentially [146]. Very fine spatial
resolution may be achieved by using a pencil-shaped beam
operating in the mmWave and THz spectrum. Beamspace
channels’ combined angular-delay characteristics are used
to detect and locate passive objects. In this example, the
instantaneous beamspace may be compared with a reference
to detect a passive target, and with a prior sample (on-
line or real-time) to track a moving target. Target iden-
tification relies on learning algorithms that can tell the
difference between the varying angular-delay profiles of
various targets. High-precision localization and detection of
scattering objects may be enabled by the use of specialized
beamspace processing signals and the strategic placement of
monostatic/multistatic MAS.

C. RIS
RISs’ role is ever increasing in the communication paradigm
where their main goal is to increase the data rate via achiev-
ing higher SNR. However, when it comes to localization
approaches, RISs are utilized on the one hand to augment
the information gathered by the system by introducing COA,
while on the other hand they provide geometrical diversity
by acting as a passive anchor. Specifically, the requirement of
localization algorithms for numerous base stations (passive
anchors) in order to provide an accurate estimate can be
further enhance by the introduction of RISs. This notion
has been investigated in the recent published literature,
which takes advantage of the phenomenon of multipath to
pinpoint the origin of high-frequency signals [147]. Although
multipath signals can be destructive for communications
since they introduce multipath fading, researchers have been
able to take advantage of them and enable localization and
mapping with a single base station (BS) [148]. It becomes
obvious that it is possible to reduce infrastructure cost by a
great deal by exploiting RISs that act as passive reconfig-
urable BSs with low energy consumption [149], [150].

In mmWave/THz bands high accuracy localization ne-
cessitates the need to densify the network with a massive
number of anchors in order to counteract blockages. This
is of course due to the fact that such bands are more
susceptible to blockages compared with their sub-6 GHz
counterparts [151]. However, densifying the network only
with active nodes, such as small cells and active relays

that host power amplifiers, will induce an immense energy
consumption due to the power amplifier, which is the most
power consuming component of active nodes. Hence, RISs
can also notably reduce the network energy consumption for
high-accuracy localization. Moreover, active nodes inevitably
need to be connected to the power grid. There are places
though where the power grid cannot reach to for reasons
of heavy planning/maintenance costs and aesthetics. In such
scenarios it is much more preferable to use RISs that may
not even need to be connected to the power grid if they
are supplied by alternative sources of energy such as solar
radiation through solar panels attached to the RISs in outdoor
scenarios [152]. This would of course be feasible due to
the much lower consumption of RISs compared with active
nodes. Thus, RISs are expected to enable novel localiza-
tion approaches that will revolutionize future high-frequency
(mmWave, THz, optical wireless) networks.

Despite the aforementioned advances, breakthroughs made
in material research focused on mmWave, THz, and optical-
operating materials could provide immense advances in
RIS-enabled localization [153]. mmWave, THz, and optical-
operating metasurfaces that offer improved reconfigurability
and sensing precision are essential for both mmWave, THz,
and optical localization and communications due to the
strong blockage and directionality exhibited in the mmWave,
THz, and optical frequency band. Recent research shows that
mmWave, THz, and optical-operating hypersurfaces that use
a stack of physical and virtual components to provide lens
effects and individualized reflections can offer significant
performance increase [154]. In addition, similar small-scale
metasurfaces have been proven capable of efficient mmWave,
THz, and optical signal steering at a broad variety of
angles, polarization conversion, as well as generation of
orbital angular momentum [155]. On another note, despite
their slow clock speeds and capacitance leakage, CMOS-
enabled RISs offer improved energy efficiency and seamless
integration to existing systems [156]. Similarly, graphene-
based metasurfaces offer a promising alternative for the
construction of RISs, due to their low-complexity biasing
circuits and low power requirements [157]. Finally, multiple
researcher have investigated the plausibility of micro-electro-
mechanical (MEM) devices as a candidate technology for
the realization of RISs. However, several issues must be
overcome, such as relatively large footprints, control signals,
and switching rates, before they can be a viable option.

D. AI
As we enter the data-rich 6G era, AI is envisioned to
play an increasingly vital role. The design and development
intelligent systems and beings that can think, plan, and
make optimum decisions based on probabilistic foundations,
sometimes in unpredictable settings, is a vast field [158].
To train models beyond explicitly coded rules, most modern
AI systems rely on ML, which enables data-driven inter-
disciplinary techniques. Such data-driven algorithms will
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be essential to 6G systems and beyond, opening up new
possibilities for not just wireless communication but also
sophisticated localization methods using mmWave, THz, and
optical frequencies.

Fingerprinting and the use of classification and regression
techniques were the primary focus of ML approaches to
localization [49], [159]. We anticipate that ML will be
used more frequently in data-rich and complex localization
applications; especially, for the GNSS poor indoor and urban
outdoor channel conditions, as traditional signal processing
and mathematical techniques are not sufficient to address
complex issues where we have a large number of noisy and
multi-modal observations, as well as the non-linear charac-
teristics of the signal. Instead, we may mimic the behavior
of the system—sensor noise and all—using AI techniques.
In addition, in many circumstances, pattern recognition and
predictive models based on ML approaches are needed to
achieve high-level sensing and localization from perhaps
high-dimensional low-level raw observations, such as CSI
in massive MIMO systems. Consequently, mapping systems
and localization will rely increasingly heavily on the ap-
plication of statistical AI approaches to model complicated
radio signal properties and fuse multiple complementary but
noisy sensors. These are expected to be supplemented by
hybrid signal propagation models that combine conventional
physics-based models with sequential Bayesian models and
data-driven learning methodologies. Furthermore, it will be
hard to manually construct the mathematical model, due
to the enormous complexity of the predictive function of
mapping low-level observations to high-level goal ideas. In
order to build approaches with unprecedented precision and
adaptation capabilities for 6G localization, ML offers an
alternative framework that is based on cutting-edge DL and
probabilistic methods and learns from data by optimizing or
inferring previously unknown parameters [160].

A number of strategies to improve conventional localiza-
tion are currently available in the current AI toolkit, based on
methods, like probabilistic learning and reasoning, as well
as DNNs. However, a lot of these tried-and-true methods
have their limits, because of how data-hungry they are and
how much processing power and labeled training data they
need. Novel inference approaches and hierarchical models
need to be created and cleverly coupled in order to learn
from restricted, arbitrarily structured, and noisy data. Several
current methods might be improved in order to reduce
the expense of gathering labeled training data. In order
to improve a supervised solution, semi-supervised learning
blends a large number of unlabeled with a limited number of
labeled ones. Additionally, next-generation wireless systems’
localization features are expected to be more autonomous
and time-evolving, necessitating the use of adaptive ML
algorithms. For example, cooperative localization based on
RL [161] and crowdsourcing based on FL [160] might assist
in overcoming the difficulties posed by adaptable settings
and limited data. These issues must be resolved in order to

properly use AI and ML approaches as an enabler for the
highly dynamic, large-scale localization of the future.

E. CHANNEL CHARTING
Applying traditional unsupervised ML-based dimensionality
reduction techniques to the field of CSI is what channel
charting is all about [55]. Users may be discovered and
tracked on a chart that is generated automatically based
on a big collection of CSI samples collected in a certain
setting. The lack of supervision that is related with channel
charting makes it useful in cases, where there is insufficient
data to construct an accurate geometric representation of
the user’s position and surroundings [162]. Although it is
not possible to directly correlate a position on the chart
with a user’s physical location, it provides a pseudo-location
within the cell that is stable over time and users. Therefore,
the need for specific measurements of the labeled CSI
datasets that are necessary for fingerprinting methods are
eliminated. Several network features, including mmWave
beam tracking and association, grouping in device-to-device
(D2D) situations, resource management, predictive rate and
cell-to-cell handoffs may benefit from keeping tabs on the
pseudo-location.

Pseudo-locations have certain advantages over an actual
position, but they cannot completely substitute it. Initially,
channel charting’s lack of supervision means that there is no
need for prior information (i.e., geometrical/geographical)
in order to achieve self-configuration, which aids in deploy-
ing emergency and temporary networks. Another aspect of
pseudo-locations is privacy, due to the fact that it enables
contact tracking without the knowledge of the user’s precise
location.

To begin with, channel mapping was created for scenarios
with intense scattering phenomena and where major RF
propagation characteristics are anticipated to remain stable
(such as massive MIMO). In order to use this method in
high-frequency LOS applications, the joint handling of sig-
nals from numerous locations is required. Directly related to
the ML foundations of channel charting are other unresolved
concerns, such as the feasibility of implementing lifelong
learning and the appropriate feature design for CSI signals.

F. RADARS
Extensive research and development into techniques for
device localization has been performed in recent years [163],
[164]. It has been shown that sub 5 GHz functioning
ultra-wideband (UWB) radars are useful in such scenarios.
Most non-metallic materials exhibit minimal attenuation of
electromagnetic radiation in this frequency region, making
it possible to detect devices that otherwise would be ob-
structed. Moreover, UWB radars, by taking advantage of the
ultra-wide bandwidth, may provide great precision in target
localization thanks to their superior range resolution [165].
These features make UWB radars useful for a wide variety
of applications, including but not limited to: beamforming
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in cellular communications; vehicle localization; monitoring
critical infrastructure; indoor patient monitoring; search and
rescue operations; etc.

Beamforming improvements of the narrow beams are
essential for THz and millimeter wave (mmWave) commu-
nications systems to generate enough receive signal strength.
High beam training overhead, however, makes it difficult for
these systems to serve highly mobile applications like XR,
drone, or vehicle communications [166]. Beam selection is
notoriously sensitive to changes in transmitter and receiver
locations as well as environmental geometry and features.
This suggests that learning more about the environment and
the positions of the transmitters and receivers can assist solve
the beam selection problem. Using inexpensive radar sensors,
such those used for automotive applications, is a quick and
easy approach to get this understanding [167]. This paper’s
objective is to solve the beam selection issue using radar
sensory data, and to do so, it presents the first AI-based
demonstration of radar-based beam prediction under realistic
vehicular communication scenarios [168], [169].

Frequency-modulated continuous wave (FMCW) radars,
which can function in a wide range of environmental con-
ditions, have recently seen widespread use in self-driving
automobiles and autonomous robotics. Therefore, it is an
intriguing open topic whether or not these radars can be
employed for reliable SLAM in large-scale areas under harsh
weather conditions. Moreover, due to these advances in radar
technologies other breakthroughs are anticipated in radar
odometry [170], [171], estimating mobility [172], landmarks
extraction [173], [174], and more [175], [176].

G. SENSORS
A continuously increasing number of IoT devices with a
wide variety of sensors are being deployed to cover a vast
array of use cases, ranging between smart cities [177] to
industrial applications [178] and decentralized initiatives to
protect the planet [179], [180]. Information on the specific
location of the measurements taken is crucial for making
sense of the results. Due to the fact that many applications
depend on mobile sensors, the network needs to be able to
dynamically detect their positions.

When working on a wireless sensor network (WSN)
protocol or application, localization is crucial. For instance,
in environmental monitoring applications, it is essential to
know the precise location from where readings are taken
in order to conduct proper statistical and scientific analysis;
without this location information, the acquired data are
essentially worthless. Node locations are also crucial to the
development of such methods. In target identification and
geographical routing, node locations are required [10], [181],
[182]. Techniques like mobility management [169], [183],
mobile sensor deployment [129], and topology mapping may
also benefit from their utilization [184]. There has been a
recent uptick in the usage of sensor networks for indoor
localization [185].

In order to take use of location-based services like navi-
gation, tracking, and monitoring, users may determine their
location anywhere in the world using the GNSS [50]. The
GNSS is a collection of navigational satellite systems from
various countries, including the Europe’s Global Navigation
Satellite System (GALILEO), United States’ Global Posi-
tioning System (GPS), China’s BeiDou, and Russia’s Global
Navigation Satellite System (GLONASS). To locate a user
inside or in a hostile environment, GPS and GNSS fall short
of expectations. Indoor environments are more difficult and
intricate than their outside counterparts for a number of rea-
sons. Multi-path propagation error is caused by interference
from several sources, including but not limited to ceilings,
walls, equipment, and humans. As a result of obstacles
unique to the inside environment, designing accurate indoor
positioning systems for next-generation wireless networks is
a formidable task.

Utilizing a satellite-based navigation system is the stan-
dard method used for this. However, there are a few problems
that come along with using GPS [96]. For example, they
are only effective in areas with good reception for satellite
signals, which limits their use in certain outdoor settings and
prevents them from being used inside. Limiting the number
of nodes that have GPS sensors may help with the first two
issues. These nodes then serve as anchor or seed nodes,
guiding subsequent nodes to their correct locations. Static
anchors with predetermined positions are often used in place
of movable anchor nodes outfitted with GPS receivers.

H. VISIBLE LIGHT POSITIONING
A lot of work has been done to assess the efficacy of
various tracking approaches suited for mobility control in
indoor settings from the perspective of RF technology [186].
None of the aforementioned improvements may be used in
applications, where privacy is paramount, such hospitals and
petrol stations, since those establishments must instead use
isolated VLC systems. As a further drawback, their precision
is limited by electromagnetic interference and the significant
multipath phenomena brought on by many reflections in
barriers, like walls, furniture, and moving persons [187].

New light-based ways for indoor location without the
restrictions of the RF-based traditional techniques have
been published as a reaction to the recent developments
in semiconductor-based lighting systems that have made
LEDs the dominating choice for illumination [188]. Since
the optical energy is concentrated on the LOS connection,
VLP devices are more resistant to the multipath propagation
effect. Consequently, the accuracy of the AoA improves.
However, in scenarios with LOS blockage, novel reflecting
surfaces, such as optical RISs and mirrors, can be used to
reinstate high quality communications [189]. Furthermore,
ceiling-mounted LEDs have a very high density since their
main job is to provide illumination. Therefore, it is antici-
pated that VLP systems would increase accuracy and fulfill
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the tougher standards of indoor settings, while RF-based
systems are restricted in sensitive regions [190].

The main VLP techniques utilize multiple image and light
sensors, as well as positioning-optimization methods, for
instance filtering, spring and normalization. The proximity
approach used in [187] predicts the relative position based
on a known base station or access point and is proven to
have a huge variable in proximity, hence it does not match
localization needs in many interior environments. Other
efforts used multiple VLP triangulation methodologies, such
as received signal strength (RSS), time difference of arrival
(TDoA), time of arrival (ToA), and AoA, to boost position
estimate accuracy without added hardware. Although these
procedures are accurate, they are computationally intensive.

Most of the aforementioned contributions agree that nu-
merous access mechanisms have been suggested to separate
and analyze transmitted mixed signals, a necessary operation
for a VLP system. Time-division multiplexing (TDM) and
frequency-division multiplexing (FDM) are two common
methods that have been studied in the literature [191].
Demand for tighter coordination between individual LEDs,
however, increases this complexity cost. When the location
data is based on light of varying wavelengths, precision is
increased since the signals are more easily distinguished.
In order to limit the amount of LEDs utilized for localiza-
tion, some traditional VLP systems use square waveforms
whose spectral content include odd-integer harmonic fre-
quencies. However, a sinusoidal waveform has significantly
less complicated spectrum information [192]. This allows for
a greater number of LEDs to be used, which in turn greatly
improves both localization precision and breadth.

V. SYSTEM MODELS
This section focuses on the system and channel models that
lay the foundation of the discussed mmWave/THz and optical
localization systems. In more detail, Section A discusses the
mmWave/THz system model, which includes both LOS and
RIS-aided NLOS scenarios, while Section B delves into the
VLC-based localization techniques that can be split into LOS
and optical RIS-aided NLOS system models.

A. MMWAVE/THZ
THz and mmWave techniques have been researched exten-
sively during the past couple of years aiming to reduce
the “THz gap”. From a hardware perspective, small-scale
graphene-based THz transceivers have been demonstrated
with groundbreaking sensitivity, precision and power. Specif-
ically, SotA photonic- and electronic-enabled transceivers
have accomplished unprecedented signal transmission and
modulation [193]–[195].

In order to properly configure and analyze the performance
of a system, a channel model with robust accuracy is
required. Channel modelling may make use of either stochas-
tic, deterministic, or a combination of such approaches.
Initially, the simplest model, i.e., deterministic, is analyzed
for the far-field MIMO channel in the localization system,
which assumes a planar waves in contrast to the near-field
models that assume spherical waves. As depicted in Fig. 4,
in the uplink, we can split the channel matrix, H, of the
channel into two distinct submatrices as

H = HLOS + HNLOS, (1)

with HNLOS and HLOS denoting the NLOS and LOS chan-
nels, respectively.

1) LOS
The LOS channel coefficient is valid in scenarios where the
BS and the UE share an unobstructed communication path.
In such cases, the channel matrix can be written as in [196]

HLOS = ρe−j2π(fτ−νt)GBSGUEaBSa
T
UE, (2)

where aBS, aUE, GBS , and GUE represent the steering
vectors and the antenna gains of the BS and the UE,
respectively. Moreover, τ , ν, f , and ρ denote the signal delay,
Doppler shift, frequency, and path gain, respectively.

In more detail, the path gain can be expressed as in [197]

ρ =
cKα

4πfd
, (3)

with d being the propagation distance and Kα denoting
the attenuation coefficient, which is a function of the dis-
tance and transmission frequency. It is important to high-
light that, in THz systems Kα can be evaluated based on
high-resolution transmission molecular absorption caused by
water vapor and other gases in the atmosphere, while in
mmWave ones it denotes the atmospheric attenuation.

Furthermore, by assuming negligible Doppler effect and
identical Kα between the subcarriers, the channel becomes
frequency-flat and can be obtained as

HLOS = ckρe
−jξe−j2π∆fkτaBSa

T
UE, (4)

where

ρ =
λcKαGBSGUE

4πdBU
, (5)

ξ = 2πfcτ, (6)
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and

τ =
dBS−UE

c
+B. (7)

Likewise, B and c are the clock synchronization offset and
the speed of light, respectively, while fk and ck denote the
frequency of the k-th subcarrier and the ratio between the
central and the subcarrier frequency, respectively. Finally,
dBU represents the distance between the BS and the UE.

2) NLOS
Without RIS: When all LOS paths are obstructed, the trans-
mitted mmWave/THz signal may arrive at the UE after
being reflected on random (i.e., obstacles, walls, metal-
lic structures, etc) or carefully placed (i.e., RISs) objects.
Specifically, THz NLOS communication scenarios are char-
acterized by increased losses and sparsity, while scattering
and diffraction phenomena are introduced from rough sur-
faces [198]. Thus, such channels are commonly modelled
with ray-tracing and stochastic techniques. On the other
hand, mmWave NLOS can be characterized by modeling the
stochastic reflection loss and geometrical modeling [199].

If we assume M reflectors between the BS and the UE,
the channel matrix for each reflector can be expressed as

H(m)
NLOS = ckρ

(m)e−jξ(m)

e−j2π∆fkτ
(m)

aRa
T
UE, (8)

where

ρ(m) =
λcKα

(m)
(R−UE)G

(m)
BS G

(m)
UE

4πd
(m)
R−UE

, (9)

ξ(m) = 2πfcτ
(m) (10)

and

τ (m) =
d
(m)
BS−R + d

(m)
R−UE

c
+B. (11)

In (8), d(m)
BS−R and d

(m)
R−UE denote the distances between

the BS and the m-th reflector as well as between the m-
th reflector and the UE, respectively. Also, aR represents
the steering vector of the reflector, while Kα

(m)
(R−UE) is the

attenuation coefficient for the RIS-UE channel.
With RIS: In the case of RIS-aided systems, the previous

analysis is augmented with RIS-reflected signal coefficients.
The reflection of the signal on the RIS modifies its phase
and amplitude with the channel matrix given by [200]

HRIS = c2kρe
−jξe−j2π∆fkτaBSa

T
RISΩaRISa

T
UE, (12)

where

ρ =
λ2cKα(BS−RIS)Kα(RIS−UE)

16π2dBS−RISdRIS−UE
, (13)

ξ = 2πfcτ (14)

and

τ =
dBS−RIS + dRIS−UE

c
+B, (15)
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FIGURE 5. Global vs local coordinate system.

In (12), Kα(BS−RIS) is the attenuation coefficient for the
BS-RIS channel, while Kα(RIS−UE) is the attenuation co-
efficient for the RIS-UE channel. In addition, dBS−RIS and
dRIS−UE denote the distances between the BS and the RIS
as well as between the RIS and the UE, respectively. Finally,
aRIS represents the steering vector of the RIS.

Finally, the complete NLOS channel matrix can be ob-
tained by summing all the individual reflection components,
both random and RIS ones, as

HNLOS =

M∑
m=1

H(m)
NLOS + HRIS. (16)

3) LOCALIZATION GEOMETRY
From a localization perspective, the system consists of a base
station, a RIS and the end UE. In order to determine the
position of the latter in space, we need to define a global
coordinate system defined as

p = [x, y, z]T . (17)

As discussed in Section C, the channel contains LOS as well
as NLOS paths generated by RIS, reflector and/or diffractor
elements.

