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ABSTRACT

A longstanding dream in software engineering research is to devise

e�ective approaches for automating development tasks based on

developers’ informally-speci�ed intentions. Such intentions are

generally in the form of natural language descriptions. In recent

literature, a number of approaches have been proposed to auto-

mate tasks such as code search and even code generation based on

natural language inputs. While these approaches vary in terms of

technical designs, their objective is the same: transforming a devel-

oper’s intention into source code. The literature, however, lacks a

comprehensive understanding towards the e�ectiveness of exist-

ing techniques as well as their complementarity to each other. We

propose to �ll this gap through a large-scale empirical study where

we systematically evaluate natural language to code techniques.

Speci�cally, we consider six state-of-the-art techniques targeting

code search, and four targeting code generation. Through extensive

evaluations on a dataset of 22K+ natural language queries, our study

reveals the following major �ndings: (1) code search techniques

based on model pre-training are so far the most e�ective while

code generation techniques can also provide promising results;

(2) complementarity widely exists among the existing techniques;

and (3) combining the ten techniques together can enhance the
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performance for 35% compared with the most e�ective standalone

technique. Finally, we propose a post-processing strategy to auto-

matically integrate di�erent techniques based on their generated

code. Experimental results show that our devised strategy is both

e�ective and extensible.

CCS CONCEPTS

• Software and its engineering → Reusability; Automatic

programming.
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1 INTRODUCTION

Recommender systems are widely studied in software engineer-

ing research as they are concrete building blocks for improving

developers’ productivity [3]. A highly-sought achievement in this

domain is to e�ectively transform developers’ intentions, which

are generally speci�ed in natural language, into pieces of code [39].

Addressing such a challenge will alleviate some software develop-

ment burdens, and facilitate critical designs and implementation

choices such as selecting the appropriate programming interfaces

to use [25]. Indeed, developers in all levels of programming pro�-

ciency frequently ask questions of varying complexity about how to

implement speci�c functionalities [63]. For example, it is typical to

see developers having the intention to “remove a speci�c item from
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an array” look for related code in Q&A forums.1 Recent advances

in deep learning have enabled the development of promising tech-

niques in two lines of research towards transforming developers’

informally-speci�ed intentions (a.k.a queries that are generally in

the form of natural language descriptions) into source code: (1) code

search aims at retrieving a relevant piece of code within a large

codebase [8, 51, 65], while (2) code generation aims to synthesize

code from scratch [32, 66, 67]. In practice, to obtain the desired code,

a developer may leverage code generation techniques to generate

code directly, or retrieve relevant code snippets from a large-scale

codebase such as StackOver�ow. As a result, the application scenar-

ios of these two types of techniques could overlap with each other

to a certain degree [59, 63]. We refer to all such relevant literature

techniques as Natural Language to Code (NL2Code) techniques.

NL2Code techniques di�er in terms of various design aspects.

First, at a high level, the theoretical working mechanisms of code

search and code generation are di�erent: code search focuses on

mapping the semantic relevance between the query and an exist-

ing code snippet and directly returns the code with the highest

relevance score; code generation, in contrast, constructs a piece

of code from scratch. Second, they can be di�erentiated according

to whether a pre-trained model is used. Those that build on pre-

training techniques, such as GraphCodeBERT [18] and CodeT5 [60],

adopt a pre-training and �ne-tuning pipeline where deep learn-

ing models are �rst pre-trained on a large-scale corpus aiming at

capturing the semantic relation between natural language and pro-

gramming language, and then �ne-tuned on speci�c downstream

tasks. In contrast, those that do not rely on pre-trained models (re-

ferred to as non-pre-training techniques), such as MMAN [57] and

Tranx [67], train their models from scratch on relatively small-scale

labelled datasets. These training methods can signi�cantly a�ect

the e�ectiveness of NL2Code techniques. For instance, Zeng et al.

observed that pre-training techniques outperform non-pre-training

techniques on a number of code intelligence tasks such as code

clone detection [70]. Furthermore, according to the intrinsic di�er-

ence between code search and code generation, the former may

produce high-quality results if there exists a code snippet that is

similar to the intended functionality; on the contrary, the latter

may generate more reasonable results if there is no code snippet

for reference whose semantic is similar to the intention.

