Communication publiée dans un ouvrage (Colloques, congrès, conférences scientifiques et actes)
Natural Language to Code: How Far Are We?
Wang, Shangwen; Geng, Mingyang; Lin, Bo et al.
2023In Proceedings of the 31st ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE)
Peer reviewed
 

Documents


Texte intégral
3611643.3616323.pdf
Postprint Éditeur (955.65 kB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Résumé :
[en] A longstanding dream in software engineering research is to devise e ective approaches for automating development tasks based on developers’ informally-speci ed intentions. Such intentions are generally in the form of natural language descriptions. In recent literature, a number of approaches have been proposed to automate tasks such as code search and even code generation based on natural language inputs. While these approaches vary in terms of technical designs, their objective is the same: transforming a developer’s intention into source code. The literature, however, lacks a comprehensive understanding towards the e ectiveness of existing techniques as well as their complementarity to each other. We propose to ll this gap through a large-scale empirical study where we systematically evaluate natural language to code techniques. Speci cally, we consider six state-of-the-art techniques targeting code search, and four targeting code generation. Through extensive evaluations on a dataset of 22K+ natural language queries, our study reveals the following major ndings: (1) code search techniques based on model pre-training are so far the most e ective while code generation techniques can also provide promising results; (2) complementarity widely exists among the existing techniques; and (3) combining the ten techniques together can enhance the performance for 35% compared with the most e ective standalone technique. Finally, we propose a post-processing strategy to automatically integrate di erent techniques based on their generated code. Experimental results show that our devised strategy is both e ective and extensible.
Disciplines :
Sciences informatiques
Auteur, co-auteur :
Wang, Shangwen;  National University of Defense Technology, Changsha, China
Geng, Mingyang;  National University of Defense Technology, Changsha, China
Lin, Bo;  National University of Defense Technology, Changsha, China
Sun, Zhensu;  Singapore Management University, Singapore, Singapore
Wen, Ming;  Huazhong University of Science and Technology, Wuhan, China
Liu, Yepang;  Southern University of Science and Technology, Shenzhen, China
Li, Li;  Beihang University, Beijing, China
BISSYANDE, Tegawendé François d Assise  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > TruX
Mao, Xiaoguang;  National University of Defense Technology, Changsha, China
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Natural Language to Code: How Far Are We?
Date de publication/diffusion :
30 novembre 2023
Nom de la manifestation :
31st ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering
Date de la manifestation :
3-9 Décembre 2023
Numéro de la conférence :
31
Manifestation à portée :
International
Titre de l'ouvrage principal :
Proceedings of the 31st ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE)
Maison d'édition :
ACM, Washington, DC, Etats-Unis
Pagination :
375–387
Peer reviewed :
Peer reviewed
Focus Area :
Security, Reliability and Trust
Projet européen :
H2020 - 949014 - NATURAL - Natural Program Repair
Organisme subsidiant :
National Natural Science Foundation of China
European Research Council
Union Européenne
Disponible sur ORBilu :
depuis le 03 décembre 2023

Statistiques


Nombre de vues
105 (dont 1 Unilu)
Nombre de téléchargements
493 (dont 2 Unilu)

citations Scopus®
 
15
citations Scopus®
sans auto-citations
7
citations OpenAlex
 
14

Bibliographie


Publications similaires



Contacter ORBilu