To simplify the analysis, a local coordinate system needs
to be used, which can be translated to the global one by
using an Euler angle vector and a xyz rotation sequence as

pi = Rp̃i + p (18)

with pi and p̃i representing the position of the i-th element
with i = BS,UE,RIS in the global and local coordinate
system, respectively, while R denotes the rotation matrix and
p is the center of the array. The global and local coordinate
systems are presented in Fig. 5.

Furthermore, in the case that the UE transmits a signal
towards the BS, the direction vector in the global coordinate
system can be written as

vBS−UE =
pUE − pBS

dBS−UE
, (19)

where

dBS−UE = ||pU − pBS||, (20)
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FIGURE 6. Simulation setup for mmWave/THz.

and can be translated in the local coordinate system as

ṽBS−UE = R−1vBS−UE. (21)

The AoA/AoD pairs can be derived based on the defini-
tions provided for the global and local coordinate systems by
using an azimuth, ϕ, and an elevation, θ, angles. The former
is defined as the angle between the y axis and the projection
of the direction vector on the xy plane, while the latter is the
angle between the direction vector and the xy plane. Due to
the fact that the AoA/AoD angles can only be measured in
the local coordinate system, the direction vector needs to be
rewritten in the local coordinate system as

ṽBU = f(φ̃BU) =

cos(ϕ̃BU)cos(θ̃BU)

sin(ϕ̃BU)cos(θ̃BU)

sin(θ̃BU)

 , (22)

where φ and φ̃ denote the AoA/AoD angles in the global
and local coordinate system, respectively, while f(φ̃BU)
represents the mapping between the direction vector and the
AoA/AoD angles. On the contrary, (22) can be expressed in
terms of the direction vector as

f(φ̃BU) =

[
ϕ̃BU

θ̃BU

]
=

[
arctan2(ṽBU,x, ṽBU,y)

arcsin(ṽBU,z)

]
, (23)

with arctan2 (·) denoting the four-quadrant inverse tangent.
This procedure can be used to calculate the global AoA/AoD
values by substituting ṽBU with vBU, while the same
methodology can be applied to any of the aforementioned
channels, either LOS or NLOS.

4) PERFORMANCE ASSESSMENT
This section demonstrates the methodology for determining
the location of UE within a network of gNodeBs (gNBs)
through the utilization of new-radio (NR) reference signal.
This simulation employs the TDoA positioning methodology
to calculate the position of the UE in a two-dimensional
space. The TDoA positioning approach is considered to be
one of the techniques used for positioning UE based on
downlink signals. As illustrated in 6, this technique utilizes
measurements of the timing differences in reference signals
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FIGURE 7. Localization error of the mmWave/THz system as a function of
the location of the UE.

to conduct multilateration based on the principles of hyper-
bolas. The TDoA refers to the relative timing discrepancy
between positioning reference signals that are emitted by the
serving/reference gNBs and any adjacent ones. In order to
prevent synchronization errors, it is necessary for all gNBs
to transmit signals simultaneously, with the ToAs being
estimated at the UE side.

Fig. 7 depicts the localization error of the studied system
as a function of the UE’s position. In more detail, the results
demonstrated in this figure are in-line with the Release 16 of
NR as published by the 3rd Generation Partnership Project
(3GPP) [201]. The performed simulations assume that all
gNBs are operated at a uniform carrier frequency, which
corresponds to a singular positioning frequency layer, while
all carriers possess identical subcarrier spacing, cyclic prefix,
and frequency allocation within the shared resource grid.
Also, a LOS links are assumed between the UE and the
first and third gNBs, while the link between the UE and
the second gNB is NLOS. From this figure, it becomes
obvious that the utilized approach provides a more accurate
approximation for the position of the UE when it is situated
in close proximity to the central region of the gNBs. On
the contrary, as the UE approaches any of the gNBs, the
localization error increases rapidly despite the nature of the
UE-gNB link, which is expected since the calculation of the
hyperbola curves becomes more unstable.

B. VISIBLE LIGHT POSITIONING
VLP systems are distinct from their radio-based counterparts
in a number of ways. As a result, it is important to develop
appropriately designed VLP system that incorporate the
optical transmission particularities and are both precise and
reliable. As depicted in Fig. 8, signals in VLP systems
travel from an light emitting diode (LED) source to a
photodiode (PD) receiver via a wireless channel. The LED is
often categorised as a Lambertian source [202], meaning it
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FIGURE 8. VLC localization system architecture.

disseminates signals in accordance with Lambert’s emission
law (i.e., when observing a perfect diffuse reflecting surface,
the radiant intensity is proportional to the cosine of the angle
between the direction of incoming light and the surface). The
following analysis, assumes that the channel between the
receiver and the transmitter may be obstructed, in which case
it enlists an optical RIS to extend the VLP system coverage.

1) LOS
The LOS process may be represented by a Lambertian
model, which means that after being reflected off of an object
like a wall, the light’s intensity drops to such a low level that
it may be safely disregarded. Changing the reflection route of
the optical connection and achieving beamforming through
a multi-mirror reflection link are both possible thanks to RIS
based on mirror arrays, as described in [203]. In the LOS
channel the system model can be expressed as in [190]

y = hx+ n, (24)

where x and y represent the transmission and received signal,
respectively. Also, n denotes the additive white Gaussian
noise (AWGN), while h is the channel gain. In more detail,
the LOS channel gain can be written as

hLOS =
A(m+ 1)

2πd2
cosm (ϕ) cos (ψ)ToG (ψ) , (25)

where

m = −1

2
log2(cos(Φ1/2)), (26)

and

G (ψ) =
α2

sin2(Ψ)
, for 0 ≤ ψ ≤ Ψ. (27)

Moreover, ϕ and ψ denote the irradiance and incidence
angles, respectively. In addition, G (ψ) is the optical concen-
trator gain, while To represents the optical filter gain. Finally,
m is the Lambertian model index, Φ1/2 is the LED’s half-
power angle, Ψ is the field of view (FOV), α is the PD’s
refractive index and A is the PD’s area.

2) NLOS
In the NLOS scenario, a RIS that is made up of Nx × Ny

identical rectangular mirrors, each of which is d in size. Each
mirror is mounted such that its optical centre is in a plane
perpendicular to the y axis. To determine the roll ω and the
yaw γ angles, which spin clockwise in the positive direction
of the x axis and counterclockwise in the positive direction
of the z axis, respectively, we need two mirrors placed at
right angles to one another.

The RIS-enabled NLOS pathways can be split into two
categories: (i) the RIS component is a RX that handles the
signals from LED; and (ii) to re-transmit the optical signal
collected in the prior stage, the RIS component is assumed
to be a point source and its magnitude is multiplied by
the reflection coefficient. As higher-order reflections have
an unaccounted-for effect on VLC systems, we restrict the
following analysis to first-order reflections [204]. Moreover,
we assume that the LED’s incident light falls on each of
the RIS elements that are called meta-atoms (MAs) at its
geometric centre as well as that there are K MAs of area
D. As a result, the channel gain of the k-th RIS element can
be expressed as in [189]

hNLOS
k =ρRIS

k

(m+ 1)AD

2π2(dk)2(drk)
2
cosm (ϕk)

× cos (ψr
k) cos (ψk) cos (ϕ

r
k)ToG (ψr

k) ,

(28)

where dk and drk represent the distances of the k-th RIS
element from the LED and the PD, respectively, while,
ρRIS
k denotes the reflection coefficient of the k-th element.

Moreover, if we assume that the receiver, the transmitter and
the k-th RIS element are located in (xr, yr, zr), (x, y, z), and
xk, yk, zk, correspondingly, ϕrk and ψk, which are based on
the roll and yaw angles of the k-th RIS element, can be
evaluated as

cos (ϕrk) =
(xr − xk)

drk
sin(γk) cos(ωk)

+
(yr − yk)

drk
cos(γk) cos(ωk)

+
(zk − zr)

drk
sin(ωk),

(29)

and

cos
(
ψi
k

)
=
(x− xk)

dk
sin (γk) cos (ωk)

+
(y − yk)

dk
cos (γk) cos (ωk)

+
(zk − z)

dk
sin (ωk) .

(30)

Finally, the k-th element’s norm vector can be written as

nk = (sin(ψk) cos(ϕ
r
k), cos(ψk)cos(ϕ

r
k),−sin(ϕrk))

T
.
(31)
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As a result, the complete channel gain of the VLP system
can be expressed as

h = hLOS +

K∑
k=1

hNLOS
k (ωk, γk). (32)

3) LOCALIZATION GEOMETRY
To dig a little deeper into the VLP approaches, the most com-
mon geometrical approaches can be categorized in to RSS-
based, ToA/TDoA-based and AoA-based [190]. Specifically,
the most well known localization RSS-based technique for
VLP is trilateration, where, after the RX measures the
strength of the transmitted signals, the distance between
the RX and each TX can be calculated, allowing for the
drawing of concentric circles whose radii correspond to
the measured distances. Existing measurement flaws often
cause the recorded distance to be just slightly off from
the real ones. Thus, almost always some overlap exists
between the areas where the circles are drawn. In this case,
the trilateration problem transforms into the least-squares
estimate [205].

As far as the ToA/TDoA-based methods are concerned,
they also leverage trilateration algorithms since, as light
travels at a fixed speed over a given distance, it generates
phase delay in the RX. Such systems need at least three TX,
i.e., at least three phase differences, with each one having
its own unique frequency id. The power of each TX can be
expressed as

Pi(t) = Pc + Pscos(2πfit+ ϕ0), (33)

where Ps, Ps, and ϕ0 denote modulated signal power, the
continuous signal power, and the initial phase of the signal,
respectively. Also, fi is the modulation frequency of each

transmitter (i = 1, 2, 3). As a result, the power received by
the PD can be written as

E(t) = K

∣∣∣∣∣R
3∑

i=1

Pi(t)hi(t)

∣∣∣∣∣ , (34)

with R, K, and hi(t) represent the PD’s responsivity, the
constant proportionality, and the channel impulse response,
accordingly. The received signal is processed by band pass
filters specialized on each modulated frequency and, after-
wards, it is passed by a frequency down converter comprised
by a mixer and a band pass filter to unify the frequency. Thus,
the system is capable to use Hilbert transform to calculate
the two phase differences (from three transmitters). However,
a third phase difference is required for accurately obtaining
the position of the UE, which can be obtained by altering
the frequency of two out of the three transmitters [206]. As
a result, the phase differences can be obtained by

∆φ12 = 2πf1
d1−3d2

c12
= arctan (I12/Q12)

∆φ13 = 2πf1
d1−5d3

c1
= arctan (I13/Q13)

∆φ21 = 2πf1
d2−3d1

c = arctan (I21/Q21)

, (35)

with f1 denoting the reference frequency, and{
Iab = Ea(t)Hilb[Eb(t)]−Hilb[Ea(t)]Eb(t)
Qab = Ea(t)Eb(t) + Hilb[Ea(t)]Hilb[Eb(t)]

, (36)

where E represents the RSS after the band pass filter
and the down conversion, while Hilb[·] denotes the Hilbert
transform. Finally, the UE position can be calculated based
on the following distances

d1 = − 1
8

c
2πf1

[
tan−1(I12/Q12)+3 tan−1(I21/Q21)

]
d2 = 1

3

[
d1 − tan−1(I12/Q12)

c
2πf1

]
d3 = 1

5

[
d1 − tan−1(I13/Q13)

c
2πf1

] .

(37)

4) PERFORMANCE ASSESSMENT
This section examines the efficacy of the aforementioned
VLP approach through the presentation of Monte Carlo
simulation outcomes across various informative scenarios.
In the subsequent discussion, unless explicitly specified, the
increment between steps is established at 1 centimeter (cm),
and the LEDs are positioned at a height of 10 meters above
the x-y plane, as illustrated in Fig. 9. Furthermore, it is
postulated that a total of three LEDs are positioned in a
downward-facing orientation. A comprehensive collection of
test points has been selected to cover a significant portion
of the area on the floor. These test points are visually
represented with blue, while it is also assumed that each
LED emits optical power that has been normalized to 1 Watt.

Fig. 10 illustrates the average positional error in relation
to the signal-to-noise ratio (SNR) across various localization
schemes. In greater depth, the scheme proposed in [186]
is being compared to the conventional and weighted kNN
fingerprinting (FP) approaches [186], [207], [208]. As per
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Approach of [186]

FIGURE 10. Comparison of mean positional error performance of the VLP
system proposed in [186] against FP and weighted kNN approaches.

the FP protocol, the transmission from each of the three
LEDs to the UE occurs during distinct timeslots. In order to
generate the RSS map, it is necessary for the UE to possess
information regarding both the position and characteristics
of the transmission LEDs. This information enables the UE
to determine the coordinates of the transmission LEDs and
the anticipated received signal power at each point within
the grid. A position estimate is inferred by comparing the
received signal powers in the three timeslots with the entries
in the RSS map. However, the weighted kNN method is a
popular variant of the traditional FP approach. It estimates
the position of a mobile unit UE by calculating the weighted
average of its k closest data points. In this particular instance,
we make the assumption that the value of L is equal to
1024, the value of N is equal to 3, and the initial velocity
u0 is equal to 0.25 m/s. As anticipated, when considering a
specific localization methodology, an increase in SNR leads
to a decrease in the average positional error. Furthermore,
it is evident that in the low and medium SNR range,
the methodology presented in [186] demonstrates superior
performance compared to both the conventional approaches.
As an example, when the SNR is 5 dB, the method at
hand demonstrates a mean positional error of approximately
0.85 m. In comparison, the conventional methods yield mean
positional errors of 4 m and 3.99 m, respectively, under the
same SNR conditions. In conclusion, the approach proposed
in [186] demonstrates superior positional error performance
in comparison to the conventional methods for all values of
SNR.

VI. LOCALIZATION KPIS
Naturally, better location and orientation accuracy and pre-
cision would be at the top of the list, when developing a
localization system. But other goals, including complexity,
coverage and mobility, are crucial to the system’s success as

a whole. This section provides the fundamental KPIs shared
between SotA localization systems.

A. ACCURACY
The accuracy with which a system can estimate its location
and orientation is one of the most important KPIs of its
localization capability. In more detail, the accuracy of a
system is often evaluated by calculating the distance between
the real location and the predicted one. It can be often
measured as the mean squared error (MSE) or the CDF of
measurements bound by a predefined threshold, which can
be expressed as

eMSE(ŵ) =E
[
∥ŵ −w∥2

]
=tr(C(ŵ,w)) + ∥E[ŵ]−w∥2,

(38)

with w, C(ŵ,w) and tr(·) denoting the location, the covari-
ance matrix, and the matrix trace, respectively. Also, E[·] is
the expected value. In more detail, ∥E[ŵ]−w∥2 represents
the squared bias, while tr(C(ŵ,w)) is the variance of the
location estimate. Moreover, it is possible to get a worst
case estimate of the accuracy by assuming that no bias exists
and using the Cramér-Rao bound, which is illustrated in the
following equation, provided the noise and signal models are
known.

C(ŵ,w) ⪰ I−1(w), (39)

where I−1(w) is the inverse of the Fisher matrix [209].
Finally, after performing the substitution between (38)
and (39), based on the available/selected measurement such
as ToA, AoA, RSS, and more, the localization lower bound
can be extracted as

eMSE(ŵ) = E
[
∥ŵ −w∥2

]
≥ tr(C(ŵ,w))

≥ tr
(
I−1(w)

)
.

(40)

It should be highlighted that various published works utilize
the root MSE (RMSE) instead of the MSE, which results in

eRMSE(ŵ) =
√

E [∥ŵ −w∥2]
≥

√
tr(C(ŵ,w))

≥
√

tr (I−1(w)).

(41)

However, the performance of the system may fall short of
the Cramér-Rao bound since many realistic estimators are
skewed due to signal NLoS propagation and other causes.
To this end, tighter constraints have been introduced, such as
the Zik-Zakai, Weiss-Weinstein, and Bayesian Cramer Rao
bounds [57].

B. PRECISION
In terms of localization precision, it reveals the variance of
the estimated location. The KPI of localization precision
was created to statistically characterize the accuracy as it
fluctuates throughout numerous localization attempts. One
example of precision KPIs is the geometrical dilution of
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precision (GDoP) that measures the variation in localization
errors and can be expressed as in [209]

GDoP =
eRMSE(ŵ)

eRMSE(d̂)
, (42)

with the estimated range, ŵ, and location RMSEs, d̂, serving
as numerator and denominator, correspondingly. Minimizing
the GDoP can provide the optimal fixed node selection
and placement as it models the precision of the location
estimation with regard to the distribution of the fixed nodes
in space.

Another KPI of the localization precision is the localiza-
tion error, which can be measured by two metrics, namely
its CDF and outage. The former represents the likelihood
that location estimates will be precise to a specified degree
and is given by

Fe(eth) = 1− Pout(eth), (43)

while the latter expresses the likelihood of the localization
error to overcome a predefined value and can be expressed
as

Pout (eth) = Pr {∥ŵ −w∥ ≥ eth} . (44)

In actual situations, the outage and/or CDF reflects the
likelihood of confidence in the estimated location. In the case
when two localization methods have equivalent accuracy, the
approach that produces the smaller outage and/or larger CDF
values is more precise and thus preferred.

C. DETECTION
The commonly utilized metrics for detection in various fields
include the detection and false alarm probabilities [210].
Specifically, the detection probability, Pd, can be expressed
as

Pd = Pr
{
T̂ (r) ≥ λ | H1

}
, (45)

while the false alarm probability, Pfa, is given by

Pfa = Pr
{
T̂ (r) ≥ λ | H0

}
, (46)

where λ denotes a prescribed decision threshold, H0 is the
null hypothesis that only noise is observed by the receiver,
H1 represents the alternate hypothesis that both noise and
signal have been received, and T̂ (·) denotes the output of
the detector for a given sensor observations vector, r.

D. LATENCY
In a localization system, the term latency refers to the delay
that occurs between a device making a location request
and receiving the response, as shown in Fig. 11. This is
determined by the processing speed of the chosen loca-
lization method, the technology utilized for realizing the
communications link, and the complexity of the position
reference signals. However, latency only describes part of the
time-related performance. The pace at which a localization
indicator is updated is known as its update rate. This KPI
is latency-dependent, in the sense that its maximum value
cannot exceed (latency)−1, and use-case-dependent.

E. COVERAGE
As the distance between each fixed and the mobile network
node grows, localization performance often decreases. The
system’s coverage is the largest geographic region across
which reliable localization services may be provided with
specified levels of latency, precision, accuracy, and other
KPIs. Depending on the available localization infrastructures,
the coverage may be broadly broken down into three cate-
gories: indoor, local, and global. The probability of coverage,
which represents the probability that a specific user achieves
an SINR higher than a certain threshold, is the most common
KPI of coverage and can be expressed as

Pc = P [γ ≥ γth], (47)

with γ and γth denoting the SINR of the wireless system
and the threshold that must be satisfied in order to consider
the UE inside the coverage area, respectively.

However, the coverage KPI disregards the system’s adapt-
ability when expanding the scope of localization. There is a
risk of wireless channel congestion as localization coverage
expands, and the localization system will need to execute
increased computations and measurements. To this end, the
KPI of scalability has been introduced, which quantifies the
capacity of a system to accommodate a growing number
of end devices. If we consider a wireless networks with
N nodes, there is a point after which the residual capacity
becomes negative. This point is the maximum number of
nodes, k, that can be supported by the system. Thus, the
scalability of the wireless network is defined as the number
of nodes, after which the residual capacity decreases for
every new node added in the system. By setting the residual
capacity at k equal to 0, the scalability can be obtained as
in [211]

CR(N = k) = 0, (48)

which leads to

η Ca =
∑
i

(1 + Γi)Li (1 + Yi), (49)

where Ca is the available capacity, η denotes the efficiency,
while Li, Γi, and Yi represent the average load, the con-
tention factor, and the transit factor, respectively.
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F. COMPLEXITY
Various aspects of the localization approach, such as the
hardware, the signal detection method, and the algorithm’s
computation requirements, contribute to the overall system’s
complexity. Depending on the specifics of the intended use
case, all or a subset of these types of complexity may
be relevant. With regard to hardware, the complexity of
hardware realization and deployment is directly related to the
complexity of communication and localization algorithms.
While, as far as software complexity is concerned, it can
be challenging to analytically determine the complexity
formula of various localization methods. Thus, it is often
considered equal to the computational complexity of the
location estimators. Moreover, in the context of localization,
complexity is intertwined with accuracy and precision. In
addition, there is a crucial relation between complexity and
the time elapsed between location updates for a specific
mobile node, which is measured by two KPIs, namely update
rate and latency.

G. STABILITY
In high-frequency systems with small beamwidths, where
pointing errors might cause an outage, loss of tracking or
deafness can be a critical issue. Thus, deafness, which is
defined as the power leakage brought on by the estimate
error, is often used as a metric in the assessment of loca-
lization algorithms. Deafness is represented as a percentage
and normalised to the half power beamwidth (HPBW) as
in [131]

D =
∥x− x̂∥
HPBW

, (50)

and, thus, the stability can be written as

S = 1−D. (51)

If it reaches 100%, the localization process must restart since
the estimate failed because the UE is outside the beam.
Therefore, a system’s stability may be thought of as the
variation in localization accuracy over time, particularly in
a mobile setting.