Although enormous e�orts have been made towards advancing

the NL2Code techniques [3, 12, 31, 48], the e�ectiveness of exist-

ing techniques has not been systematically studied and compared.

Particularly, in the literature, code generation and code search tech-

niques are often evaluated separately [17, 57, 67, 70], which means

that code generation techniques are compared to each other with-

out considering code search techniques, and vice versa. As a result,

little is known about their complementarity with each other, i.e.,

can the query ine�ectively handled by one technique be addressed

well by another? There is thus an urgent need for a comprehensive

empirical study comparing and analyzing the e�ectiveness of the

state-of-the-art NL2Code techniques based on a large number of

NL descriptions. Such a study is necessary and essential, which can

help us �nd the answers to important questions when designing

NL2Code techniques in the future. For instance, which is the most

1A related question: https://stackoverflow.com/questions/5767325

e�ective NL2Code technique so far and what is the common weak-

ness of existing NL2Code techniques? Moreover, to what extent do

existing NL2Code techniques complement each other and whether

the integration of them can enhance the performance? Answering

such questions can provide practical guidance for studies within

this �eld. Driven by this, Xu et al. [63] took the �rst step in this

direction, but their user study is limited in its scale due to the exten-

sive human intervention. Speci�cally, only 14 functionalities and

two NL2Code techniques were investigated.

In this paper, we aim at �ll the gap by performing the �rst large-

scale empirical study that evaluates the e�ectiveness of both code

generation and code search techniques collectively under a con-

trolled experiment setting. Speci�cally, our study covers ten state-of-

the-art NL2Code techniques, including six code search techniques

and four code generation techniques, on a comprehensive bench-

mark containing 22K+ natural language queries. Our experiment

setting is user-oriented. First, we aim to evaluate how similar the

code returned by an NL2Code technique is to the oracle and we

use the CodeBLEU metric [46] to compare the similarity between

the returned result and the oracle code with respect to the tokens,

syntactic structures, and data �ows. Second, to mimic real-world

scenarios, we remove the oracle code (i.e., the code snippet that

corresponds to each query) from the search space of code search

techniques. The rationale behind this is that in practice, devel-

opers can hardly �nd exactly what they want from the codebase

[6, 7, 15, 63]. Third, we evaluate the e�ectiveness of current tech-

niques to generate method-level code snippets, which is the most

desirable granularity for developers compared with other granular-

ities (e.g., variables and statements) [37, 50].

Our study makes the following important �ndings:

F1: The e�ectiveness of code generation techniques is promis-

ing and exceeds that of the non-pre-training code search

techniques. However, the state-of-the-art pre-training based

code search technique is still the most e�ective one among

the NL2Code techniques.

F2: Accurately generating program identi�ers is a universal chal-

lenge for both code search and code generation techniques

since they generally achieve relatively low token similarities

to the oracle.

F3: Existing NL2Code techniques complement each other well: if

we combine all the ten selected techniques, we can enhance

the performance of over 35%with respect to Top-1, compared

to the most e�ective standalone technique.

F4: Combining code search with code generation or di�erent

code search techniques demonstrates promising results.

Moreover, we design a post-processing strategy that re-ranks

the results from di�erent techniques based on the number of over-

lapped tokens with the query. Our results show that such a combi-

nation strategy is e�ective: by combining the most e�ective code

search and code generation techniques, we can gain an e�ective-

ness improvement of 16% and 35% with respect to the top-1 results,

compared with each standalone technique. Furthermore, it is also

extensible: further e�ectiveness enhancement could be achieved

by involving more techniques for combination.
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2 BACKGROUND AND RELATED WORKS

2.1 Code Search

Code search (CS) aims at helping developers retrieve some im-

plementations that can serve as references for their development

activities [9, 38, 47, 62]. Given a natural language (NL) query from

the developer, CS searches for the relevant code snippets from a

large-scale code corpus. Traditionally, this process is mainly done

by the information retrieval technique such as keyword matching

[34, 37]. However, these techniques are known to be suboptimal

at capturing the semantic relations between code and natural lan-

guage queries [17]. Later on, researchers have proposed various

deep-learning-based approaches to bridge the semantic gaps. For

instance, Gu et al. [17] propose DeepCS which jointly embeds code

snippets and natural language descriptions into a high-dimensional

vector space, where code snippets and queries can be matched ac-

cording to their similarities. Wan et al. [57] design a multi-modal

attention network that aggregates information from the token se-

quence, abstract syntax tree (AST), and control �ow graph (CFG)

for representing programs.