VII. SYSTEM DESIGN CONSIDERATIONS
To assess the fundamental bounds of achievable localization
performance, problem formulation, design and optimization
are crucial. The localization system’s design is entangled to
the use cases in order to fulfil their requirements. These use
cases inform choices on network architectures, cooperative
approaches, as well as algorithm development and optimiza-
tion. To this end, this section starts by analyzing the impact
that the selected network topology has on the overall loca-
lization performance in Section A, while Section B details
the design considerations that are entangled with cooperative
localization approaches. Afterwards, Section C investigates
how the selection of the signal’s parameters can influence
the system’s performance. Finally, in Sections D and E,
investigate the impact of the general optimization problem

formulation as well as its online adaptation approaches on
the localization system’s effectiveness,respectively.

A. NETWORK ARCHITECTURES
Under the umbrella of networks, as discussed in the previous
sections, three types of channels have been covered LOS,
NLOS, and RIS-enabled ones. However, densification is a
key characteristic of future communication networks, thus
numerous fixed and mobile nodes should be engaged. There
are three distinct kinds of topologies for THz communication
systems: centralized, distributed, and clustered. In a central-
ized system, one or more client nodes are linked directly to a
centralized server, which uses client/server architecture. This
is the most often utilised form of wireless system, in which
the clients submit requests to the server and receive the an-
swer. On the contrary, distributed networks aim to eliminate
single points of failure by distributing processing across the
network and coordinating their efforts. Distributed systems
rely on the communication and synchronization between the
nodes that are dispersed throughout a network. These nodes
often consist of discrete pieces of hardware, however they
might also be software processes. Centralized and distributed
architectures are often utilized in macro settings with a wide
communication distance. The centralized structures may of-
fer greater overall performance with appropriate scheduling,
while the scattered ones safeguard user privacy. Finally, a
cluster network comprises of two or more computing devices
sharing a single computational task. Such networks make use
of the hardware’s ability to process data in parallel in order to
not only boost processing power, but also provide scalability,
high availability, and eliminate network dependency on a
single device. Nanonetwork settings, which value low power
consumption and short communication distances, are well
suited to the clustered design [212].

There are four possible architectures to increase the sys-
tem’s performance in large-scale scenarios: (i) cell-free, (ii)
RIS-enabled, (iii) 3D and (iv) heterogeneous networks [213].
The main advantages of cell-free networks include ultra-
massive MIMO beamforming and power savings. However,
the THz channel’s sparser multipath propagation and low
rank restricts performance [112]. In this scenario, due to
the lack of cell borders, end devices may have a high
coverage probability, while the localization performance can
be augmented by the geometrical diversity of the base
stations [214]. Next, the network’s coverage area may be
expanded and the channel reshaped with the use of RISs.
THz-frequency RISs are predicted to have modest footprints
due to the utilization of short wavelengths, which can allow a
higher versatility in deployment. Finally, in a heterogeneous
network, many wired and wireless protocols coexist. This is
a possible scenario for future networks. In addition to solving
the hearing problem, this kind of multi-band network may
also significantly shorten the time it takes to go online.

The offline design of a system includes hardware selection
to strike a balance between budget and overall system
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performance. Antenna polarization, hardware imperfections,
and phase-shifter quantization are all taken into account
throughout the hardware selection process. The main factors
that influence signal quality in THz systems are absorption,
blockage, device density, and antenna design. Understand-
ing the optimal antenna polarization and device density
for a THz network has been investigated in [215]. As a
rule, directional antennas are utilized for localization and
transmissions, whereas unidirectional antennas are employed
during the service discovery phase [216]. Additionally, a
quantized model should be considered in system design due
to the discrete nature of phase control and amplitude signals
in RISs [217].

B. COOPERATIVE APPROACHES
Although energy consumption, as well as computational and
time requirements are increased due to frequent contacts
between the end devices, the localization coverage and
precision are enhanced by cooperative localization [57]. For
a fair compromise, it is necessary to specify the related
performance KPIs. Collaboration between fixed and mobile
nodes, data fusion from several kinds of sensors [218], [219],
UAV-assisted localization [220] are all crucial. Furthermore,
in many real-world use cases, the existence of NLOS prop-
agation makes it difficult for certain agent nodes to directly
connect with adequate fixed nodes for localization purposes,
which may reduce localization precision. This phenomenon
can be mitigated by using cooperative localization strate-
gies [57]. On the contrary, non-cooperative localization re-
quires all mobile nodes to be in constant communication with
fixed ones, necessitating either a densely packed network or a
wide coverage area. By facilitating communication between
mobile nodes, cooperative localization enhances accuracy
and increases localization coverage beyond that of non-
cooperative localization. The main problem of cooperative
localization, which is a parameters estimation issue, may be
addressed with probabilistic or deterministic methods. In the
first case, the most prominent solutions involve multidimen-
sional scaling, multilateration, traditional linear scaling, and
other techniques that often fail in practice because they pre-
sume a Gaussian model for all measurement errors [221]. As
far as probabilistic approaches are concerned, they not only
provide location estimates, but also quantify the degree of
uncertainty associated with those predictions. For instance,
estimation theory and factor graphs are among the most
notable techniques of probabilistic approaches, with recent
efforts being focused on belief propagation and equivalent
Fisher information [222].

C. SIGNAL DESIGN
It is still unclear whether THz systems benefit from the use
of multi- or single-carrier modulation schemes. The former
appear to be advantageous in applications, where frequency-
flat channels exist, while, in spite of the poor power effi-
ciency and high complexity, multi-carrier systems are still

favoured in frequency-dependent molecule absorption loss
and multipath scenarios. The utilization of discrete-Fourier
transform spread OFDM may be employed as a ready-
made solution in order to mitigate the PAPR impact [136].
Spatial [223], index [224], hierarchical bandwidth [225], and
orthogonal time-frequency space (OTFS) modulations [226]
are also taken into account for specific scenarios as additional
multi-carrier modulations. Additionally, research on non-
orthogonal multiple access at THz is being conducted [227].

When designing wireless systems, the spectrum efficiency
or data rate may be impacted by tweaking signal char-
acteristics including packet length, bandwidth, and carrier
frequency. These values are also critical for localization to
accomplish targeted goals. For better route separation in
the delay domain, more bandwidth is preferable, but the
higher data size and sampling rate must be kept within the
hardware’s capabilities. When possible, the messages should
be as lengthy as possible to maximize energy acquisition
while being as short as possible to minimize delay, particu-
larly in mobile settings. Finally, the localization system’s
effectiveness is heavily influenced by the design choices
made.

D. OPTIMIZATION PROBLEM FORMULATION
Precision, throughput, signal quality, and energy efficiency
are among the most important KPIs that must be optimized
in communication systems. When designing a system with
precision as a goal, the orientation and position error bounds
are put to use for localization. However, these criteria are
still a useful and manageable tool for assessing performance
in the asymptotic area, even if it is only applicable when
the estimator is efficient [61]. Aside from the goals listed in
Section II, there are several situations in which they become
crucial. However, in most cases objectives must be defined in
light of the context in which they are used in. Compromises
are necessary due to the various formulations of objective
functions, particularly in the optimization of simultaneous
communication and location systems.

The BSs transmit positioning reference signals in low-
frequency localization systems, and the accompanying sys-
tem architecture are mostly offline. For instance, this is
the case for antenna array and BS layout design. The
improvement in localization performance is a side effect of
the beamforming gain in MIMO systems. However, knowing
the location of the receivers is essential for beamforming.
Thus, combining matrix design, online precoding, and re-
source allocation are of paramount relevance. THz systems
that rely on array-of-subarrays antenna structure perform
precoder/combiner optimization at the subarray level rather
than the antenna level. Therefore, the beamforming angles
of the subarray must be well-designed together with the
data symbols from the RFCs. Also, powerful algorithms are
needed for optimizing resource allocation and RIS coeffi-
cients within a dense network. It is clear that both online
and offline improvements will play a significant role in the
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success of future communication systems. The optimization
issue is then formulated, and the impact of the various factors
on the goals of the system is discussed.

Specifically, the performance requirements for localization
vary depending on the application scenario, as well as the
related objectives and KPIs. These goals often overlap, and
it is necessary to make concessions. Increases in coverage
and update rates may have unintended consequences, such as
diminishing accuracy. In order to maximize its effectiveness,
a system may have several goals that it must balance.
Such a localization system can be modeled under a generic
optimization problem such as

X = argmin
x

f (X )

s. t. g (X ) ≤ 0
, (52)

where f and g denote the objective and constraint functions,
respectively. Moreover, X represents the variable set that is
used to achieve the optimal solution for the optimization
problem constructed under each localization scenario. De-
pending on the context, a parameter may represent either an
aim or a limitation. For instance, localization accuracy may
be used as either a goal to achieve or a constraint to be
satisfied, such as spacing, number of devices, beamforming
angles, and so on, in addition to other KPIs, like throughput,
precision, etc.

E. ONLINE ADAPTATION
When a network architecture with no knowledge regarding
the location of the end devices is assumed, it is possible to
optimize the layout, antenna, and codebook based on data
about the immediate fixed surroundings. In this scenario,
the optimal placement of fixed and mobile network nodes
may be calculated from the Cramér-Rao bound using a
predetermined codebook after the quantity of these elements
has been established. The design may be optimized for
the greatest localization performance by taking into account
environmental data. It is also important to ensure optimal
orientation of base station antennas. Furthermore, higher
beamforming and angular resolution performance is achieved
by increasing the array dimensions of the antenna. However,
as the number of antennas increases a more complicated
and expensive setup is created. Designing an appropriate
size subarray is crucial when selecting the antenna archi-
tecture. Beamforming gain and accuracy may be improved
by increasing the number of active elements per subarray,
although coverage can be reduced and hearing loss can occur
with narrow beamwidths.

To get from an unconnected state to an active one, a
new device must go through the initial access operation of
establishing a physical connection with a fixed node [228].
The initial access process may be seen as localization with-
out any input from the end device. Blockage and deafness
are two problems that arise in THz systems because to
the small beams, making initial access difficult [229]. This
necessitates well thought-out codebook construction and effi-

cient first-time-in processes. Therefore, the codebook layout
is determined by search techniques, which can split into
science-aware, iterative and exhaustive search ones. In the
first category, the beams may be learnt for each partitioned
region to lessen initial access procedure’s delay, given the
fact that the previous user device position or environmental
information is provided [230]. Next, for iterative search, in
order to determine the optimal angular space, hierarchical
codebooks may be created for transmission across progres-
sively narrower beams [231]. In the last category, the fixed
and mobile nodes utilize beamforming to send and receive
messages in various directions [232]. In terms of hardware
and coverage practicality, an exhaustive search is the best
option for these algorithms [233]. However, the discovery
latency increases linearly with beamforming strength. While
iterative search shortens the time it takes to make a discovery,
its narrow focus comes at a cost.

On the contrary to aforementioned optimization ap-
proaches, when end device location information are avail-
able, the three major concepts are active beamforming, RIS
coefficient, and resource allocation. Regarding the first case,
if you know the exact position of the receiver ahead of
time, you may boost the received signal strength by adjusting
the beamforming angles such that they point directly at the
receiver. However, this boost in SNR does not automatically
result in better localization results. For more realistic ap-
proaches the Cramér-Rao bound is applied. For instance,
beamforming optimization and location estimation can be
iteratively applied by using numerous observations [234].
Moreover, the optimum precoders for tracking the angle of
departure and arrival can be determined by solving a stated
convex optimization problem, if the uncertainty range of the
target directions is available [235]. In order to minimize
beam assignments, space resource allocation often makes
use of directional antennas and array-of-subarray structures.
Accuracy and range are directly impacted by how well
the analog beamforming angles are optimized. In multi-
end-device environments, the beams must be strategically
distributed across the various end devices so that communi-
cation and localization KPIs are met. To improve the overall
system performance in a network with several fixed nodes,
cooperative beamforming optimization is required.

Next, improved signal gain in RIS-assisted systems relies
heavily on both adjustment of the RIS coefficients and
active beamforming. Multiple broadcasts using randomized
beamforming angles of messages may be employed for
localization when the end device’s location is uncertain.
Beamforming angles at mobile and fixed nodes may be
simultaneously improved using knowledge of the end de-
vice’s location and orientation in advance. For improving
the localization and communication quality, it is possible
to tweak the coefficients of the RIS [236]. Also, a larger
data rate is achievable by optimizing the RIS components to
increase the SNR at the receiver, while the higher SNR is
not always associated with a low Cramér-Rao bound. One
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limitation that has yet to be solved is 3D MIMO system
optimization methods, which are not currently available.

Finally, allocating resources in a communication network
that is servicing numerous end devices or performing dif-
ferent activities is a crucial step, with bandwidth, energy,
and time being the three key resources. For bandwidth
allocation to be feasible, the THz spectrum is split into a
series of spectral windows that change in distance due to
the fact that the vapor absorption coefficient varies with
frequency. When the connection distance increases, the
effective bandwidth window decreases in size [237]. The
hierarchical bandwidth modulation, which optimizes device
density to maximize capacity, is thought to be possible in
THz communications due to the effective bandwidth [225].
For localization purposes, it is necessary to identify and
allocate appropriate sub-bands and subcarriers to the end
devices at various ranges. As far as time slot allocation is
concerned, a compromise between overhead and transmis-
sion speed must be found when communicating with a single
recipient. It stands to reason that data acquired from multiple
transmissions will improve localization accuracy, but at the
expense of an increase in overhead and latency. Additionally,
channel coherence and end device capabilities should be
taken into account by the allocation process. Allocating
communication time slots to different users helps ensure that
all users within the service region receive the best possible
positioning quality of service (QoS). Finally, with regard to
energy consumption, localization precision is often a limiting
factor instead of a variable to be adjusted. Specifically, in
an indoor positioning scenario, the end user requires to
know its position with accuracy in the order of centimetres.
Therefore, increasing the transmission power to achieve
higher precision is unnecessary. All in all, intelligent energy
allocation can meet the performance needs of user devices
with minimum wasted resources. All of the aforementioned
resource allocation strategies can be written in the form of
optimization restriction in a plethora of active and passive
beamforming problems.

VIII. LOCALIZATION ALGORITHMS
This section delves deeper into the various localization
methodologies and algorithms that exist. Differentiating be-
tween the conventional, which are summarized in Table 5,
and learning-based methods, which are presented in Ta-
ble 6, is selected for the following analysis. Learning-based
methods refers to methods that use ML frameworks, hence
NNs would fall under this umbrella. Keep in mind that
distinguishing between the two may be challenging; thus,
some of the publications described here might be categorized
in multiple ways. Not only that, but fingerprint matching
makes use of probabilistic approaches. As a result, due to
the ambiguous position between ML and analytical solutions,
they are categorized under the conventional methods um-
brella.

FIGURE 12. Triangulation architecture.

A. CONVENTIONAL
This section provides an overview of conventional algorithms
for deriving the location of a mobile node in the considered
area. These methods include triangulation, Kalman filters,
compressive sensing, multidimensional scaling, direct loca-
lization, swarm intelligence algorithms, and fingerprinting.

1) TRIANGULATION
Triangulation uses the AoA or AoD measurements of radio
signals exchanged between the mobile node and the access
points to estimate the location of a node at the intersection
of lines through simple geometric relationships [45]. A min-
imum of two access points is required to estimate a node’s
2D coordinates. An indicative example of triangulation is
shown in Fig. 12. The mobile node estimates the AoA
measurements from three different access points, namely
ϕ1, ϕ2, and ϕ3. Using these measurements and the known
locations of the access points, the location coordinates of the
mobile node can be obtained.

The authors of [238] presented a UWB triangulation
scheme that leverages the geometrical properties of the
propagation path based on the AoD, AoA, and ToA mea-
surements. Ottoy and Strycker, in [239], developed a trian-
gulation algorithm that autonomously selects the appropriate
AoA measurements out of a set of possible values. In [245],
the authors presented a geometric triangulation approach
that leverages the AoA measurement between the mobile
node and the anchor nodes. Moreover, Landstrom and Beek
in [246] proposed an approach for transmitter localization
suitable for multipath mmWave 5G scenarios. The proposed
approach combines stochastic ray-shooting with the triangu-
lation concept, to provide accurate localization based on the
path relations between the receivers and the TX. Tazawa et
al., in [240], investigated the impact of extending the number
of antenna elements on localization accuracy. In this respect,
the triangulation technique is applied to the AoD and RSS
measurements originating from multiple receivers. Steendam
in [241] presented a 3D triangulation algorithm based on the
maximum likelihood principle. Using the proposed iterative
algorithm, each AoA estimate is updated based on the previ-
ous position estimate. A method that detects unreliable AoA
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TABLE 5. SoTA Conventional Localization Methods

Algorithm Application scenarios Use cases Technology enablers Metrics
C

on
ve

nt
io

na
l

Triangulation Local trust zones [238], [239]
Sustainable develop. [240]–[242]
Massive twinning [243], [244]
Mapping [245]–[247]
Security [248]

Outdoor [247]
Indoor [238]–[244], [246], [248]

mmWave/THz [246]
VLP [241]
Sensors [244], [247], [248]

AoA, ToA,
AoD, ToF,
RSS, RMSE

Kalman
Filters

Local trust zones [249]–[253]
Massive twinning [254], [255]
Robots [256]

Outdoor [249], [251]–[255]
Indoor [250], [256]

Sensors [250]
mmWave/THz [249], [251]–[256]
RIS [253]

ToA, DoD,
RSS, RMSE

Compressive
sensing

Local trust zones [257]–[262]
Mapping [263]
Massive twinning [264]

Indoor [263]
Outdoor [260]–[262]

mmWave/THz [258], [260], [261]
Sensors [257], [259], [261]–[263]
Radar [260], VLP [264]
Beamforming [258]

RSS,
TDoA,
DoA,
RMSE

Multidimensional
Scaling

Robots [265]
Local trust zones [266]–[274]
Massive twinning [275]

Indoor [265], [272], [275]
Outdoor [267]–[269], [271], [274]
Non-terrestrial [270], [273]

Sensors [265]–[275] ToF, TDoA,
RSS, RMSE

Direct
Localization

Local trust zones [276]–[284]
Sustainable develop. [285], [286]

Outdoor [276]–[286] Sensors [276], [278], [279], [281]–
[284], [286], Radar [284]
mmWave/THz [277], [280], [285]

ToA, TDoA,
AoA,
RMSE

Swarm
Intelligence

Robots & Mapping [287]
Local trust zones [288]–[299]
Sustainable develop. [300]

Indoor [287], [290], [291], [291]
Outdoor [287]–[289], [292]–[294]

Sensors [287]–[300] AoA, ToA,
RMSE, RSS

Fingerprinting Sustainable develop. [301]–[313]
Mapping [314]
Local trust zones [315]

Indoor [301]–[314]
Outdoor [315]

Sensors [301]–[314]
mmWave/THz [315]

RSS, RMSE

SLAM Mapping [316]–[323] Outdoor [316], [319]–[322]
Non-terrestrial [317]
Underwater [318], Indoor [323]

Sensors [316], [318], [320], [321],
[323]
Radar [317], [322]

RMSE, RSS

measurements is presented in [248]. The proposed method
uses the characteristics of estimated locations of various
nodes to detect unreliable nodes and mitigate localization
error.

Moreover, the authors of [243] presented a localization
solution for WiFi wireless networks, which leverages multi-
path reflection for estimating a node’s location with respect
to the receiver. The proposed technique offers orientation
information and decimeter-level localization based on the
AoA, AoD, and ToF measurements. In [242], the authors
presented a RSS-based indoor triangulation approach that
employs the incoherent reception of the transmission from a
node of unknown location by several identical indoor nodes.
Also, the nodes are able to communicate with each other
in order to construct an indoor propagation model. Adama
and Asutkar, in [244], combined the weighted prediction and
grey prediction algorithms in order to develop a triangulation
approach for reducing the estimation error of unknown nodes
and improving the positioning accuracy. The authors of [247]
proposed a method consisting of a range-free approach for
detecting symmetric triangulations, which, combined with
semidefinite programming, can enhance localization accu-
racy.

2) KALMAN FILTERS
KF is a fundamental technique for the study of noisy or
inaccurate measurements, offering a clear knowledge of how
a signal evolves over time. The KF eliminates random noise
before estimating the state of the monitored process over
time. KFs are widely used in navigation, radar applica-
tions, and movement control. KF involves two steps: a)
the prediction step, which projects the current state of the
model and associated uncertainties into the subsequent time
step; b) the update step, where the projection is adjusted
by calculating the weighted average of the projected state
and the measurements. KF-based methods estimate and fuse
multiple approximations of an unknown value in order to
generate an accurate approximation. In this respect, KFs are
able to exploit the estimates from multiple anchor nodes in
order to accurately obtain the location of a mobile node.

The authors of [249] presented an extended KF (EKF)
method that tracks the location of a node based on the
fusion of time of arrival (ToA) and direction of arrival
(DoA) estimates. The simulation results showed that the
joint DoA and ToA estimation outperforms the DoA-only
estimation. In [250], the authors reported the use of an
unscented KF (UKF) for the ToA-based localization of a

32 VOLUME ,



Prior location knowledge  Prediction step

Update step

Measurements

Location estimate

Next timestep

FIGURE 13. Kalman filters architecture.

mobile node in non-line-of-sight scenarios. The evaluation
results revealed a high localization accuracy in presence of
low-variance noise, making it suitable for high-resolution
UWB localization. Moreover, Koivisto et al. in [254] doc-
umented two approaches based on EKF and UKF for 3D
localization scenarios. The proposed approaches leverage a
number of densely deployed anchor nodes that enable the
fusion of DoA and ToA estimates. Based on the simulations,
both methods can achieve sub-meter scale accuracy, with
the EKF-based method slightly outperforming the UFK-
based one. Similarly, a two-stage cascaded EKF method for
mmWave localization scenarios is adopted in [251]. In the
first stage, the direction of departure (DoD) is estimated at
each anchor node, whereas in the second stage, all DoD
estimates are fused into the final 3D location estimates. In
[255], the authors presented a cascaded EKF-based solution
to track the DoA and ToA of various devices. In more detail,
the first EKF is employed to generate the individual DoA and
ToA estimates from the anchor nodes based on the reference
signals, whereas the second EKF is employed to fuse the
DoA and ToA estimates from multiple anchor nodes.

Furthermore, Bai et al. in [256] develop an UKF-based
algorithm for obtaining the 2D coordinates of a mobile node
that exploits the packet loss errors to estimate and improve
the localization accuracy. The simulation results indicate an
average localization error of 0.39m when the packet loss
rate is lower than 90%. Moreover, Kanhere and Rappaport
in [252] leverage an EKF to combine the DOA and time of
flight (ToF) from multipath components in LoS and NLoS
environments. The respective experimental results report an
average error of 24.8 cm at 140 GHz. Finally, the authors
of [253] consider a mmWave localization scenario involving
a base station and a RIS and design an EKF-based approach
to obtain the location of a node using the time-difference of
arrival (TDOA) and round trip time (RTT) measurements.

3) COMPRESSIVE SENSING
Compressive sensing (CS) theory, as illustrated in Fig. 14,
provides a novel framework for recovering sparse signals
under a certain basis, with a significantly lower number
of samples compared to conventional methods (e.g., the
Nyquist theorem) [324], [325]. Nonetheless, the acquisition
of the original signal requires a time-consuming or expensive

process, which appears futile as, during compression, the
vast majority of the recovered information is discarded.
CS provides and alternative procedure, which by acquiring
only the required linear and non-adaptive measurements it is
possible to obtain a compressed form of the signal directly.
As a result, even with fast recovery techniques, CS predicts
the reconstructed signal from severely under-sampled non-
adaptive data adequately and can be employed to recover
various estimates, such as TDOA, RSS, AoA, from the
signals using fewer signal samples.

An approach for estimating the TDOA using CS theory
was presented in [257]. Specifically, the approach utilizes
the discrete Fourier transform and a maximum likelihood
estimator for obtaining accurate TDOA estimates. In [263],
the authors presented an indoor localization approach based
on the received signal strength (RSS) obtained CS process-
ing. Additionally, the authors of [258] designed a multi-level
beamforming technique for LoS mmWave links, which lever-
ages CS theory to estimate the signal AoD. An approach for
deriving the 2D location coordinates in a VLC environment
was presented in [264]. In particular, CS was employed to
obtain the location estimates from multiple overlapping light
beams. Furthermore, Salari et al., in [259], documented a
CS-based approach for obtaining TDOA estimates, which
requires a limited number of signal samples, leading to a
significantly lower computational complexity. A CS-aided
MIMO scheme for aerial scenarios was reported in [260]. In
more detail, the authors combined MIMO techniques for 2D
antenna arrays and CS-based DoA estimation for 3D target
tracking. An aerial scenario leveraging CS theory was also
investigated in [261] and [262]. The Bayesian CS approach
was applied to estimate ground node locations using RSS
samples collected by the UAV sensors. Particularly, in [261],
a trajectory optimization method was employed to minimize
the errors of CS-based location estimation, whereas, in [262],
the Bayesian CS-based approach was enhanced using an a
priori knowledge-aided algorithm.

4) MULTIDIMENTIONAL SCALING
Multidimensional scaling (MDS) is a mathematical approach
for classification and visualization of high-dimensional data.
MDS is applied on a matrix formed by the distances between
nodes and, for each node, it generates a vector of coordinates
in the Euclidean space [326]. Consequently, MDS is widely
utilized in localization problems, in which several nodes
have to estimate their relative locations from the measured
distances between themselves.

Assuming a network consisting of a number of anchor
nodes and N mobile nodes, let D denote the N×N distance
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FIGURE 14. Compressive sensing architecture.

matrix

D =


0 d21,2 d21,3 ... d21,N
d22,1 0 d22,3 ... d21,N
d23,1 d23,1 0 ... d23,N

...
d2N,1 d2N,2 d2N,3 ... 0

 , (53)

where di,j stands for the shortest distance between the i-th
and j-th mobile nodes. Classical all-pairs shortest-path algo-
rithms, such as the Floyd–Warshall or Dijkstra algorithms,
can be used for obtaining the distances.

The rank of D can be reduced by double centering as

C = −1

2
JDJ, (54)

where
J = I− 1

N
ee⊺, (55)

I is the N × N identity matrix, e is a column vector of
length N with all elements equal to 1, and ⊺ is the matrix
transpose operator. Additionally,

C ≃ XX⊺, (56)

where X is a N × 2 matrix with each nodes’ coordinates
translated so as the centroid of the network is at (0, 0).

Therefore, the matrix containing the relative node loca-
tions can be estimated by minimizing the following formula:

X̂MDS = argmin
x

∥C−XX⊺∥2. (57)

Eigenvalue decomposition can be applied for solving (57)
as

C = VΛV⊺, (58)

where V stands for the eigenvector matrix and

Λ = diag(λ1, λ2, ..., λN), (59)

stands for the respective eigenvalue matrix. Since C is
positive-definite and symmetric, and

rank(C) ≤ 2, (60)

it can be represented by its two largest eigenvalues. Conse-
quently,

C ≃ VsΛsVs, (61)

and the solution to (57) can be obtained as

X̂signal
MDS = VsΛ

1/2
s , (62)

with Λ
1/2
s is a diagonal matrix with the two largest eigenval-

ues. Of note, the obtained position estimate is not referred
to any particular reference system, and will be, in general,
rotated, translated, and reflected from the physical node
arrangement. Therefore, the actual mobile node locations can
be derived by the known positions of the anchor nodes.

MDS-based localization offers two significant advantages;
the approach is robust to individual error ranges, provided
that there exists data redundancy in the square distance
matrix. Also, it provides a closed-form localization estimate,
regardless of network size. The authors of [265] designed a
relative localization algorithm for obtaining the inverse of the
distance between any pair of communicating nodes, based
on the RSS metric using MDS, and deriving the network
topology. Aiming to solve the geometrical uncertainties
imposed by the conventional MDS algorithm, an enhanced
MDS algorithm was presented in [266]. In [267], Saeed and
Nam combined MDS and Procrustes analysis to develop
a two-phase localization algorithm for cognitive networks.
Specifically, an approximated distance-based approach is
employed to maximize the accuracy based on the nodes’
proximity information available in the network. The authors
of [268] designed a MDS-based 3D localization algorithm
that aims to reduce communication and computational over-
heads towards minimizing energy consumption. In [275], Cui
et al. introduces a 3D localization algorithm that is based
on the combination of polynomial data fitting and MDS.
The algorithm is able to achieve high localization accuracy
without requiring information about the channel noise and
the node movement model.

Moreover, Jiang et al. in [269] presented a solution
for finding a node’s 2D coordinates through the TDOA
measurements by minimizing the MDS-based cost function.
A similar approach was presented in [270], in which the
authors introduce an approach that integrates the relative
velocity information, available via Doppler shift measure-
ments between mobile nodes, into the MDS cost function.
Furthermore, a low-complexity majorization algorithm was
leveraged to minimize the MDS cost function. Morral and
Bianchi in [271] reported a distributed algorithm for node
self-localization in WSNs based on sporadic measurements
of the RSS metric. The nodes’ positions can be recovered
from the principal components of the similarity matrix
which is constructed from the squared inter-nodes distances.
The authors of [272] designed an indoor UAV localization
algorithm that is based on distance measurements between
the access points and the UAV. The distance measurements
are derived through the RSS samples, while two different
localization techniques are utilized, namely the MDS and
the weighted centroid localization. In [273], Fan et al. a
combination of fast-clustering and MDS is presented for
2D localization in mobile networks. In more detail, in the
inner-cluster relative localization stage, the advantages of
combining classical MDS and iterative MDS are leveraged,
while in the inter-cluster coordinate registration stage, the
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least squares method is used to reduce the registration error.
In [274], the authors presented a cooperative 3D localization
algorithm based on filtering and MDS techniques, which are
employed to mitigate any abnormal measurements due to
errors.

5) DIRECT LOCALIZATION
In the aforementioned approaches, the location of a node
is estimated by various parameters such as the AoA, AoD,
TDOA, and ToA. An alternative approach to address lo-
calization challenges is direct localization [276]. In direct
localization, the source’s location is estimated straight from
the data, with no need to estimate any intermediate param-
eters like the AoAs or others. Specifically, the echo signals
from all node pairs are accumulated and the target location is
extracted directly. To achieve this, signals, or some function
thereof, must be sent to a fusion centre that makes location
estimations. The fusion operation is carried out on the signal
level, resulting in less computational overhead and, therefore,
improved performance. Such a topology is often simpler
to implement in scenarios, where reduced distances are
involved. However, for cellular networks, cloud radio access
networks (C-RAN) is expected to provide the necessary
backbone as BSs forward incoming signals to a centralized
unit that performs the baseband processing [285].

In [277], the authors presented a direct source localization
approach based on AoA and ToA estimates, which deter-
mines the source location by jointly processing data snap-
shots acquired at each BS. Moreover, the authors of [278]
developed a single-step direct localization algorithm for
obtaining the location of multiple stationary nodes by com-
bining AoA and Doppler information. The numerical results
indicate that the proposed direct localization algorithm can
attain the corresponding Cramer-Rao constraint. A direct
passive localization method that jointly exploits the AoA and
TDOA information was presented in [279]. By exploiting
spatio-temporal processing, the proposed method did not
require prior knowledge about the number of source nodes.
Han et al. in [280] reported a joint near-field and far-field di-
rect localization approach for massive MIMO environments.
Specifically, the approach uses the AoA measurements and
divides the BSs into far-field and near-field ones to mitigate
localization errors. The authors of [281] developed a TDOA-
based direct localization approach under the assumption that
multiple nodes work with independent clocks. The approach
leverages an expectation-maximization (EM) algorithm and
a Gauss-Newton algorithm for coarse and refined parameter
estimation, respectively.

Moreover, in [282], the authors presented a framework
for direct localization comprised of beamspace design and
position determination. In addition, they derived the re-
spective beamspace direct localization performance bound
and present a localization algorithm with low computational
complexity and communication overhead. A direct localiza-

tion approach that leverages random spatial spectrum was
presented in [283]. According to the approach of [283],
the co-channel signals were transformed into the spatial
spectrum, enabling the suppression of multipath components.
Moreover, a spatial sparse clustering algorithm was utilized
to distinguish the nodes in the spatial domain. In [284],
the authors developed a factor graph-based approach for
direct localization in distributed MIMO radar environments.
A graph representation was carefully designed for the direct
localization problem, which was solved efficiently through
message passing based on expectation propagation and belief
propagation. Finally, Bai et al. in [286] presented a direct
localization algorithm for multipath orthogonal frequency
division multiplexing (OFDM) environments. The algorithm
utilizes the data observed by multiple nodes and estimates
the source node in one step by exploiting the orthogonality
between the noise subspace and the array response vector.

6) SWARM INTELLIGENCE
Swarm intelligence is a subset of algorithms that studies
group dynamics, where most approaches take inspiration
from the social behaviours of animals, including bees, birds,
ants, and others. Complex patterns often formed through the
coordination of the activities of multiple entities that are
relatively unsophisticated in their mode of operation. All
swarm intelligence-based approaches use a search strategy
based on the dichotomy and interplay of two conventional
procedures, namely exploration and exploitation [287]. The
goal of exploration is to increase the fraction of the search
space that has been uncovered and, hence, reduced to work-
able solutions. The term “exploitation” refers to the swarm’s
effort to enhance the quality of previously found solutions
by increasing the intensity of its search efforts in the area
around those solutions.

In [288] and [289], the authors respectively utilized the
dragonfly and fireworks algorithms for estimating the node
locations that were randomly deployed in a specific area. The
authors of [290] presented a multi-stage localization method
that leverages the artificial bee colony algorithm. Moreover,
they compared the proposed method against the particle
swarm optimization in terms of localization accuracy, num-
ber of nodes, and computation time. Monica and Ferrari in
[291] investigated the problem of UWB indoor localization
in WSNs by employing the particle swarm optimization
algorithm. A two-stage WSN localization approach based
on the firefly algorithm is proposed in [292]. In the first
stage, four anchor nodes, that were placed at the area edges,
were considered, whereas, in the second stage, the closest
anchor nodes are considered. Furthermore, the authors of
[293] utilized the monarch butterfly optimization algorithm
for addressing the localization problem in WSNs. Also,
the same authors in [294] presented an adaptation of the
hybridized moth search algorithm for solving the node lo-
calization problem and compared it against alternative state-
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of-art algorithms. Singh et al. in [300] focused on the 2D
localization problem and compared the performance of four
swarm intelligence algorithms, namely the biogeography-
based optimization, the firefly algorithm, the particle swarm
optimization, and the H-best particle swarm optimization
algorithms.

Moreover, in [295], the authors introduced a fuzzy logic
model for localization in WSNs. Towards increasing the
efficiency of the model, the concept of resultant force vectors
is applied, while the particle swarm optimization algorithm
is employed to minimize the irregular deployment effects.
The authors of [296] utilized the firefly algorithm and the
artificial bee colony algorithm for approximating the distance
of a mobile node from the anchor nodes. Also, a comparison
between the two algorithms in terms of computation time and
localization accuracy is presented. Similarly, in [297], the au-
thors investigated the performance of two swarm intelligence
algorithms, namely the elephant herd optimization and tree
growth algorithms, with respect to solving the localization
problem in WSN environments. In [298], Arafat and Moh
utilized the particle swarm optimization algorithm for the lo-
calization of UAV nodes. To increase the convergence speed
of the algorithm, the boundary box technique is leveraged,
leading to smaller initial search space. Akram et al. in [299]
presented an adaptation of the multi-objective particle swarm
optimization algorithm for jointly maximizing the number
of localized nodes and minimizing the energy consumption
and computation time.Finally, in [287], the authors compared
three swarm intelligence algorithms, namely the firefly algo-
rithm, the artificial bee colony algorithm, and the particle
swarm optimization algorithm, in SLAM scenarios.

7) FINGERPRINTING
The fundamental idea behind fingerprinting is to estimate
the mobile node location by comparing the received signal
fingerprint to a database of known signal locations that
have already been recorded [327]. The database of signal
fingerprints has to be generated in advance. Consequently,
fingerprinting consists of two phases, namely the populating
or training phase and the matching phase. In the first
phase, the area of interest is explored to create a signal
map, whereas, in the second phase, the node location is
estimated by comparing the current fingerprint signal with
the fingerprints database.

Various metrics can be used for generating the signal
fingerprint database during the training phase. For instance,
using the reference RSS, denoted by RSSR, the (x, y)
coordinates of a node can be expressed as

F(x, y) = [RSSR(1),RSSR(2), ...,RSSR(N)], (63)

where N is the number of access points.
For the matching phase, an Euclidean distance match-

ing method can be leveraged. The method calculates the
Euclidean distances between the measured signal finger-
print, denoted by RSSM, and each reference location in the

database as follows:

D =

√√√√ N∑
j=1

(RSSR(j)−RSSM (j))
2 (64)

Finally, a nearest neighbor algorithm can be used for finding
the closest fingerprint based on (64).

Zhou et al. in [301] and [302] investigated the correlation
between the access point deployment and the localization
precision based on the RSS and designed a simulated an-
nealing algorithm for optimizing the access point positions.
The authors of [303] designed an approach that automatically
updates the fingerprint database by employing a clustering
algorithm to filter out the altered signals to achieve high
localization accuracy. Using the observed signals and the
calculated location of a node, the fingerprint database is
constantly updated without manual intervention. In [304],
the authors combined RSS-based fingerprinting with context-
aware data regarding the node’s environment (i.e., building
floor plan) and demonstrated that the proposed method
can reduce the required access point number and mitigate
the effects of wireless interference. The authors of [305]
developed a collaboration-based fingerprinting approach, in
which several assistant nodes around an unknown node
are selected, based on the RSS sequences similarity, and
distances between them are used as auxiliary information
to improve the positioning accuracy.

Moreover, Chen et al. in [306] designed a cooperative fin-
gerprinting approach that takes into consideration the physi-
cal constraint of pairwise distances to refine and improve the
estimated positions of multiple nodes, thereby increasing the
robustness against outdated database entries and distance er-
rors. In [307], the authors proposed a fingerprint localization
method based on the path-loss measurement for the training
and matching phase. The two-step method consists of a path-
loss-based fingerprinting scheme, which aims to improve
precision, and a dual-scanned fingerprinting that guarantees
localization robustness. A crowdsourcing method for indoor
fingerprinting-based localization is proposed in [308]. The
method leverages the RSS data collected from multiple
smartphones and generates the database of fingerprints. A
similar method is presented in [309]. Specifically, the method
aims to improve localization accuracy by generating the
fingerprint database using the channel frequency response,
which can be obtained from the CSI.

In [310], the authors designed a fingerprinting scheme
based on the achieved data rates, which can be directly
obtained by the access points. To mitigate data rate fluc-
tuations, the scheme employs a time-window mechanism
that takes into account multiple access points and various
transmission power levels. In [311], the authors developed
a fingerprinting method that integrates information about
the signal propagation effects and architecture of an indoor
area to generate fingerprints using a low number of RSS
measurements. Li et al. [314] proposed a crowdsourcing
fingerprinting approach, defined the fingerprinting accuracy
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indicators, and assessed their performance in predicting
location estimation errors and outliers. In [312], the authors
introduced a phase decomposition method to calculate the
multipath phase and apply principal component analysis to
derive the fingerprint based on the CSI. The authors of [313]
developed a fingerprinting prototype that eavesdrops on
smartphone signals in order to acquire the CSI. Furthermore,
it employs a joint outlier detection and clustering approach to
detect signal changes. Finally, Shen et al. in [315] proposed
a fingerprint training scheme that leverages information
entropy theory and maximum likelihood estimation. The
scheme uses uplink channels to extract the link states and
the AoA measurements and applies a weighted mean square
error algorithm to estimate the node location.

8) SIMULTANEOUS LOCALIZATION AND MAPPING
The challenge that SLAM is tasked with solving is building a
map of a moving agent’s surroundings, alongside estimating
its trajectory. Due to its pivotal role in the development of
autonomous robots, SLAM has attracted a lot of attention
from the research community during the last couple of
decades. In SLAM, the map, which can be found in various
formats, such as occupancy grid, point cloud, and more,
serves as the model of the physical world, while its estimate
is entangled with the inference of the robot’s trajectory.
Building a consistent representation of the world requires
collecting data from a wide range of sources, regardless
of the shape that representation takes. For the purpose of
analysing the connections between the available data, they
are split into data frames, each of which can be anything
from a collection of laser range scan to a series of pho-
tographs. The collection of such data frames presents an
additional difficulty in that the obtained measurements are
always relative to the “uncertain” location of the mobile
entity that captures them.

Schlegel et al. in [316] presented an open source SLAM
system that uses localization and image processing tech-
niques to generate a virtual 3D map. Four processes were
employed for map generation, namely image-based trian-
gulation, motion estimation, pose-graph-based map man-
agement, and relocalization. A radar-based SLAM method
was presented in [317]. The method constructs a map
from radar measurements combining the pose graph and
the iterative closes point algorithm for matching the scans.
Also, GNSS information is leveraged to improve localization
accuracy. The authors of [318] reported a SLAM method
for autonomous underwater vehicles. The method utilizes
simulated annealing and applies an EKF on the depth,
compass, and acoustic sensor measurements. Rodriguez et al.
in [319] emphasized the criticality of the accurate represen-
tation and quantification of uncertainties to correctly report
the associated confidence of the robot’s location estimate
in every step of the SLAM process. In [320], the authors
developed an intelligent filter-based SLAM approach for

Initial data Calculate distance Voting for labels

FIGURE 15. kNN architecture.

enhancing the localization performance of mobile robots.
The proposed approach can be also applied to underwater
and aerial scenarios using the appropriate radar-based mea-
surements. In [321], the authors investigated the relations
among the graphical structure of pose-graph SLAM, Fisher
information matrix (FIM), Cramer Rao lower bound, and the
optimal design metrics. A SLAM framework that employs
light detection and ranging (LIDAR) and image processing
techniques for localization was presented in [322]. The
framework considers both light intensity information and
geometry information to improve localization accuracy. Chen
et al. in [323] presented an active SLAM algorithm for
mobile robots able to derive a collision-free trajectory. The
algorithm is based on a predictive control framework that
leverages graph topology that approximates the uncertainty
minimization problem as a constrained non-linear least
squares problem. After applying convex relaxation to the
original problem, a convex optimization algorithm and a
rounding process based on singular value decomposition are
employed for solving the problem.