2.2 Code Generation

Code generation aims at directly generating source code according

to software requirements [32]. Traditional approaches leverage for-

mal methods to automatically generate source code [19, 61], but the

formal speci�cations are hard to create [32]. With the advances in

deep learning, researchers propose to automatically learn the trans-

formations from the requirements to source code. Speci�cally, Ling

et al. [29] treat code generation as sequence-to-sequence translation

and build a neural network that targets general-purpose program-

ming languages like Python. Dong et al. [13] explore the idea of

using two decoders in the code generation task, where the �rst one

aims at predicting a rough program sketch and the second one �lls

in the details.

2.3 Pre-Training Techniques

Training a deep learning model from scratch usually needs a large

amount of task-speci�c annotated data, which is hard to collect

in practice. To overcome this limitation, pre-training techniques

have been proposed in recent years. The core idea is to pre-train a

model on one or more self-supervised tasks where large amounts

of training data are readily available so that the network weights

can encode some commonsense knowledge compared with ran-

domly initialized. After that, with a small amount of task-speci�c

data, the pre-trained models can be �ne-tuned in the traditional

supervised manner. Recently, researchers have build several pre-

trained models for programming language (PL) by using the large

amount of bimodal instances of NL-PL pairs (i.e., the source code

and its corresponding comments) [18, 36, 60]. A recent study [70]

investigated the existing pre-trained models for PL on standalone

downstream tasks (i.e., code search and code generation are sepa-

rately evaluated). In contrast, our study includes both pre-training

and non-pre-training techniques and investigates their strengths

and weaknesses in a controlled Natural Language to Code experi-

ment setting (i.e., using the identical queries and the oracle code is

removed from the search space for code search techniques).

Table 1: Selected techniques in this study.

Code Search Code Generation

w/o pre-training

Self-attention [23],
Tree-LSTM [55],
GGNN [69],
Multi-modal [57]

Tranx [67]

w/ pre-training
CodeBERT [14],
GraphCodeBERT [18]

CodeT5 [60],
NatGen [10],
SPT-Code [42]

3 STUDY DESIGN

3.1 Selected Techniques

Over the years, a large number of code search and code genera-

tion techniques have been proposed [26, 31]. Therefore, it requires

tremendous engineering e�orts to evaluate all of them. In this study,

we select representative techniques and we leave the exploration of

more techniques as our future work. Totally, we use ten NL2Code

techniques, including six code search techniques and four code

generation techniques. Those techniques can be classi�ed into two

types according to whether they use pre-training and Table 1 lists

the categorization. The selected techniques have served as the base-

lines for a number of studies [49, 53, 54, 73] and achieved promising

results in recent replication studies [9, 32, 52, 70], and thus they

can represent the state of the art well. For instance, through a com-

prehensive comparison among existing pre-training techniques

(e.g., PLBART [2] and CodeGPT [33]), Zeng et al. [70] found that

GraphCodeBERT and CodeT5 achieve the best performance on code

search and code generation, respectively. The following brie�y in-

troduces each of the selected techniques.

3.1.1 Code Search. Typically, a code search technique should em-

bed both the code snippet and the query into vectors, after which

the relevance between the code and the query can be calculated. For

the selected four non-pre-training techniques, the approach used to

embed queries is identical: we use an encoder with six Transformer

blocks [56] to deal with the natural language token sequence plus

with byte-pair encoding (BPE) [16] to split tokens. In the following

four paragraphs, we introduce how to embed the code snippets.

Self-a�ention. This is a baseline proposed by Husain et al. [23].

It treats code as token sequences and uses an encoder of the Trans-

former architecture to embed such sequences. This approach mim-

ics the work�ow of the well-known DeepCS [17] (i.e., both ap-

proaches treat programs as code tokens) but is expected to establish

a more advanced e�ectiveness baseline, as the Transformer archi-

tecture is known to perform well on the long-term dependency

problem faced by the Recurrent Neural Networks (RNN) [56], which

is used by DeepCS.