B. SUPERVISED LEARNING
This section examines contributions that use supervised
learning based ML methodologies for tackling the locali-
zation problem. In more detail, these techniques discussed
entail both traditional ML approaches, such as kNN, SVM,
decision trees, and Gaussian processes, and DL based ones,
like NNs, autoencoders, CNNs, and RNNs.

1) K-NEAREST NEIGHBORS
With k-nearest neighbors (kNN), the average position of the
k-nearest fixed network nodes from the fingerprint database
is used to estimate the target’s coordinate. In the localization
process as presented in Fig. 15, the selected region is where
the majority of the k-neighbors are placed. The label for
an observed point in an M -class classification issue can be
provided by

ŷo = max
c

∑
i∈Ko

1 (yi = c) , (65)

where 1 (yi = c) is equal to unity in the case of the i-th
neighbor’s label is equal to c, while Ko denotes the neighbors
of the observed data point. Using the available data and
background information, we can determine an appropriate
value for the design parameter k and specify the set of
individuals who qualify as “neighbors”. As a result the kNNs
can be selected based on a variety of criteria, including
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TABLE 6. SoTA Learning-based Localization Methods

Algorithm Application scenarios Use cases Technology enablers Metrics

L
ea

rn
in

g-
ba

se
d

K-nearest
neighbor

Sustainable develop. [328], [329]
Massive twinning [330], [331]
Local trust zones [332], [333]
Mapping [334], [335]

Indoor [328]–[331], [334], [335]
Outdoor [332], [333]

mmWave/THz [332]–[334]
VLP [335]
Sensors [328]–[331]

RMSE, RSS

Support vector
machine

Sustainable develop. [336]–[338]
Massive twinning [339]–[341]
Local trust zones [52], [342]–
[352], Mapping [353]

Indoor [336], [338], [339], [342]–
[352]
Outdoor [337], [340], [353]
Non-terrestrial [353]

Sensors [336], [339], [342]–[350]
Radars [338], [340], [352], [353]
mmWave/THz [337]

ToA, TDoA,
RSS, RSME

Decision
trees

Local trust zones [354]–[358]
Massive twinning [359], [360]
Sustainable develop. [361]–[363]

Indoor [354]–[356], [359], [361]–
[363]
Outdoor [357], [358], [360]

Radars [354], [359], [360]
Sensors [355], [356], [361]–[363]
mmWave/THz [357], [358]

AoA, RSS,
RMSE

Gaussian
Processes

Local trust zones [364]–[370]
Sustainable develop. [371], [372]
Mapping [373], [374]

Indoor [367], [368], [371], [372],
[374]
Outdoor [364]–[366], [369], [370]

Sensors [367], [371], [372], [374]
mmWave/THz [365], [366], [369],
[370], Radars [364], [368], [373]

ToA, RSS,
RMSE

Neural
networks

Sustainable develop. [375]–[380]
Local trust zones [381]–[389]
Massive twinning [334], [390]

Indoor [375], [377]–[380], [384],
[385], [390]
Outdoor [381]–[383], [386]–[389]

Sensors [375]–[380], [383]–[385],
[390], mmWave/THz [381], [382],
[386]–[389]

RSS, ToA,
RMSE

Autoencoders Sustainable develop. [391]–[397]
Local trust zones [398]

Indoor [391]–[398] Sensors [391]–[397]
mmWave/THz [398]

RSS, RMSE

Convolutional
NNs

Local trust zones [399]–[408]
Sustainable develop. [159], [409]–
[411], Massive twins [412], [413]

Indoor [159], [399], [401]–[406],
[409]–[412]
Outdoor [400], [407], [408], [413]

Sensors [159], [399], [401]–[406],
[409]–[413]
mmWave/THz [400], [407], [408]

ToA, RSS

Recurrent
NNs

Local trust zones [414]–[418]
Sustainable develop. [419]–[424]

Indoor [414], [417], [419]–[423]
Outdoor [415], [416], [418], [424]

Sensors [414], [415], [419]–[424]
Radar [417], [418], THz [416]

RSS, RSME

Unsupervised
learning

Local trust zones [49], [50], [351],
[425]–[427], Sust. dev. [428]
Massive twinning [429]–[432]

Indoor [49], [50], [351], [425]–
[427], [429], [430]
Outdoor [426]

Sensors [49], [50], [351], [425],
[428]–[431]
mmWave/THz [426], [427], [432]

ToA, RSS,
RMSE

Federated
learning

Local trust zones [160], [433]–
[438]

Indoor [160], [433]–[438]
Outdoor [160], [433], [434], [436]

Sensors [434]–[438]
mmWave/THz [433]

ToA, TDoA,
AoA, RMSE

Reinforcement
Learning

Local trust zones [161], [439]–
[441], Mapping [442], [443]

Indoor [161], [439]–[441]
Outdoor [161], [440], [442], [443]

Sensors [161], [439]–[441]
mmWave/THz [442], [443]

RMSE, RSS

Transfer
learning

Local trust zones [444]–[450]
Sustainable develop. [451]–[453]
Mapping [454], [455]

Indoor [445], [446], [448], [449],
[451]–[455]
Outdoor [444], [450]

Sensors [446], [448]–[455]
Radar [445]
mmWave/THz [444]

AoD, AoA,
RSS

the Euclidean distance between locations, which can be
expressed as

d (xi,x0) =

√√√√ N∑
k=1

|xi,k − x0,k|2, (66)

with xi,k denoting the measurement between the i-th mobile
and the k-th fixed network node, while N represents the total
number of mobile nodes. It is important to remember that
kNN is a non-parametric model. The new labels are derived
by comparing the fresh observations to the training examples,
hence it is in the same category as instance-based learning.

Several cutting-edge ML systems use weighted kNN as
a last-ditch effort to forecast the location, with varying
proposals on how to define the “distance” between finger-
prints and weights. Weighted kNN uses kNN as a fusing

method, but assigns different weights to the positions of the
k-nearest neighbors before averaging them. Moreover, kernel
functions and Euclidean distance are examples of methods
that may be used to compute the distances and weights,
respectively. In addition, kNN has been taken into consid-
eration in various localization methods, notably fingerprint
based localization, because of its low computational cost and
straightforward structure. Methods for building fingerprint
databases, for adaptively choosing k, and for generating
meaningful similarity metrics have all been the subject of
studies pertaining to kNN. Finally, various features have also
been employed in kNN. The authors of [328] developed a
kNN-based cascading localization system, whereby a kNN
is first used to identify the environment, and then a kNN is
used to localization using a variety of characteristics. They
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demonstrate that hybrid features outperform RSS alone in a
variety of settings and highlight the relevance of doing so.

The gathered RSS data are then used to build the radio
map, an early example of this method. When the localization
step takes place online, the online RSS measurement from
the three indoor fixed nodes is compared to the previously
stored RSS dataset. Typically, the Euclidean distance is
used for the comparison. However, considerable localization
estimate errors may occur when employing a fixed k value,
as is the case with the typical kNN, if the network nodes
are moved or the RSS value changes. Several papers have
investigated tweaks to kNN as a potential solution to this
problem, with a number of techniques being available, in-
cluding adjusting the similarity metric [329], [330], and sub-
selecting a subset of the kNN [330], [331]. For instance,
the method in [330] clusters the k-nearest fixed network
nodes and then uses their mean in the ”delegate” cluster to
determine the final location. Both the Euclidean distance and
the cosine similarity are proposed as similarity metrics and
used to build the weights for a weighted kNN in the work
cited in [329]. Lastly, the crowd-sourced indoor localization
technique in [335] uses a smartphone’s orientation sensor
and an optical camera to pinpoint a user’s precise location
within a building. In this approach, a crude estimate of the
position is derived via kNN over RSS from WiFi, speeding
up the search space of image-based localization, which may
be further limited by information from orientation sensors.

Another feature that has been employed for the kNN
algorithm is the AoA. For example, in [332], AoA is used
to pick a subset of k fixed network nodes in a massive-
MIMO OFDM system. However, the channel observations
are numerous and computationally intensive to store and
sort through. To this end, a sparse channel representation
based on the angle-delay domain that allows for effective
compression has been proposed for database development. It
employs two tiers of fingerprint clustering and categorization
in order to search across multiple fingerprints. A combined
angle and delay similarity measure, which is dependent on
the amount of overlap between the scatterers, is suggested
to quantify the channel observation-fingerprints similarity.
Finally, a weighted kNN is used to accomplish localization
based on ToA, AoA, and the corresponding weights. In this
respect, localization is achieved by minimizing the Euclidean
distance between the features, while the representation of the
angle-delay domain is created by applying a fast method
to retrieve the fixed network nodes and compressing the
database [333].

2) SUPPORT VECTOR MACHINE
The support vector machine (SVM) is a very potent ML
kernel based algorithm. Similarity between vectors may be
captured by a kernel function, which can be included into
instant based learning approaches. Intuitively, the distance
between two vectors may be used to represent their similarity

Original dataset Added separator Transformed data

FIGURE 16. SVM architecture.

to one another. One such kernel is the radial basis function
(RBF), which changes as one moves further away and is
used in the Gaussian Kernel. Other kernel are sigmoid,
polymonial, and linear ones. The kernel function seeks
to identify the optimal hyperplane for classifying entities.
Specifically, the hyperplane is selected to increase the gap
between the groups. The kernels provide an efficient means
of locating the product of observed features and training
sessions in higher dimensional spaces, which can improve
the features’ distinguishability. A high-level illustration of
the aforementioned SVM method is presented in Fig. 16.

Other characteristics have been applied to SVM with
various kernel approaches. Using Gaussian kernel ridge
regression, the authors of [336] presented a localization
approach based on RSS and ToA. Of note, in order to
avoid being affected by measurement timing and random
synchronization mistakes, the method suggested in [353]
employs ToA as fingerprints and is based on the Gaussian
Kernel. Moreover, the energy decay time is only one example
of characteristics that may be extracted from the channel
impulse response and used as part of a UWB localization
system [339]. The goal is to reduce the size of the impulsive
response while still capturing relevant environmental infor-
mation. For hierarchical area classification, the features are
sent to a support vector machine algorithm. Using CSI from
multiple sub-carriers, the authors of [342] built a visibility
graph to capture frequency correlations between neighboring
sub-carriers for SVM-based localization. next, in [343], the
authors documented an SVM and kernel regression based
method for localizing and recognizing activities based on
CSI. In this approach, SVM performs classification of the
target into an activity class while localization is accom-
plished by a regression model. Based on the CSI of a MIMO
system, [344] was able to gather CSI and transmit it to
a centralized server in a device-free localization system.
Finally, in [345], localization using an accelerometer and
RSS was employed in WSN target tracking; the RSS based
kernel approach produces a coarse position estimate, which
is then passed along with the accelerometer measurements
to a Kalman filter that performs instantaneous localization.

Localization has seen widespread use of SVM with a
great variety of kernel approaches. Applying SVM in WSN
localization for a small number of sensors with known
positions was one of the first research efforts that use kernel-
based localization [52]. The RSS between different sensors
is used in SVM trained with a Gaussian kernel to classify
the area. At last, more precise coordinates are calculated
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Online measurements

Final predicted location

1 2 N

FIGURE 17. Decision trees architecture.

by averaging the sensors’ respective area centers. For in-
door mobile phone positioning using RSS, [346] employed
Gaussian and linear kernels. Another approach combined
SVM with a radial basis function (RBF) kernel and PCA to
perform localization [347], while the authors of [348] offered
a strategy to handle the devices’ variety by first ranking the
RSSs only from trustworthy fixed nodes and then using SVM
to categorize the desired location. To reduce the number of
correlated fixed network nodes, [349] presented using real-
time node selection. Then, it uses a kernel to assign weights
with regard to the similarity between fixed nodes and the
corresponding RSS values; based on the assigned weights it
estimates the location.

The localization problem is very sensitive to the choice
of kernel. To better capture the connection between the
coordinates before localization and the RSS space, kernel
canonical correlation analysis is presented, where the Matern
kernel is utilized for the physical space and the Gaussian
kernel is used for the signal space [350]. To account for
the training set’s spatial organization, a kernel that takes
use of any potential connection between the coordinates has
been proposed [351]. According to [352], a hybrid kernel
consists of two separate kernels: a global and a local kernel
that together account for the influence of both nearby and
far-off fixed network nodes. In [340], Import vector machine
(IVM) was employed for NLOS classification for ToA-based
ranging in UWB systems; however, the authors noted that an
ISM has less complexity and offers a greater classification
probability.

Other facets of localization had also made use of kernel
approaches, such as a SVM for estimating range errors
with regard to CSI in an UWB system and an SVM for
recognizing poses, which is subsequently utilized to find a
good match with fixed network node [341]. Prior to utilizing
particle filters for location determination, [337] classified
spaces as indoor or outdoor. Using SVR to recreate the RSS
values of the unselected fixed nodes, [338] improves the
localization process’s resilience against noise by proposing
a method for classification and node selection.

3) DECISION TREES
Rule sets for categorizing data are commonly derived via
decision trees, which do so by segmenting the space of pos-

sible labels and possible observations. Specifically, Fig. 17
outlines a two-stage positioning approach that makes use
of various weighted decision trees. During the first stage
(training), data is gathered to create a database known as the
radio map. For R reference and A access nodes, N location
and θ direction measurements per node, the radio map can
be expressed as in [456]

Ψθ =


φθ
1,1[τ ] φθ

1,2[τ ] · · · φθ
1,R[τ ]

φθ
2,1[τ ] φθ

2,2[τ ] · · · φθ
2,R[τ ]

...
...

. . .
...

φθ
A,1[τ ] φθ

A,2[τ ] · · · φθ
A,R[τ ]

 . (67)

This data is comprised of location and direction measure-
ments from fixed nodes. The ensemble model is constructed
using this dataset. In the second stage, which is called
testing, the mobile nodes make localization requests utilizing
online measurements. In more detail, inputs such as online
measurements from the fixed nodes are used to estimate the
mobile node’s location, which can be represented as

Ψθ
r =


φθ
1,r[q]

φθ
2,r[q]

...
φθ
A,r[q]

 , (68)

with r denoting the mobile node’s location.
Both the localization system’s accuracy and the time

required to construct and assess the ensemble model are
affected by the dataset’s size. Moreover, a variety of localiza-
tion issues, such as localization based on fixed node selection
and clustering, coordinate prediction, and LOS identification,
have benefited from the use of decision trees [354], [359].
Many of the articles, however, resort to extensive use of
decision trees to solve the difficulties at hand or apply them
to relatively straightforward categorization issues.

The employment of numerous learning solutions to ar-
rive at the final solution has been demonstrated to deliver
outstanding performance even when constructed as an en-
semble of fundamental ML solutions, such as decision trees.
Adaptive and gradient boosting are two ensemble learning
approaches that have been extensively applied [361]–[363].
When the RSS distance is not indicative of the actual
physical separation between two points, [362] provided a
fingerprinting approach that uses gradient boosting to convert
raw RSS into features using a learnt non-linear mapping
function. The main idea is to first build negative and positive
pairs of fixed nodes and afterwards develop a loss function
to guarantee that the similarity is maintained between them.
Finally, after training the mapping function, weighted kNN
was used with the revised mapping function to carry out the
localization. On the other hand, adaptive boosting was used
for passive localization in [361], where phase information
from CSI was employed to build a fingerprint map. This
method iteratively refines the sample weights of the training
sets in order to facilitate classification. The best four antic-
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FIGURE 18. Gaussian processes architecture.

ipated nodes’ positions are weighted equally to provide a
final location estimate.

Another of the most prominent approaches of ensemble
learning is random forest (RaF), which uses a forest of
decision trees to make a prediction. For instance, [360]
employed classification-based localization with multi-path
information and a RaF to obtain the TDoA through volume
cross-correlation between CSI values. As a means of improv-
ing localization accuracy, the suggested technique combines
ray-tracing with empirical data. In order to determine both
room predictions and spatial coordinates, the RSS of WiFi
was investigated in [355]. The offline phase comprises the
training of ensemble classifiers and a RaF regressor, as
well as fingerprint data preprocessing for location prediction.
Room prediction, establishing membership in a soft cluster,
and preprocessing are all performed in the online phase.
Another example uses a multi-antenna system to construct
fingerprints from a variety of parameters, including power
spectral density (PSD), RSS, and other statistical data [356].
A RaF is then trained to serve as a classifier for each indi-
vidual feature. The approach employs a number of samples
and classifiers to boost the reliability of position estimations,
and an entropy measure is utilized to choose both a stable
time instant and a reliable classifier. The location is therefore
the median of the location predictions, which is limited to
fall inside the union of the projected locations generated by
the chosen classifier and the chosen time instant.

4) GAUSSIAN PROCESS
Gaussian process (GP) regression models have been suc-
cessfully used to forecast the spatial distribution of RSS
measurements using minimal known labeled fixed nodes,
which has been proven to increase the precision of loca-
lization schemes. Fig. 18 depicts the overall structure of
an indicative localization system. In particular, the radio
map used for localization in this example requires very few
training measurements. Therefore, it significantly reduces
the required time and energy for deployment and radio
map construction procedures. Moreover, during the operation
phase, RSS measurements are collected and used to pinpoint
an exact location of the mobile nodes.
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Multiple alternative ML strategies rely on GPs, which
can substitute Bayesian methods in the case of posterior
distribution estimation of the labeling function [364]–[366],
[371], [373]. During the training process, it is important to
find optimal values for the GP’s covariance and mean, while
kernel functions, like Matern and RBF, are often used to
capture it. For example, in [374], GP regression was used
for the construction of an RSS-based continuous distribution.
The authors used a MLE technique to determine the location
of the target based on the RSS data available to them.
Researchers examined the quadratic, Matern, and Gaussian
kernels in order to determine which one best captures the re-
lationship between geographical points. Moreover, in [367],
a GP was used to represent the probability distribution of
the RSS values, and then for a particular RSS observation,
the location was estimated using a weighted combination
of the fixed network node’s positions in accordance with
Bayes rule. An approach that applies GP-based dynamic
calibration and estimation of the radio map with regard
to RSS measurements is described in [372]. The standard
deviation of the trained GP model was used to quantify the
accuracy of the predicted position, and the final location is
calculated using weighted kNN.

In order to achieve a RMSE near the Cramer-Rao con-
straint in massive-MIMO systems, the authors of [366] pre-
sented numerical approximation GP techniques, which were
validated using simulations. Also, several UWB channel
characteristics, including RMS delay spread, RSS and ToA,
were retrieved from the power delay profile and put to use
in a ranging scheme in [368]. The initial stage is to employ
a kernel PCA to project the chosen channel parameters onto
a nonlinear orthogonal high-dimensional space; from there,
a subset of these projections is used as an input for GP
regression to get a ranging estimate.

5) NEURAL NETWORKS
Today, neural networks (NNs) are widely used in ML. This
is because they form the basis of many of the most effective
learning designs. NNs are robust computational models that
aim to mimic human cognitive abilities. Fig. 19 presents
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a visual representation of the structure of a NN, which
comprises of many layers, each one with a set of parallel
neurons. After calculating a weighted combination of the
input based on the summation function, Σ, the neuron feeds
it into the activation function, σ. Thus, we may think of a
neuron as a perceptron or an extension of logistic regression.
Each node in one layer is linked to all other nodes of the next
layer in the simplest structures, often called fully-connected
NNs. With non-linear activation functions and at least one
hidden layer, NNs may estimate any function with arbitrary
precision, according to the universal approximation theorem.
Much like the logistic regression example, we require an op-
timization technique even to train a single neuron. Efficiency
in training is especially crucial when dealing with deep
NNs. Backpropagation is a typical technique for training
NNs, where the loss function’s gradient is back-propagated
through the layers using the chain rule and then techniques
like gradient descent may be used to adjust the parameters.

Various NN-based localization approaches have been of-
fered in past literature. Among these reported techniques,
NNs were employed for passive localization, where the
calibrated phase and amplitude of CSI were used as a hybrid
complex input feature to the NN to localize the user [375].
Also, in [381], localization was achieved in a mmWave com-
munication system by integrating NNs into a collaborative
weighted least square estimator, while, in [376], the authors
employed RSS data as input to a NN, which subsequently
calculates an estimate for the ranging error; the modified
range values may then be used by a localization technique
like least squares. Another instance, [382] utilizes the user’s
position in an cellular network along with the RSRP of
the three strongest fixed nodes for the user’s localization.
Moreover, a three hidden layer NN that leverages RSS from
several fixed nodes has been recently proposed with its
robustness being increased by data augmentation methods.
In addition, two separate networks are developed based on
the RSS and ToA measurements of a WiFi system, and
the final user’s location was calculated as the weighted
average of the two NNs’ outputs [383]. A hierarchical
localization technique that utilizes a NN trained for cellular
and WiFi indoor location has been implemented in [384].
This technique is based on real-time RSS data to recognize
the environment during the online phase before being fed to
the matching trained NN.

As far as MIMO-OFDM systems are concerned, [377]
presented a fingerprint-based localization approach that relies
on the CSI magnitude from three antennas. This technique
represents fingerprints using the weights of a four hidden
layer NN. For the NNs’ training, a greedy learning approach
was used that stacks radial basis functions. Following initial
training and supervised tweaking, a NN’s output is a faithful
recreation of the input data. During the online phase, the
observed data likelihood probability is represented by a set of
RSS values when the i-th location is true, and then the Bayes
rule is used to get the posterior probability of location i.

The destination is determined by averaging all fixed network
nodes equally. A linear modification of the phase value as
a calibration step increases the stability of the phase values,
as proposed in [378]. Fingerprints may be created from the
weights of a NN with three hidden layer.

With the use of directional antennas in a WiFi network, the
authors of [390] constructed localization fingerprints based
on RSS measurements and employed a classifier in the form
of a two hidden layer NN to determine which fingerprint
is most similar to the observed values. It is noted that,
an improvement in localization precision may be achieved
by using an approximation of the AoA. For example, the
CSI amplitude of a MIMO system can be used as input to
several NNs with various hyperparameters, with the final
location estimation being a fusion of the output from all
NNs [385]. From the numerous combining strategies that
were analyzed, the best result was provided by taking both a
weighted average and a median of the location estimations.
Furthermore, in [379], a framework was presented that inte-
grates characteristics from many communication protocols,
including XBee, Bluetooth, and WiFi, to aid in the tracking
of targets. Yaw readings and RSS values from various nodes
are used as inputs to the proposed NN. After the fingerprint
probabilities have been calculated, the output of the Gaussian
outliers filtering technique can be aggregated to generate
the position estimate, which can subsequently be fed into
a particle filter for target tracking.

Extreme learning machine (XLM) is a NN architecture
with a single hidden layer that is presented as an alternative
to back-propagation, which is used by the aforementioned
designs and requires significantly more time. First-layer
weights are often assigned at random, whereas hidden-layer
weights are typically determined using a least-squares fit.
Several studies, including [386] and [380], aim to exploit
the low-complexity of XLM design in localization. In [380],
the data was first grouped offline using k-means clustering,
then an XLM was employed to classify the data to one of
the clusters, and finally a dedicated XLM was trained for
each cluster. During the active online phase, the XLM of the
corresponding cluster was employed once the RSS values
have been first categorised. As part of the offline process
in [386], an XLM was trained using data collected from a
database of WiFi RSS fingerprints. Fingerprints were still
gathered at certain previously identified hotspots throughout
the online phase, and the solution was revised to account for
the additional data. The newest XLM was then utilized for
coordinate prediction.

6) AUTOENCODERS
The localization literature makes use of autoencoders with
a number of pre-existing supervised solutions, despite the
fact that autoencoders are typically applied in unsupervised
learning. Fig. 20 presents a high-level representation of
an device-free localization autoencoder, where the area is
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FIGURE 20. Autoencoder architecture.

partitioned into N grids, each of which has a fixed node. The
goal is to predict the position of the target inside one of these
N grids. Pretrained features are extracted from data using
an autoencoder as the foundation of the proposed network.
The localization readings from the stationary nodes are used
to build the input topology. Interestingly, the autoencoder’s
output is a “copy” of its input, which delegates autoencoders
into the unsupervised learning architectures. The autoen-
coder may be broken down into three distinct parts. Firstly,
the encoder maps the input to the second part, namely the
hidden state, h, and afterwards, the decoder maps h to the
output, which can be expressed as

y = f(g(x)), (69)

where x and y denote the input and output, while f(·) and
g(·) represent the encoder and decoder functions.

The output of the autoencoder is often sent into a locali-
zation module, making this method a common choice for
extracting strong feature representations. The autoencoder
is utilized to extract high-level features, and the encoder’s
output substitutes the random projection of an XLM [391].
Different regularization algorithms that rely on the encoder
output may be easily included in the training procedure,
which involves a hierarchical tuning procedure where the
classifier parameter is adjusted before moving on to the
encoder parameters. On a different approach, a multi-output
network that makes use of the encoded information to predict
the coordinates, floor, and building was presented in [392].
The building structure along with the target’s coordinates
were used to generate the location using stacked autoen-
coders [393]. Another application of stacked autoencoders
combined with two fully-connected layers of a deep network
applies multi-label classification prediction in an indoor
localization scenario [394], while, in [395], an autoencoder
was used to reduce the dimensionality of the magnetic field
signals and RSS.

Autoencoders have also been used to evaluate the degree
of similarity between the gathered fingerprints and observed
characteristics in fingerprint-based localization. Bi-modal DL
localization (BiLoc) is a fingerprint localization solution that
provides the average amplitude across two antennas and
AoA estimations as input to autoencoders and utilizes the
output weights as fingerprints [398]. In the online phase,
the degree of similarity determines the likelihood that the
target is located at a given time and place based on the
observed characteristics recnostructed by the autoencoders.
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FIGURE 21. CNN architecture.

The final position of the target is determined by averaging
the locations of the fingerprints according to their respective
weights. In [396], the closest static point was used to
determine the location by reconstructing the observed signal
based on the autoencoder’s latent variable and position.
Moreover, stacked autoencoders matching to each fingerprint
are constructed to provide a probabilistic position estimate
in real-time. To achieve this, this method first attempts to
rebuild the observed characteristics and then compares the
similarity with the radial basis function [397].

Autoencoders have also been used in device-free loca-
lization [457]–[459]. The encoder’s output is sent into a
classifier in convolutional autoencoder, which then makes a
prediction about the predicted location of the target [458]. In
this example, the convolutional autoencoder takes as input a
picture built from the disparity between the target and real-
time RSS values. Based on the detected signals from the
RSS, the authors of [457] estimated the gesture, activity, and
position of the user by denoising the signal through wavelet
decomposition, using a sparse autoencoder for dimensional-
ity reduction, and finally incorporating the learnt features
into a regression model and softmax classification. Data
transformation is another possible use of autoencoders. For
instance, the device heterogeneity issue may be addressed by
an autoencoder that transforms the characteristics seen by a
test device into features that match to the device used for
obtaining the database [460].

7) CONVOLUTIONAL NEURAL NETWORKS
CNNs are efficient NNs designs that have demonstrated
remarkable performance in computer vision applications.
Through the use of parameter sharing, CNNs are able to
construct more complex networks with a reduced set of
parameters, compared to a fully-connected NN, like the one
presented in Fig. 21. The convolution technique as well
as the features maps and kernels play a very important
role in the performance of CNNs. Within the convolution
operation, the model’s parameters are multiplied by the input
data. Therefore, its data requirements and the computational
complexity are reduced. At this point, it is important to point
out two noteworthy characteristics of CNNs. On the one
hand, connection sparsity is common in CNNs, in which
low dimension filters can be used to generate each output
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value, while, on the other hand, CNN’s sharing of parameters
where each pixel uses the same weights. The translation
efficiency and invariance of CNNs are appealing qualities
made possible by these attributes. The term “translation
invariance” is used to describe the CNNs’ resistance to
translation, which allows them to provide consistent results
despite changes to the input data. Due to the achievable
data and energy efficiency, more complex structures may be
developed, allowing for the benefits of deeper networks to be
realized. Overfitting is also mitigated by limiting the amount
of trainable parameters, allowing the network to be trained
on fewer samples of data.

Since CNNs have been proven effective in computer
vision, various recent publications have developed CNN-
based localization strategies. Several studies restructure the
recorded RSS array into 2D or 3D pictures and pass it to a
CNN because of the high number of reported RSS values in
metropolitan regions. With an applied CNN on the RSS pic-
ture, the authors of [399] were able to assign the coordinates
to one of numerous floors and buildings. Improvements to
the RSS pictures were achieved by adding correlation values
to the characteristics in [412]. The augmented image was
fed into a hierarchical localization structure, where CNNs
first predict the floor number, based on which the corridor
number was estimated, and finally the coordinates. In order
to quantify the relative importance of the RSS value to the
fingerprint, the authors of [409] suggested a set of hybrid
RSS characteristics. In a smart parking system, time-series
bluetooth RSS measurements were utilized for pedestrian
and car localization [400]. Another hierarchical localization
approach predicts the coordinates, floor, and building by
combining RSS values from all fixed nodes over many time
occurrences to create an RSS-time 2D representation [401].
From a temporal perspective, in [402], continuous wavelet
transform was employed to generate a 2D time-frequency
picture, which was fed in a CNN that predicts the closest
reference points to the target. Then, kNN was used to infer
the target’s coordinates.

High dimensional features may be used thanks to CNNs’
increased efficiency in NNs. A multi-layer CNN that forms
an image using the channel frequency response values at
the available sub-carriers at various time instances has been
presented in [403]. Under this framework, realizations at var-
ious antennas can be used at different CNN channels, whose
output was the likelihood of the target localization problem.
According to [404], by averaging the fixed nodes’ expected
probability and actual locations, it is possible to estimate
the precise position, which is based on the pair-wise phase
difference between antennas. The position was predicted by
combining the locations of the most likely fixed nodes during
the online phase. Next, in [405], the posterior distribution of
the position of the end device was approximated by a Markov
model using the spatio-temporal information learnt by 3D
CNNs. It produces two 3D representations of the phase and
calibrated amplitude of the CSI, where the depth, breadth,

and height correspond to the phase/amplitude of various TX-
RX pairs, sub-carriers, and packets, respectively. Finally, a
computationally efficient deep CNN architecture has been
used for predicting the most likely fixed nodes in a three-
antenna system that generates three-channel images. From
these channels, two were utilized for the antenna pairwise
phase differences, while the other for the amplitudes of all
sub-carrier packet samples [406].

CNNs have been also employed for device-free localiza-
tion. For instance, in [159], an 1D CNN model that takes
advantage of either RSS values of packets from multiple
antennas has been used or CSI amplitudes from all anten-
nas and sub-carries. Another approach, in [410], generated
pictures from a time series of RSS values and associated
continuous wavelet transform in order to identify people in
a building. From these contributions, it becomes evident that
solutions based on CSI outperform others when it comes
to localization accuracy. Moreover, in [411], a CNN was
employed to identify NLOS interference and estimate the
range error in ultra-wideband systems, while, in [413], the
authors recommended the use of time-calibrated complicated
channel impulse responses to build pictures in an industrial
context, where the increased multi-path propagation limits
the communication and localization range.

Lastly, CNNs have been successfully applied in massive-
MIMO systems. According to [407], a uniform planar array
can benefit from 3D pictures with power values in the delay,
as well as vertical and horizontal domains. A CNN network
is then fed these pictures and trained using the inception
module in combination to various kernel sizes, which are
imposed by the distinct sparsity of each domain. In popular
Deep NNs designs, such as AlexNet, GoogLeNet, and more,
the inception module is utilized to combine the results of
many kernels for more accurate feature extraction [408].

8) RECURRENT NEURAL NETWORKS
Modeling sequential data is a common use of a specific
form of NN called a recurrent neural network (RNN). With
natural language processing and data processing of time
series exhibiting a lot of potential. RNNs have the ability to
carry out tasks, in which the outcome is reliant on both the
past outcomes and the present input. The results of previous
calculations may be viewed as being stored in the ”memory”
of RNNs. The RNN’s hidden state, h(t), may remember the
results of previous calculations. The output of the RNN can
be written as

y(t) = σy (Whh(t) + bh) , (70)

with Wh denoting the weights of the RNN, while its hidden
state can be expressed as

h(t) = σh (Vxx(t) + Vhh(t− 1) + bh) . (71)

In the previous equations, bh, Vx, and Vh are the RNN’s
parameters, while the activation function is denoted by σ.
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FIGURE 22. RNN architecture.

In RNNs, the model’s parameters are preserved across
time. In other words, they are resources that are shared by
all links inside a certain layer and are fine-tuned through
time via back propagation. However, when a gradient is
propagated in time, gradient explosion or vanishing can
occur and cause said gradient to increase or decrease, re-
spectively. Another issue is that the model’s effect gradually
wanes with time; thus, it can not keep in mind too much
history. Therefore, plain RNNs are not often employed in
the real world. In reality, “gates” in RNN cells are used
to account for influence loss or deterioration over time,
with the most prominent architectures being long short-
term memory (LSTM) and gated recurrent units (GRUs).
As illustrated in Fig. 22, RNNs come in a wide variety of
sizes and shapes, with some even being able to learn in
both directions. According to architecture presented in this
figure, for each fixed node during a specified time window,
a number of features extracted from the raw measurements
are computed. Thus a plethora of data is generated from the
initial measurements. These features are then fed into the
LSTM RNNs in order to extract higher level features that
capture the essential information of the localization data.
Finally, the high level features are used as input for the
regression, which is realized by using fully-connected layers
in order to counterbalance overfitting of the algorithm. All
in all, using RNNs to monitor a target’s movement over time
is a crucial part of localization.

Numerous recent efforts have relied on recurrent neural
networks that receive a series of RSS values for localiza-
tion purposes. For instance, the floor and building can be
estimated using a cascaded RNN that receives a succession
of RSS values as input [414]. For real-time systems, RSS
measurements accompanied by numerous Bluetooth anchors
can be used for localization with high efficiency [419].

Another effort monitored the users’ whereabouts from the
linked cell towers’ RSS history and utilized kNN and Markov
models to produce synthetic measurements based on the
previously observed ones [420], [421]. Moreover, the authors
of [422] used a sliding window on a series of RSS data,
computing five features for each access point within that
window, which were then used as input for an LSTM device
as a vector sequence.

In WiFi and cellular networks, RNNs have been used for
collecting the RSS fingerprint from several fixed network
nodes over different timesteps and feeding it into a single-
layer RNN, which returns the coordinates [416]. By compar-
ing the CSI amplitudes at various sub-carriers and antennas,
it is possible to achieve localization in a MIMO system,
where the SNR, CSI, and correlation matrix are employed
as candidate features for various RNN approaches [417].
After the CSI has been pre-processed and shifted, polynomial
regression is applied and the output data sequentially into the
LSTM system, which is proven to performs better than com-
peting systems. Furthermore, predicting the position of UAV
BS using WiFi and RSS measurements has been reported
in [424]. Before being integrated with the other data, the RSS
features’ dimensions are reduced using principal component
analysis. In order to estimate the location, the new feature
vector is fed into a RNN. In a similar arrangement, [418]
utilized linear discriminant analysis to choose the subset of
fixed nodes to decrease calculation time, using RSS data
from the accessible WiFi fixed nodes to construct a radio-
map. It then uses an LSTM system to provide a position
prediction based on the RSS sequences.

RNN and CNN hybrids have been mulled upon in the re-
cent literature [415], [423]. A smooth trajectory of projected
locations can be generated from sequential measurements in
a cellular system [415]. At first, the area is split into cells,
while afterwards pictures are generated with dimensions that
correspond to the grid structure and populated based on the
measurements. The photos are then propagated to a CNN,
which uses the retrieved spatial characteristics to predict a
score for each possible location. Next, the outcomes are then
used as input to a multi-layer LSTM, which is responsible
for creating the trajectory. With the use of consecutive
RSS values from neighboring fixed nodes, localization is
achieved. On another note, a 1D-CNN is used to extract
features from consecutive RSS values and is followed by a
RNN to record the temporal correlation [423]. Afterwards,
a mixture density network is trained on the RNN’s output
to discover the conditional probability distributions of the
locations.

C. UNSUPERVISED LEARNING
In contrast to supervised learning approaches, unsupervised
learning methodologies take advantage of the features’ un-
derlying structure and distributions enclosed in unlabeled
data. Multiple techniques for pretraining NNs reside in the
general category of unsupervised learning and are discussed
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in this section. Two examples of architectures that have been
employed, are deep belief networks and restricted Boltzman
machines. Specifically, the former has been used to learn
deep features from RSS data, and then feed those features
into a different ML solution for location estimation [425].
Another application of unsupervised learning techniques is to
be applied in various localization tasks like device mapping,
data filtering, or access point selection in order to provide
increased performance.

1) SEMI-SUPERVISED
On the way towards applying unsupervised techniques of
localization, several researcher have developed methods of
both semi-supervised and unsupervised nature. One appli-
cation can estimate the distance of the user from the access
points using RSS values based on a variety of cost functions,
while, at the same time, evaluating the localization precision
in terms of the difference between actual and estimated
locations [429], [430]. Another solution is provided by
developing a graph-based model, where latent variables are
considered with regard to power levels and location [49],
[426]. To solve this model, a Gaussian mixture model was
employed to calculate the received RSS likelihood under the
assumption of independent normally distributed variables.
Next, the models parameters are estimated through the
expectation maximization algorithm that is initialized with a
basic pathloss model and the positions of the fixed network
nodes in order to address the identifiability issue.

2) CLUSTERING
On a different note, unsupervised techniques have been
successfully applied for constructing the map of a radio-
based system. An instance of such a system develops a logi-
cal floor plan using accelerometer and RSS measurements
from users within the service area [431]. This technique
is based on clustering techniques like k-means on RSS
stacking difference, while each virtual room is assigned
a representative localization fingerprint. Another proposed
framework for unsupervised localization utilizes WiFi, gy-
roscope, compass, and accelerometer values of naturally
moving users and tries to identify some fixed structures in
the building (i.e., elevators, columns, stairs, and more) that
greatly influence their movement. Afterwards, it employs k-
means clustering to extract unique sensor signatures that can
increase the localization accuracy for users starting from a
known spot in the building [351]. Localization can be also
achieved by the combination of global-local optimization and
a Markov model that fits the RSS traces into the structure of
the environment based on unlabeled data and considers the
solutions that do not violate the signal propagation [432].

Device

Core network

Device Device

FIGURE 23. Federated learning architecture.

3) DIMENSIONALITY REDUCTION
Since many approaches rely on fusion to fulfil the loca-
lization procedure, an unsupervised learning approach has
been proposed that concatenates the outputs of the best
classifiers to develop a joint location-weight estimate and
an extended candidate location set within an unsupervised
optimization framework [331]. Forecasts that are considered
more accurate are given more weight, thus the user’s actual
location should be near the most accurate predictions. Lastly,
multidimensional scaling has been widely employed in di-
mensionality reduction schemes for localization [50], [427],
[428]. Such schemes create a low dimensionality projection
of the known distances between wireless nodes that yields
the spatial map of the network configuration. Cooperative
localization utilizing wireless signals, such as ToA, AoA,
RSS and more, has lately been used for cognitive radio, IoT,
and RFID to estimate distances between devices [427], [428].

D. FEDERATED LEARNING
Federated learning (FL) decouples the capacity to perform
ML from the need of storing the data in the cloud, allowing
edge nodes to develop a shared prediction model cooper-
atively while maintaining all the training data locally. This
extends the usage of edge device-based prediction models by
bringing model training to the edge node itself. Specifically,
FL is implemented by deploying a plethora of mobile nodes,
each of which is in charge of a certain region that may or
may not overlap with its neighbors. In order to perform local
training of the global parameters, each mobile node gathers
a dataset based on which it performs the minimization of the
NN’s parameters, θk, by solving

θk = argmin
θ

∑
∀{xi,yi}∈Dk

∥yi − f (xi; θ)∥22 , (72)

with ∥a∥22 denoting the sum of the square of a’s components
and

yi = f (xi; θ) + ni, (73)

where f denoting the regression function. After this is carried
out by every mobile node working together, the parameters
can be defined as the global objective can be expressed
in the form of a sum. The mobile terminals encrypt the
communications before sending them to the core network,
which then uses homomorphic algorithms to decode the
messages. Fig. 23 depicts the FL concept for localization.
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Advantages of this collaborative framework include less
time spent on training and, more crucially, the protection of
individual privacy by removing the need to provide sensitive
information to the network [433]. Typically, in FL, it is
assumed that a centralized entity would combine the models
trained at the edge devices and broadcast back an updated
version of the model. Due to the unpredictable nature of
mobile surroundings and the privacy leakage limitations
introduced by the centralized nature of the data processing
architecture employed in object localization, traditional ML
localization approaches may be surprisingly fragile [434]. FL
has the potential to provide intriguing solutions for allowing
accurate and private location services.

There is an abundance of literature exploring the usage of
FL in localization contexts; especially, since location data is
one of the most fundamentally private bits of information.
For example, a FL technique that uses NNs to anticipate user
coordinates in order to increase the reliability and robustness
of RSS fingerprint-based localization without compromising
participant privacy has been recently presented [160]. When
the users have finished training the model, the central node
adjusts the NN weights based on the amount of samples
they were exposed to and sends the resulting model back
to the users. In addition, [435] confirmed FL’s promise in
indoor localization services by addressing the problems of
privacy leakage threats and task learning associated with
using a centralized AI server. Using the computing power
of mobile devices, the suggested architecture combines cen-
tralized indoor localization with FL to lighten the burden of
fingerprint collecting and save network computational costs
while maintaining users’ privacy. In order to construct a
global statistical localization model, a DL model is run on
each node based on unlabeled crowdsourcing and labeled
fingerprint data, and then shares the calculated updates with
a central server. When compared to other methods of dis-
seminating fingerprint data, FL definitely outperforms them
in terms of stability, privacy protection, and transmission
cost [436].