Tree-LSTM. Tree-LSTM is an approach that generalizes the Long

Short-Term Memory (LSTM) network to tree-structured topologies.

Initially, it targeted at capturing the syntactic properties of natural

languages [55] and it was �rstly applied to the ASTs of programs

by Wan et al. [57].

GGNN. Zeng et al. [69] propose to construct the variable-based

�ow graph that depicts data and control �ows in the program. Such

graphs are constructed by transforming the programs into their

Intermediate Representations (IRs) [1], extracting the identi�ers

in each IR instruction as nodes, and building dependencies among

nodes. After that, a Gated Graph Neural Network (GGNN) is used
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to generate the embedding for the graph, which is also the repre-

sentation of the code.

Multi-modal.With the intuition that aggregating information

from multiple modalities of source code can enrich its representa-

tion,Wan et al. [57] proposeMMAN that utilizes the token sequence,

the AST, as well as the graph information of a program. In this pa-

per, we rebuild the multi-modal learning model via fusing the three

aforementioned approaches (Self-attention + Tree-LSTM + GGNN).

It should be noted that the rebuilt multi-modal learning model is

supposed to perform better than the vanilla MMAN, since MMAN

only involves control �ow information while the GGNN approach

involves both data and control �ow information.

CodeBERT. CodeBERT [14] is a Transformer-based pre-trained

model for programming languages like Python and Java. It has

two tasks in the pre-training stage which are masked language

modeling and replaced token detection. To apply the pre-trained

model on the code search task, the representation of a special token

[CLS] (the beginning token of the input) is used to measure the

semantic relevance between the code snippet and query.

GraphCodeBERT. Guo et al. [18] take data �ow information

into consideration in the pre-training stage. In addition to masked

language modeling, there are two newly-proposed structure-aware

tasks in the pre-training, i.e., edge prediction and node alignment.

Then, the work�ow of applying the pre-trained model to code

search is identical to that of CodeBERT.

3.1.2 Code Generation. Tranx. Tranx [67] predicts a sequence of

actions to construct an AST, based on which the source code is

generated. It �rst de�nes an abstract syntax description language

framework, which is a grammatical formalism of ASTs. Based on

that, three types of actions are predicted at each time step to expand

the tree until the whole tree is constructed. Note that a number of

follow-up studies rely on the grammar rules introduced by Tranx

to construct ASTs [24, 53, 54]. Therefore, we select Tranx as the

representative technique.

CodeT5. CodeT5 [60] follows the T5 architecture [45] with the

input being the sequence of code and text tokens and the output

also in a sequential format. One specially-designed pre-training

task is NL-PL dual generation in which the model learns to generate

code from texts and generate texts for code simultaneously. After

pre-training, CodeT5 can be naturally adapted to code generation

due to its encoder-decoder framework. A number of follow-up

studies rely on the pre-trained parameter values of CodeT5 [27],

so we select CodeT5 as the representative pre-training-based code

generation approach. The authors of CodeT5 provide two versions

of this model, which have di�erent parameter sizes. We use CodeT5-

base in this study since it is more e�ective [60].

NatGen. NatGen [10] is designed based on CodeT5 and incor-

porates an extra pre-training task, “Code Naturalizing”, which is

designed to teach the model how to transform unnatural code into a

more natural, human-written form. This additional task is intended

to encourage the model to better understand the underlying se-

mantics of the code, and thus enhance the model’s capability on

generating code that closely resembles human-written ones.

SPT-Code. SPT-Code [42] is another state-of-the-art pre-trained

model with the encoder-decoder framework. The input to the

SPT-Code model during the pre-training stage di�ers from that

of CodeT5 in two ways. First, its input includes the Abstract Syntax

Tree (AST) of the code, which enables it to leverage syntactic infor-

mation. Second, to eliminate the need for a bilingual corpus (i.e.,

a code snippet paired with a corresponding comment), SPT-Code

leverages the method name and the names of the methods that are

called within that method as a natural language description of the

source code being analyzed.