Similarly, a federated localization strategy for WiFi net-
works is constructed in [437] using FL. WiFi signals rep-
resenting known landmarks may be used by mobile devices
to create local fingerprints, which can then be fed into a
DNN model and subjected to a deep autoencoder to filter
out background noise. A centralized server then compiles all
of the regional weights into one global one. Local updates
are encrypted using a homomorphic encryption method to
safeguard the communication channel during the offloading
phase. High precision in localization estimates and safety
are shown in a laboratory corridor experiment. As another
example, in [438] a federated localization architecture was
suggested for precise IoT localization. FL reduces the pri-
vacy risks associated with location estimation by having
numerous users work together to develop a model using
local fingerprint data. Emerging localization services, such
as wireless traffic prediction using BSs, and mobile indoor

Environment

Observable state

Agent
Reward

A
c
tio

n

State reformulation

FIGURE 24. Reinforcement learning architecture.

GPS localization, mobile target navigation and tracking using
inertial sensors, may all benefit from FL’s utility.

E. REINFORCEMENT LEARNING
Reinforcement learning (RL) is among ML’s burgeoning
research fields and it involves teaching an algorithm how to
make judgments by letting it make mistakes, while interact-
ing with the world around it. To optimize their rewards over
time, agents conduct a series of behaviors in a predefined
setting. A conceptual outline of RL-based localization is
provided in Fig. 24. The agent’s abstracted state of the world,
or environment, from which it draws its action choices is
comprised of both the agent’s location and the RSS reading
make up the state. Moreover, the agent evaluates the state
and uses that information to choose what courses of action
to conduct. The “good” activities explored in localization
schemes include traversing the grid while remaining on it.
In accordance with the reward function, the agent will get a
favorable response after taking the desired course of action.
Theoretically, incentives may be determined by the distance
between the target position and the agent. However, it is
impossible to utilize this approach to handle unsupervised
data. A technique, which build on the premise of isolating
landmarks with accurate position labels and powerful RSS
characteristics for establishing rewards, is proposed as a
solution to this problem [439]. In this respect, the agent
receives a reward if and only if the measured RSS matches
the known RSS characteristic at the landmark location.

1) MARKOV DECEISIOON PROCESS
For dynamic systems, like resource allocation, wireless
communication and localization, it has attracted a lot of
interest. For instance, a bluetooth based system that uses past
locations information and RSS measurements to determine
whether or not the reward is achieved, when the solution
approaches known RSS values or an RP [440]. In order
to determine a progressive localization algorithm, the WiFi
localization problem in a WiFi system is viewed as a Markov
decision process with a model-free approach [441]. In this
example, states may contain the RSS, action history, and
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FIGURE 25. Transfer learning architecture.

center coordinate values. There are five possible motion
directions in the action space, each of which may be used
to shift the predicted location window by a different set
of radius values. Another localization problem that can be
tackled with RL methods is scheduling the exchange of
signals during cooperative localization [161]. As a result, the
solution treats the measurement choices as operational tasks
and the linkages as autonomous agents. The observations
may include the nodes that failed to meet a localization
quality criteria, covariance values, and distance.

2) DEEP RL
Another application of RL is to enable self-learning locali-
zation scenarios in which new information is learned from
the outcomes of previous choices. Compared to unsupervised
multilateration localization, the accuracy of Q-network in a
deep RL structure increases by 37% when used to predict the
position of a pedestrian device [440]. To better understand
human traffic, predicting pedestrian paths can play a very
important role. This issue has been tackled by designing
a deep RL method that aims at maximizing entropy [443]
and has achieved performance similar to LSTM localization.
Another approach, used semi-supervised deep RL for esti-
mating the pedestrian distance in localization applications
and exhibited a 23% increase in precision with regard to
supervised learning approaches.

F. TRANSFER LEARNING
Transfer learning (TL) is utilized to take advantage of the
knowledge learned in one domain to a new domain. This is
especially useful when it is challenging to acquire data in the
target domain, but an abundance of data exists in the source
domain. Fig. 25 depicts the two stages that make up the TL-
based localization system, namely offline training and online
localization. To be more precise, a number of fixed and
mobile nodes are installed in advance, taking into account
the physical characteristics of the area and the needs of the
individual application. RSS readings from the mobile device
may be sent to the surrounding fixed nodes by positioning
the mobile ones. Each fixed node then uploads its data to
the server, which uses the signal characteristics acquired in
order to create a fingerprint database.

Another interesting case of TL is dynamic systems, such
as localization applications, that require configuration and
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FIGURE 26. Manifold learning architecture.

retraining on each distinct application. In this scenario, the
overhead of retraining the model when the data is accessible
in both domains is challenging and can be avoided with TL
approaches. Based on these, the challenges of TL enabled
localization span across many dimensions, including time,
space, and hardware, where the data distribution may vary
depending on the dimension. Specifically, TL is presented as
a pair of optimization problems: the first involves extracting
the underlying semantic manifold of the signal to serve
as constraints for the second, which involves labeling the
unlabeled data in the target domain. The challenge of TL
across devices might be stated as one of multitask learning.
For instance, a manifold regularization-based solution for a
temporal TL can be applied to localization approaches where
data distributions vary between time instances, but are often
consistent with one another in low dimensions.

1) NNS
One of the more recent applications of TL involves the
utilization of SotA NN techniques. For instance, deep CNNs
employ TL between many antenna configurations based on
the time-domain CSI. After the network is first trained, it
is possible to retrain the network’s lower layers with less
data points to accommodate the altered antenna configu-
ration [444]. Another example, the transfer of knowledge
across settings is explored in order to address the issue of
localization based on RSS [451]. The NN model is pre-
trained in one domain before being transferred to another
domain, with the two domains being characterized by distinct
propagation phenomena. Specifically, the domains are two
floors in the same building, both of which have the same
access point placement and architectural design. It is proven
that with only 30% of the data in the second floor the
TL enabled system can achieve the same level of perfor-
mance. Finally, deep CNNs for pedestrian localization can
be combined with TL approaches with great success (i.e.,
45% increase of the training data and cut down on training
time by half) [445].

2) CONVENTIONAL TL
Conventional TL methods augment the real-time measure-
ments gathered from the target domain with labeled fin-
gerprints from the source domain. For instance, a domain-
invariant kernel, suitable for use with SVM in TL enabled
localization, is learned using data from both domains [446].
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Metric transfer and metric learning are the two components
of the TL-based methodology that operate together to lessen
the burden of offline training in the new setting [453]. The
metric learning component maximizes the statistical depen-
dency between signal label and feature statistics to learn the
distance metrics from source domains. Using a method that
minimizes the difference in data between the source and
target domains, the metric transfer component determines
which metric is optimal for the target domain. In certain
cases, the TL result may not take into consideration all
aspects of the surrounding environment in order to recreate
the radio map. To solve this issue, fuzzy C-means clustering
has been used to reduce the impact of external factors [452].

3) MANIFOLD LEARNING
The premise that the observed data sit on a low-dimensional
manifold inside a higher-dimensional space is what distin-
guishes the discipline of manifold learning from others. In
the ML world, manifold alignment is widely used for sharing
models and data across disparate collections, assuming a
common manifold. For instance, the Siamese network design
presented in Fig. 26 employs two identical NNs to translate
the high-dimensionality input characteristics, xn and xm, to
lower dimensional representations, yn and ym, taking into
account the fact that location affects the values of large scale
parameters. The network’s objective is to keep the distance
between x and y to a minimum. Finally, in a semi-supervised
learning situation, the parameter α is a scaling value for
distance scale matching.

Data visualization and dimensionality reduction are only
two of the techniques that are applied in manifold learn-
ing. For example, graphs is one way to approximate the
manifold’s point relations, while variable manifold align-
ments can often result in neighborhood graphs with unique
distances between graph nodes [454]. Specifically, in the
area of localization, manifold alignment has found multiple
applications for constructing a radio map based on the
observed distances between the nodes. Another example is
the Laplacian Eigenmap manifold alignment method that
develops a weighted graph connecting the data points and
maintaining the local geometry [447]. This technique utilizes
the Laplacian eigenvectors of the constructed graphs that
contain the physical relations of the geometrical observations
(such as RSS). Moreover, manifold learning has been utilized
under a semi-supervised approach where both labeled RSS
data as well as unlabeled timestamped traces are used to
build the graphs [455]. In addition, to keep the distance
estimates based on the wireless propagation model, the goal
functions can be modified and Gaussian kernels can be
used to determine the graph’s weights between the RSS
measurements [448]. Another approach of manifold learning
optimizes a time-series graph Laplacian SVM to generate
pseudo-labels, which are then used as part of a learning
framework to assist with semi-supervised RSS localization.

In order to strike a middle ground between the labeled
and pseudo-labeled contributions, it incorporates manifold
regularization into a transductive SVM [449]. In WiFi,
manifold regularization using Laplacian graphs is taken into
consideration in the solution for extreme learning machine
parameters. Since Bluetooth and WiFi signals display dis-
tinct propagation circumstances, two graph Laplacians are
developed to reflect the smoothness in Bluetooth and WiFi,
respectively [461]. Finally, a Siamese network design, which
consists of two identical NNs used to compare two inputs
was used as a semi-supervised or supervised CSI localization
solution [450]. Because of the impact of geography on the
values of global parameters, a pair of feed-forward NNs is
used to transform the input features into more manageable
location representations.

IX. COLLABORATIVE RESEARCH EFFORTS
The potential linked to localization has gathered the attention
of the wider research community, leading to collabora-
tive efforts among active research groups to explore novel
designs, approaches, and methods that showcase limitless
possibilities. As a result, several funding agencies have
provided support for projects related to localization, thereby
paving the way for novel advancements in communication
and device technologies that are intended for 6G.

A. RESEARCH PROJECTS
This section provides a summary of the latest developments
in 5G/6G research projects from prominent institutions and
countries with regard to defining, specifying, and regulating
6G. To this end, Table 7 presents an exhaustive inventory of
the latest 5G/6G localization-oriented research projects.

B. MAJOR TESTBEDS AND EXPERIMENTAL
PLATFORMS
This section enumerates the major testbeds and experimental
platforms available for the demonstration 5G/6G positioning
algorithms.

• HOP-5G Testbed [482]: a first-of-a-kind testbed for
GNSS, 5G networks and sensor positioning, for proof-
of-concept demonstrations based on the deployment of
dedicated ground and aerial 5G base stations (BSs) for
enhanced hybrid positioning together with GNSS and
sensor technologies.

• LOCUS Testbed [483]: a flexible testbed architecture
for performing network location-related research for
6G, including OpenRAN, MIMO, D2D, smart meta-
surfaces, edge computing and spectrum coexistence.

• HANSEL Testbed [484]: An platform to perform
centralized testing and assessment of positioning and
navigation technologies by relying on current network
technologies and infrastructures (i.e., Wi-Fi and cellular
connectivity) for smart cities.

• 5G Positioning Testbed: This industrial testbed has
demonstrated and measured the economic benefits of

VOLUME , 49



Trevlakis et al.: Preparation of Papers for IEEE OPEN JOURNALS

TABLE 7. Examples of the recent funded 5G/6G localization projects.

Ref. Acronym Project Title Objective Funding
Agency

Start/
End

[462] LOCUS LOCalization and analytics on-demand embedded
in the 5G ecosystem for Ubiquitous applicationS

Provide ubiquitous network-based locali-
zation

H2020 ICT 2019/
2022

[463] 5G-
CLARITY

Beyond 5G multi-tenant private networks inte-
grating Cellular, WiFi, and LiFi, Powered by
ARtificial Intelligence and Intent Based PolicY

Derive accuracy of 5G-based positioning
services

H2020 ICT 2019/
2023

[464] 5GTRACK Efficient 5G Localization, Tracking, and Environment
Mapping for Systems of Autonomous Vehicles

Investigate on localization methods using
5G mmWave

H2020 MSCA 2019/
2022

[465] RISE-6G Reinforcing the B5G/6G vision Define RIS-enhanced localization H2020 ICT 2021/
2023

[466] 6G
BRAINS

Bring Reinforcement-learning Into Radio Light
Network for Massive Connections

Define D2D 3D simultaneous localization
and mapping

H2020 ICT 2021/
2023

[467] Hexa-X A flagship for B5G/6G vision and intelligent
fabric of technology enablers connecting human,
physical, and digital worlds

Develop key technology enablers for 6G
localization and sensing

H2020 ICT 2021/
2023

[468] Hexa-X-II A holistic flagship towards the 6G network plat-
form and system, to inspire digital transformation,
for the world to act together in meeting needs in
society and ecosystems with novel 6G services

Follow the work started in Hexa-X HEU JU SNS 2023/
2025

[469] 6G-ISLAC Integrated Sensing, Localization, and Communi-
cations in 6G THz Systems

Develop integrated sensing, localization,
and communication for 6G

HEU MSCA 2023/
2024

[470] HOP-5G Hybrid Overlay Positioning with 5G and GNSS Demo of a 5G local overlay testbed for
enhanced user positioning with GNSS

ESA NAVISP
Element 1

2021/
2023

[471] IGASPIN Integrating 5G and GNSS Develop indoors joint GNSS and 5G sig-
nal manipulator and repeater

ESA NAVISP
Element 2

2021/
2022

[472] 5-GENIUS 5G Drone Positioning Develop a hybrid GNSS and 5G position-
ing for enhanced resilience and integrity

ESA NAVISP
Element 2

2021/
2022

[473] HYPER-5G Hybrid positioning engine running on 5G and
GNSS

Fuse 5G and GNSS PPP-RTK techniques ESA NAVISP
Element 2

2022/
2024

[474] LEO-SYN+ Augmented synchronization for 5G using LEO
satellites

Develop a 5G LEO-based PNT solution ESA NAVISP
Element 2

2022/
2024

[475] - Resilient PNT based on 5G broadcast Demo of a GNSS-backup system based on
terrestrial 5G broadcast

ESA NAVISP
Element 2

2022/
2023

[476] 5GLEON Radio positioning technologies for 5G satellite
networks

Demo key technologies for enabling 5G-
NTN for positioning

ESA TDE 2023/
2025

[477] 5G-Sky Interconnecting the Sky in 5G and Beyond – A
Joint Communication and Control Approach

Develop robust UAV navigation tech-
niques based on 5G with onboard sensors

LU FNR
CORE

2019/
2023

[478] PinPoint
5G+

Accurate, Pervasive and Low-Latency Positioning
to Innovate 5G Networks and Beyond

Provide accurate and ubiquitous locations
of entities as a network-native service

ES MICIU RTI 2019/
2021

[479] RISC-6G Reconfigurable Intelligent Surfaces and Low-
power Technologies for Communication and
Sensing in 6G Mobile Networks

Develop 6G localization algorithms using
emerging wireless technologies

ES
NextGeneration-
EU

2022/
2024

[480] 5GPOS 5G Cellular Positioning for Vehicular Safety Provide 5G-enabled accuracy for telecom-
munications and vehicle safety.

SE Vinnova
FFI

2020/
2022

[481] B5GPOS Beyond 5G Positioning High-accuracy positioning and radar-like
sensing for vehicular safe applications

SE Vinnova
FFI

2022/
2024
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four business applications (augmented reality for safety,
drone delivery, remote fertiliser management, and farm
robotics and vineyard management) using 3GPP and
will help inform future 5G investment decisions.

• 5G ACIA: The 5G OpenRAN industrial communi-
cation and positioning testbed, has fully virtualised
architecture and MEC support. The focus is to offer
communication and positioning use cases to customers.

• 5G Open-Source Platforms: A special mention to the
open-source solutions powering smaller-size testbed is
made in [485]. OpenAirlnterface provides implemen-
tations of 5G Core, gNodeB (gNB) and UE compliant
with new radio (NR) Release 15 (with an additional
subset of NR Release 16 features). srsRAN provides
software implementations of gNB and UE with fea-
tures up to NR Release 15 [486]. Aether is a project
promoted by the open networking foundation (ONF)
for the simplified implementation of private cellular
networks.

C. STANDARDIZATION
This section provides a brief overview of the progress, status
and technical specification documents describing the posi-
tioning services in 3GPP for 5G networks. Each 5G release
has been incorporating progressively different localization
features evolving the 4G/LTE legacy. In release 15, the
location management function (LMF) at the core network
is able to estimate the position of the UE by collecting a
series of measurements coming from co-located receivers or
sensors such as GNSS, WLAN, inertial, barometers, etc.,
improving time to first fix and accuracy as compared to
4G/LTE.

From release 16 onward, the position estimation is based
on 5G RAN measurements, which constitutes a shifting
paradigm from previous generations, transforming 5G into
a standalone localization system. Both downlink and uplink
reference signals are used to estimate either delay-based,
angle-based and/or power-based measurements, which are
sent to the LMF to estimate the position of the UE. Release
17 introduced additional enhancements to reduce latency
for time-critical use cases such as remote control, deliver
positioning accuracy down to the level of 20-30 cm for
use cases such as factory automation, and improve integrity
protection of the location information [487]. Release 18
continued further improving the integrity of the positioning
by defining mechanisms to provide network-verified UE
location, which is an important aspect to global operators
for regulatory purposes.

The 5G positioning features described above are docu-
mented in the following 3GPP Technical Specification (TS):

• TS 22.071 [488]: “Location Services (LCS) Service
description; Stage 1”, defining the functional require-
ments, logical description, service provision, provision-
ing and administration, interaction with other services,
and description of possible location-based services.

• TS 23.273 [489]: “5G System (5GC) Location Services
(LCS); Stage 2”, defining the architecture model and
concepts, high-level features, location service proce-
dures, information storage, and network function ser-
vices.

• TS 38.305 [490]: “Stage 2 functional specification of
UE Positioning in NG-RAN”, defining the NG-RAN
UE Positioning architecture, signalling protocols and
interfaces, general NG-RAN UE positioning proce-
dures, positioning methods and supporting procedures.

The investigation of how to effectively manage the re-
quirement for precise localization and sensing capabilities
while ensuring reliable communication is an additional cru-
cial matter to be examined within 6G. Undoubtedly, there
is a pressing need for substantial standardization endeavors
to delineate novel air interfaces for the integrated system.
Modifying the core network poses an additional challenge,
particularly when taking into account the need for back-
ward compatibility with existing legacy systems. The In-
ternational Telecommunication Union Radiocommunication
Sector Working Party 5D (ITU-R WP 5D) has completed
the development of a preliminary proposal regarding the
“Framework and overall objectives of the future development
of International Mobile Telecommunications for 2030 and
beyond.” [491]. The purpose of this recommendation is to
offer guidelines pertaining to the framework and overar-
ching objectives for the prospective advancement of IMT-
2030, commonly referred to as 6G. The advancement of
information and communications technologies has led to
the anticipation that IMT-2030 will facilitate enriched and
immersive experiences, improve widespread coverage, and
enable novel forms of collaboration. Moreover, IMT-2030 is
anticipated to facilitate broader and novel utilization scenar-
ios in comparison to IMT-2020, while delivering improved
and innovative functionalities.

X. INSIGHTS & FUTURE DIRECTIONS
So far, important concerns of future wireless systems’ loca-
lization have been explored and intriguing findings obtained.
In this section, as depicted in Fig. 27, we will address the
insights and future directions with regard to mmWave/THz
localization, wireless optical localization, RIS-assisted lo-
calization, heterogeneous localization systems, integrated
localization and communication, as well as low Earth orbit
(LEO) positioning, navigation and timing (PNT).

A. MMWAVE AND THZ LOCALIZATION
THz/mmWave localization research is still in its infancy,
with multiple approaches still to be investigated. In this
section, future directions based on fundamental research and
intelligent control design are presented.
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FIGURE 27. Future directions for 6G localization.

1) FUNDAMENTAL RESEARCH
So far, a deterministic channel model was investigated.
However, KPIs of dispersed signals, such as AoA, RSS,
and more, are random in practical settings. Modeling the
influence of randomly generated signals is necessary, and
the impact of reflectors and scatterers on localization per-
formance must be measured. Furthermore, since geometric
localization relies on the channel model as its basis, current
SotA approaches use an extension of mmWave models by
including high-frequency system characteristics as the array-
of-subarrays structure, the wideband effect, and atmospheric
attenuation. However, the channel model may not account
for the impact of hardware impairments and other THz-
specific factors. Since the localization performance suffers
as a result of these model incompatibilities, it is clear that
a more precise channel model is necessary. Finally, in most
localization tasks, the position and orientation of the BS and
RIS are assumed as known anchors and research is focused
on the UEs’ location and orientation. However, this results
in neglecting calibration problems between the reference
anchor and additional ones. To overcome this issue, joint UE
localization and BS/RIS calibration is of major importance
in applications with many anchors.