Exclusion. A branch of study focuses on utilizing the retrieval

results to guide code generation [20, 21]. We exclude them from

this study since (1) the retrieval-and-edit approach [20] assumes

that the input and output of the method is already known and the

method is partially written, which is unfair to our study subjects

(i.e., we do not require prior knowledge); and (2) ReCode [21] is built

on top of a set of suboptimal grammar rules, which is not as general

as Tranx. We also exclude a recently-proposed code generation

approach, PyCodeGPT [68], since it only supports generating code

that reuses the third-party libraries Pandas and NumPy, which is

not general enough.

3.2 Dataset

We select the widely-used CodeSearchNet dataset [23] as our eval-

uation benchmark, which is mined from popular GitHub projects

(in terms of the number of stars and forks). In our study, we focus

on the bimodal data (i.e., the code snippet and its associated docu-

mentation) by treating the documentation as the natural language

query and the code snippet as the ground truth. Code in this dataset

are all method-level snippets, and our study thus focuses on the

e�ectiveness of existing techniques at the method level. To keep in

high-quality, this dataset has already been pre-processed by several

steps. For instance, any documentation shorter than three tokens

is removed since it might not be informative, and any code snippet

shorter than three lines is also removed since it is likely to be get-

ters and setters. We explicitly focus on the Python language in this

study since Python is the most widely targeted general-purpose

programming language in the code generation domain [32, 66, 67],

and our selected Tranx only supports the Python language so far.

The dataset has already been split into the training/validation/test

sets by the authors of CodeSearchNet, and the training set has

been used for pre-training, which means the cross-validation on the

whole dataset is inappropriate (doing so will favor pre-training tech-

niques due to the data leakage). Therefore, we evaluate NL2Code

techniques on the �xed test set, following existing studies [18, 60].

In the end, our dataset contains 412,178/23,107/22,176 code-query

pairs for training/validation/testing, respectively.

3.3 Research Questions

RQ1: How e�ective are existing techniques on transform-

ing natural language descriptions into source code?We �rst

systematically investigate the e�ectiveness of each individual tech-

nique as summarized in Table 1 on generating method-level code

snippets based on natural languages. Beyond the traditional setting

where the oracle code snippets are within the search space of code

search techniques, we design a new experiment setting in this RQ

where we assume the oracle does not exist in the search space and

perform the search on the left 22,175 code snippets in the test set.
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Previous studies have shown that developers usually need to mod-

ify the retrieved code snippets to adapt them to the local contexts

[6, 7, 15, 63], which means that, in a realistic scenario, the desired

code snippets can rarely be directly retrieved. Speci�cally, Gabel

and Su [15] investigated the syntactic uniqueness of source code and

found that redundancy usually exists only at the line level, while at

the method level, which is our investigated granularity, near-total

uniqueness was observed. More recently, in the user study per-

formed by Xu et al. [63], users modi�ed 18 tokens of the retrieved

code chunks (several lines of code) on average, and such a number

is expected to increase when it comes to the method level. Con-

sequently, our oracle-excluded setting mimics the real application

scenario where the users search for the results from a large-scale

corpus that does not contain the exactly desired code snippet and

see how useful the retrieved results could be. Evaluations under

such a user-oriented setting can help us better understand the use-

fulness of code search techniques in real-world scenarios. This is

thus the basic setting of this study and our follow-up investigations

are based on the results obtained from this setting.

RQ2: Do di�erent techniques complement each other? In

this RQ, we aim to investigate if di�erent techniques tend to per-

form similarly on the same queries or if they exhibit performance

di�erences on certain queries. As we have introduced, existing tech-

niques can be characterized in di�erent aspects, such as using either

search or generation strategy, with or without pre-training. This

question investigates whether such di�erences in the design spaces

lead to certain complementarities with respect to their e�ective-

ness. The answer is essential to our further investigations: we could

be able to design a combinational strategy to integrate di�erent

techniques only if they demonstrate certain complementarities.

RQ3. Can we go beyond the state of the art by combining

existing techniques? Based on the experimental outputs obtained

from the previous RQs, we further seek to investigate whether

combining di�erent techniques can achieve better performance.

We propose to investigate two sub-questions:

• RQ3.1 What is the best performance achievable by combining dif-

ferent techniques?We�rst aim to investigate the best performance

achievable via combining di�erent techniques, whose results will

pave the way for the following question:

• RQ3.2 Can we automatically combine di�erent techniques? Reach-

ing the best performance requires manually inspecting a number

of results, which would be time-consuming. We further seek to

design a novel strategy that is able to combine di�erent tech-

niques automatically.