2) INTELLIGENT PROTOCOL DESIGN
While model-based approaches are simple to deconstruct,
AI-based approaches are often favoured for learning from or
mitigating the impact of unanticipated model mismatches.
In this case, it is important to have access to shared
databases so that methods will be compared and contrasted.
The preservation of user security and privacy, the transfer
of a taught model into another domain to save training
time, as well as the gathering, sharing, and storage of
massive amounts of data, are all pressing concerns that
need to be addressed in order to successfully deploy future
intelligent 6G wireless networks. For example, optimizing

the placement of stationary BSs for better coverage or data
accuracy is easy when compared to dynamically deployment
of the BS by attaching it to UAVs, in temporary heavy
traffic settings like stadiums or conference halls. To accom-
modate the UEs’ communication and localization needs, the
UAVs’ position and path must be optimized. Connectivity in
dynamic mmWave/THz UAV networks, however, presents
its own unique set of difficulties that must be thoughtfully
handled. Moreover, the SLAM method might provide access
to a map of the immediate area. The PDF of previous
access sites can be employed for scene-aware localization
in addition to the map. In order to get around obstructions
and make the most of the strong reflectors for localization,
the beamforming vectors at the BS/UE and RIS element
coefficients must be tuned. The intelligent optimization of
the procedure to construct and maintain a map over time is
an open question in this area.

B. OPTICAL WIRELESS LOCALIZATION
The vast majority of VLP techniques use at least three
LEDs, with the voltage driving them being sinusoidal with
very slight frequency changes. These strategies make use of
the generally valid linear response between the LEDs and
the PD, as detailed in most manufacturers’ data-sheets. By
using the RSS parameters and supposing a LOS attenuation
model, these methods can determine the PD’s static location.
In addition, similar techniques have been adapted to carry
out position estimate even while the UE is in motion at
speeds that are more representative of real-world scenarios.
However, by averaging the computed location using a small
number of substantially overlapping received signals, the
possible accuracy may be greatly improved. The recon-
structed route can be smoothed down with the use of AI
techniques like Kalman filter-based tracking. With this in
mind, a robust modelling framework is needed to examine
performance over a wide range of LED frequency, noise
level, UE speed, and other design parameters. According to
the findings reported in the literature, VLP approaches are
effective at accurately localising the UE, which bodes well
for their use both inside and outdoors. Finally, in order to go
beyond the SotA of VLP wireless systems, it is necessary to
pay close attention to positional errors, computing efficiency,
as well as localization precision and latency.

C. RIS-ASSISTED LOCALIZATION
RISs are expected to play a key role in the 6G era by manip-
ulating the propagation condition, creating and/or canceling
propagation paths, and practically enabling the “propagation-
as-a-service” vision. Although a great amount of effort was
put on analyzing the benefits and performance of RIS as
well as designing RIS-empowered wireless communication
protocols, there are only a limited number of contributions
that document the performance envelop of RIS-empowered
or assisted localization systems and/or present suitable proto-
cols in this direction. In this section, we briefly present the
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research gap and provide future directions in RIS-assisted
localization systems.

1) FUNDAMENTAL RESEARCH
The initial theoretical studies on RIS-assisted localization
system assume: i) deterministic channel model, ii) contin-
uous RIS phase shift capabilities, iii) ideal RIS with no
imperfect meta-atom (MA), iv) analog RIS, v) single-RIS, vi)
interference-free systems, and viii) ideal transceivers front-
end. Although these assumptions are necessary in order to
determine the performance envelop of RIS-assisted locali-
zation systems, in several real-world implementations, they
are not realistic. This drives a theoretical campaign in this
area that would allow the relaxation of the aforementioned
assumptions. In more detail, the performance of RIS-assisted
localization systems that experience different type of fading,
such as Rayleigh, Rice, Nakagami-m, Weibul, generalized
Gamma, Malaga, Gamma-Gamma, etc. need to be extracted.
Notice that several recent works, including [492]–[496], have
verified these type of fading even in THz systems. In a
similar direction, the assumption of continuous phase shift
is not valid in practice, since RISs have a discrete number
of phases that can use [497]–[500]. As a result, research
questions like how many RIS phases we need for localization
arises. Likewise, according to [501], the assumption that
all the MAs of the RIS are in perfect condition may not
be always valid. This motivates an analysis towards the
localization approach tolerance to MA failures. Different
types of RIS exist, such as analog, hybrid, and digital. Cur-
rent contributions only deal with analog RISs. The benefits
from using hybrid and digital RISs need to be analytically
quantified. Another research question that waits to be answer
is concerning the feasibility and benefits of cascaded and
parallel multi-RIS localization systems. Moreover, the impact
of interference and transceivers hardware imperfections on
the performance of RIS-assisted localization systems needs
to be analytically assessed. Finally, most published contri-
butions present closed-form or analytical expressions for the
Cramer-Rao lower bound or a Fisher information analysis.
However, a number of other insightful KPIs exist, such as
localization energy efficiency, latency, coverage, etc. that are
necessary to be assessed.

2) INTELLIGENT PROTOCOL DESIGN
To make the most out of RIS-assisted localization system,
while providing adaptability to ever changing conditions,
an intelligent protocol that allows the exploitation of the
systems resources, namely space, frequency, and time need
to be developed. In more detail, the protocol should allow
co-design of beam code-words for both the source and
the RIS, selects the optimum bandwidth and timeslot for
localization. Moreover, it should coordinate the overall loca-
lization process allowing changing between beam codewords

when needed. Such a protocol should aim at maximizing the
localization system energy efficiency without compromising
its accuracy and stability. Likewise, the protocol should
take into account the nature of the system, i.e., operation
frequency band, as well as the type of the RIS, i.e., ana-
log, hybrid, digital. Finally, the protocol should provide
guidelines for the optimal RIS placement. To design such
protocol, researchers should formulate and solve a number
of optimization problems and combine their solution to a
reinforcement learning strategy that will ensure the system’s
adaptability.

D. HETEROGENEOUS SYSTEM DESIGN
To counterbalance the physical limitations of high frequency
wireless localization systems, simultaneous exploitation of
microwave and mmWave, THz, and optical bands is re-
quired. However, localization systems in different bands have
different localization range and accuracy. Moreover, their
range and accuracy depends on different phenomena, like
atmospheric conditions, size of the scatterers and obstacles,
and design parameters, such as antenna gains, beamform-
ing type, etc. Additionally, localization mechanisms have
to facilitate the co-existence of several technologies with
different coverage that follow different standards. As a result,
localization system heterogeneity can be: i) spectrum, and ii)
technology heterogeneity.

1) SPECTRUM HETEROGENEITY
Spectrum heterogeneity refers to scenarios in which the
localization agent uses both high (e.g., mmWave, THz,
optical) and low frequencies (e.g., microwaves). The higher
the localization frequency, the higher the localization accu-
racy and the lower the localization range. This observation
drives the idea of designing multi-band localizers capable
of determining the position of the object of interest in a
hierarchical manner. Specifically, such a localizer would use
lower frequency to find the location of an object that is
outside the high-frequency system range with low accuracy,
and high frequencies to increase the localization accuracy
of object that are inside their coverage area. A hierarchical
localization approach is required for such a localizer that
will allow efficient and fast localization of the object of
interest and boost its accuracy. Finally, an experimentally
verified theoretical framework that quantify the hierarchical
localizer performance and provides design guidelines is
needed.

2) TECHNOLOGY HETEROGENEITY
Technology heterogeneity introduces two scenarios, namely:
i) stand-alone and ii) integrated localization systems. In
stand-alone scenarios only one type of localization tech-
nology, such as sensors, radars, mmWave, THz, optical, is
used. On the contrary in integrated localization systems,
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more than one localization technologies are used. In the
later, identification of the technologies that could combined
without significantly negatively impacting the localizers en-
ergy efficiency needs to be performed. Another parameter
that need to be accounted for is the implementation cost.
Finally, algorithms for combining localization information
from different sources are necessary to be developed.

E. INTEGRATED LOCALIZATION AND COMMUNICATION
A radio signal can carry both the TX information and
localization-related data. As a consequence, a unified frame-
work for integrated communication and localization seems
to be a natural next step. Current cellular networks im-
plement localization functionalities separately from the
communication-related functions. The main reason behind
this approach has been the different design objectives that
these functionalities have. In more detail, the localization
system aims at maximizing its accuracy, while the commu-
nication system overall objective is to jointly maximize its
reliability, data rate, and transmission range through the wire-
less channel, which experience fading and noise. Therefore,
localization systems used to operate in high frequency bands,
where the short wavelength and antenna beamwidth allowed
them to pin-point the target with acceptable accuracy. On
the other hand, communication have only recently started to
exploit mmWave and THz transmissions. Thus, the time of
a localization and communication synergy has come [97],
[502]–[504]. In order to devise efficient and low-cost in-
tegrated localization and communication systems a number
of strategically designed steps, starting from fundamental
research and ending with the design of suitable protocols ca-
pable of operating in heterogeneous network environments,
need to be taken. Next, we identify and analyze these steps.

1) FUNDAMENTAL RESEARCH
As we move towards mmWave, THz, and optical bands, the
performance of integrated localization and sensing systems
are naturally expected to improve. However, new issues and
challenges need to be addressed, giving space to fundamental
research. Specifically, the research concerning THz channel
modeling as well as integrated localization and communica-
tion is still at the early stage. Next, we focus in these two
topics and provide some possible research directions.

Most published contributions in high-frequency integrated
localization and communication neglect the impact of multi-
ple scatters and obstacles and employ deterministic channel
models. However, in practice, the AOA as well as the
amplitude of the scattered signals are random processes. It
is of high importance to model the effect of non-LOS signals
and of scatters in order to allow the accurate integrated loca-
lization and communication system performance evaluation.
In this direction, new channel modeling methodologies based
on stochastic geometry, random shape theory and electro-
magnetic tools, like ray tracing or the finite element method,

need to be developed. Other phenomena that should be taken
into consideration in signal modeling are the wideband effect
as well as the impact of atmospheric conditions and/or the
transceivers hardware imperfections. Finally, the channel and
signal model should also account for the existence of smart
materials, such as RISs.

Building upon the new channel and signal models, a new
theoretical framework for the analysis of the performance
of integrated localization and communication systems needs
to be developed. This framework should return not only
conventional KPIs that quantify the performance either the
localization or the communication part of the system, but
also the novel KPIs that would be defined and allow the
assessment of the integrated localization and communication
system. Moreover, different system models that employ
different types of localizers with and without RISs, need
to be investigated. The derived expressions are expected to
bring insights and allow the optimization of the integrated
localization and communication system.

Finally, the existing body of research pertaining to in-
tegrated communication and sensing has reached a con-
siderable level of maturity. Nevertheless, the underlying
constraints of numerous such scenarios have yet to be
determined. For instance, in the case of a basic point-to-
point channel with mono-static sensing, the comprehensive
determination of the communication capacity and sensing
distortion region remains elusive when dealing with non-
i.i.d. channel and sensing states [60]. Additionally, it is
crucial to investigate the fundamental constraints within the
context of practical factors, including imperfect channel state
information, frequency offset, timing synchronization errors,
diverse mobility models, and other relevant considerations.
By conducting a thorough analysis of these fundamental
limits, one can effectively optimize the performance of the
system [62].

2) KPIS DEFINITION
As discussed in [505]–[508], there are several trade-offs
between localization and communication system goals. In
more detail, in [505], the authors discussed the localization
accuracy and communication data rate trade-off. In [506], the
authors revealed the localization accuracy, power efficiency,
data rate trade-off. Similarly, in [507], the authors high-
lighted the localization accuracy data rate trade-off in single-
user mmWave systems, while, in [508], the prior contribution
was extended in multi-user scenarios. The aforementioned
contributions revealed that there are a number of trade-
offs that need to be understood and balanced. To achieve
this, the current localization and communication KPIs may
be not enough. This motivates rethinking and redefining
or creating new KPIs capable of providing insights that in
turns optimize the localization and communication synergy.
Moreover, new KPIs, such as QoS, position availability,
position integrity, and more, may need to be defined that
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quantify the performance of specific applications. For exam-
ple, QoS may be a more significant KPI than localization
accuracy depending on the application scenario. Finally, for
a number of applications in which the reliability of position
information is a key design parameter, such as RIS or
UAV-empowered wireless systems, the position integrity and
availability may be the most important KPIs.

3) ADVANCED SIGNAL PROCESSING
Mobile terminals at various tiers of a multi-tiered network
may communicate with one another using distinct frequency
bands and independent communication paths. In such scenar-
ios, efficient and dynamic maintenance of wireless networks
is a key concern for integrated localization and communi-
cation. Maintenance and reconfiguration of wireless connec-
tions may be possible via dynamic resource management
and the utilization of multiple distinct frequency bands.
In addition, cross-layer data exchange depends on efficient
signal processing for its operation. In this respect, the use
of common hardware for localization and communication
services can provide high efficiency for signal processing
technologies in integrated communication and localization
services, as well as the required reusability of channel
estimation units for position extraction. As a result, the most
important challenge with respect to advanced signal pro-
cessing is achieving efficient co-design of signal processing
techniques and hardware architecture.

4) WAVEFORM DESIGN
Despite the fact that localization and communication wave-
form designs share a number of common key requirements,
including low-latency, low transceiver hardware complexity,
and high reliability, in the 4G and the 5G eras, signals and
systems for localization and communications were designed
separately [509], [510]. As we move towards higher fre-
quency wireless systems, the idea of designing a common
signal for localization and communication arises. To achieve
this, we need to determine optimal signal PSDs that satisfies
both the requirements of the localization accuracy and the
communication robustness to interference. For instance, the
Cramer-Rao lower bound of time-based ranging localization
systems can be expressed as in [60]

CRBθ = I−1(θ), (74)

with I(θ) denoting Fisher’s information matrix,that can be
written as

[I(θ)]ij = E

[
∂ ln p(y;θ)

∂θi

∂ ln p(y;θ)

∂θj

]
, (75)

and p(y;θ) denoting the likelihood function given the un-
known deterministic parameter vector, θ, and the measure-
ments, y.

Based on [509], for the localization perspective, a signal
that has its power concentrated to the edges of the spectrum

achieves better performance in terms of localization accuracy
in comparison to signals that their power is either uniformly
distributed or concentrated at the center of their spectrum.
From communications point of view, in order to reduce the
inter-symbol interference, signals are designed in a way that
their power is concentrated at the center of their spectrum.
This observation reveals that there is a trade-off in terms of
the PSD requirements for localization and communication.
To find the equilibrium, optimization problems for a number
of different system models is necessary to be formulated and
suitable policies need to be extracted. Finally, adaptability
and flexibility in terms of bandwidth, signal power, PSD
shape, etc. should be allowed in order to make the most in
real-time ever changing wireless environments.

Finally, OTFS has been recently proposed as a novel
2D modulation scheme [511]. OTFS has gathered atten-
tion as a potentially effective option for facilitating high-
mobility communications because it operates by modulating
information in the delay-Doppler (DD) domain, as opposed
to the time-frequency domain used in traditional OFDM
modulation. As a result, it offers significant advantages in
terms of resilience to delays and Doppler shifts, while also
providing the potential for full diversity, which is crucial for
ensuring reliable communication. Furthermore, the utiliza-
tion of OTFS modulation enables the conversion of a time-
varying channel into a two-dimensional quasi-time-invariant
channel within the domain of DD. This transformation al-
lows for the exploitation of the advantageous characteristics
associated with OTFS modulation. The majority of current
wireless system designs have been developed with a focus on
scenarios involving limited mobility and low carrier frequen-
cies. However, the introduction of OTFS presents novel and
significant challenges in both transceiver architecture and
algorithmic designs. In order to fully exploit the capabilities
of OTFS, it is imperative to tackle several OTFS-related
complex research challenges. These include the challenges
associated with channel estimation, detection, as well as the
development of multi-antenna and multi-user designs.

Given that the DD domain channel effectively utilizes the
principles of propagation, specifically the factors of distance,
speed, and scattering intensity, OTFS demonstrates a high
level of compatibility for the integration of both localization,
sensing, and communications capabilities within a unified
platform [226]. The current state of knowledge does not
include efficient localization and sensing algorithms that
can effectively leverage the signal structure of OTFS. The
exploration of the most advantageous balance between the
capabilities of localization, sensing, and communication con-
tinues to be a compelling unresolved inquiry. Furthermore,
the utilization of location and velocity as supplementary
data for enhancing communication performance presents a
promising avenue of research. Consequently, exploring the
potential of communications that rely on OTFS emerges as
a captivating and unexplored area of study.
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5) PRO-ACTIVE RADIO RESOURCE MANAGEMENT AND
ENVIRONMENT MAPPING
In order to reap the communication benefits of the proactive
radio resource management in areas like beam alignment,
channel prediction, cell selection, and more, high-precision
radio environment mappings will be necessary. The majority
of the radio environment mappings models that exist so far
has focused on 2D scenarios. With this in mind, more accu-
rate 3D localization in NLOS, and multi-path applications is
required for future 6G networks. In spite of the fact that a
number of effective multi-path and NLOS mitigation algo-
rithms have been proposed in the literature, these algorithms
are typically quite complex and are only practical for remote
localization systems as opposed to self-localization systems
where the UE must perform the computation and estimation.
However, for the sake of analytical simplicity, these studies
often only include first-order reflection, even though higher-
order reflections are common in dense multi-path settings
and might be crucial to localization in NLOS situations.
As a result, further research is required in order to develop
more precise and inexpensive localization methods for multi-
path scenarios while maintaining the UE’s communication
performance and allocating radio resources based on its
current position. Finally,despite the fact that precise location
data improves communication, a better understanding of the
underlying connection between varying levels of location
precision and transmission rates is required.

6) DESIGN OF INTEGRATED LOCALIZATION AND
COMMUNICATION PROTOCOLS FOR HETEROGENEOUS
NETWORKS
Future networks will become more diverse by using a
wide variety of standards and frequency ranges. For mobile
terminals that are constantly moving under unstable radio
conditions, the challenge of how to swiftly transition between
protocols is of paramount importance in order to maintain
reliable localization and communication. Since each network
layer can use a unique set of protocols, the creation of
logical links between them can be achieved by considering
the protocols as gateways. However, the need for cross-
layer, -module, and -node information transfer constitutes the
integrated protocol design crucial. Finally, a reevaluation of
the physical and MAC layers with respect to the protocol
design that takes into account localization in addition to the
communication metrics is required.

F. LOW EARTH ORBIT LOCALIZATION
In rural/remote areas that lack terrestrial infrastructure or
when the signals from the terrestrial infrastructure are
blocked due to obstacles, such as in mmWave/THz transmis-
sions, terrestrial- and LEO-based localization can be used
in integrated terrestrial non-terrestrial networks to achieve
the best from the two options. In future communication,
sensing, and localization applications, and, especially, po-

sitioning applications with LEO signals, there is currently a
dichotomy of approaches. On the one hand, existing systems
can be utilized to offer novel services to the end users,
while, on the other hand, completely new systems, such
as the ongoing efforts towards a LEO-PNT concept, can
be designed. In the former, the receiver is responsible for
most of the optimization work based on the assumption
that the necessary infrastructure is already in place. In the
latter, a three-segment optimization is required, which can be
achieved either simultaneously or in stages. In order to obtain
higher precision for localization with worldwide coverage,
future efforts on constructing unique LEO-PNT constella-
tions through optimization are focused on (i) integration of
6G and LEO networks, (ii) intelligent beamforming-based
localization, (iii) LEO-based edge computing, and (iv) equip
LEO satellites with GNSS receivers.

G. NEAR FIELD LOCALIZATION
The alteration of the characteristics of the electromagnetic
field can lead to the invalidity of certain wireless localization
and communication theories that were originally developed
under the assumption of far-field plane waves, when applied
in radiating near-field environments. Moreover, the heteroge-
neous nature of 6G networks, characterised by their diversity,
suggests that certain devices will employ electromagnetic
radiation not only for communication purposes but also
for environmental exploration, such as sensing and/or radio
frequency localization. The integration of distance-aware
channels is anticipated to improve wireless localization and
sensing capabilities. The utilisation of the spherical wave-
front’s degree of freedom has demonstrated the potential for
holographic localization, as indicated by initial findings. This
results in a significant enhancement of positioning accuracy
due to the incorporation of position information within
the wavefront. The utilisation of near-field operation offers
numerous advantages in terms of localization and commu-
nication. For instance, it can amplify the signal strength of
receivers that are being targeted, or provide an additional
level of control over multi-user interference by enabling
manipulation in both the angle and distance domains.

XI. CONCLUSION
The potential of the future 6G wireless system for lo-
calization was investigated in this article. In more detail,
the key localization-based applications and use cases for
the next generation of wireless networks were discussed,
and the technologies that enable localization services were
investigated. Moreover, models of mmWave/THz as well as
VLP localization wireless systems were presented, while also
taking into account both LOS and NLOS channels that were
generated by traditional reflectors as well as RISs. Also, the
major localization KPIs were described and mathematical ex-
pressions were provided when possible. Furthermore, SotA
traditional and learning-based localization techniques were
presented alongside their conceptual figures. Finally, the
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impact of all design aspects of future 6G wireless systems,
namely characteristics, assumptions, localization problem
formulation, and optimization, were discussed, while lessons
learned and future directions were extracted.
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[411] K. Bregar and M. Mohorčič, “Improving indoor localization using
convolutional neural networks on computationally restricted devices,”
IEEE Access, vol. 6, pp. 17 429–17 441, Mar. 2018.

[412] A. Mittal, S. Tiku, and S. Pasricha, “Adapting convolutional neural
networks for indoor localization with smart mobile devices,” in
Proceedings of the 2018 on Great Lakes Symposium on VLSI, May
2018, pp. 117–122.
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