3.4 E�ectiveness Assessment

To jointly evaluate code generation and code search, we focus on

assessing the similarity between the predicted result and the oracle

code. Speci�cally, we decide to use four metrics following the exist-

ing study [10], including Token match (TM) which is calculated

by the standard BLEU [43] and aims to re�ect the similarity be-

tween the token sequences of the predicted and oracle code; Syntax

match (SM) which aims to evaluate code quality from the natural

tree structure of programming language (i.e., the AST); Data�ow

match (DM) which aims to evaluate the semantic information

of code through the dependency relations among variables; and

Table 2: E�ectiveness of Each Selected Technique (in %).

Techniques
Top-1 Top-5

TM SM DM CB TM SM DM CB

Tranx 2.5 19.2 25.5 12.7 2.7 21.3 28.2 14.0

CodeT5 9.2 27.3 39.5 22.2 10.2 29.2 42.3 23.9

NatGen 9.5 24.2 36.2 21.0 9.6 25.0 38.1 21.7

SPT-Code 3.4 16.9 37.2 16.3 3.8 18.8 40.8 17.9

Self-attention 32.1 47.6 58.7 42.8 55.8 69.2 79.8 65.4

Tree-LSTM 21.4 39.3 52.1 33.8 43.1 60.4 73.9 55.5

GGNN 21.6 39.5 52.2 34.0 43.8 60.9 74.3 56.0

Multi-modal 34.0 49.0 60.0 44.5 56.7 69.8 80.2 66.1

CodeBERT 60.2 70.4 74.9 66.8 82.0 87.8 90.7 85.9

GraphCodeBERT 61.6 71.5 76.0 68.1 83.1 88.6 91.4 86.8

Self-attention w/o oracle 1.4 23.8 40.0 16.9 1.7 31.6 54.9 23.0

Tree-LSTM w/o oracle 1.4 23.9 40.1 17.0 1.7 31.7 54.9 23.0

GGNN w/o oracle 1.4 23.9 40.0 17.0 1.7 31.6 54.9 23.0

Multi-modal w/o oracle 1.4 23.8 40.2 17.0 1.7 31.6 54.8 23.0

CodeBERT w/o oracle 9.9 33.5 44.3 25.4 15.9 44.0 56.8 34.7

GraphCodeBERT w/o oracle 10.2 33.9 44.7 25.8 16.4 44.5 57.1 35.1

The bold name means the technique requires pre-training. The green cell
denotes the oracle is excluded from the search space of code search techniques.
The optimum performances of generation/search techniques are in bold.

CodeBLEU (CB)which is a combination of the above three metrics

and provides a holistic perspective to the quality of generated code.

Readers can refer to [46] for more details about these metrics.

In this study, we calculate the similarity for the top-1 results

of each technique as well as the maximum values from the top-

5 results. The rationale is that as suggested by the prior study,

developers only inspect a few results returned by recommendation

tools [44].

3.5 Experiment Setting

All our experiments were performed on a server which possesses 8

NVIDIA Tesla V100 with 32GBmemory. Note that to alleviate poten-

tial reproducible bias [70], the selected non-pre-training techniques

are trained from scratch and the pre-training ones are �ne-tuned by

ourselves. Since all of our selected techniques open sourced their

artifacts on GitHub, we reused the original implementations as well

as the values of the hyper-parameters selected for �ne-tuning, to

avoid potential bugs in our implementation as well as enhance the

reliability of our results. Note that initially GGNN [69] targeted C

language. To apply it to Python, we use the Dismodule2 to generate

the IRs, after which the graph can be generated based on the scripts

released by the authors. SPT-Code was not evaluated on the code

generation task in the original study [42]. To �ne-tune it on this

task, we reuse the hyperparameters used to �ne-tune this model on

the code summarization task, which can be considered as another

generation task.

4 STUDY RESULTS

4.1 RQ1: E�ectiveness of Existing Techniques

For each technique, we calculate the metrics of the code produced

by them for each query and the mean values on the whole test set

are shown in Table 2. The mean value is one of the most repre-

sentative statistics and it has been widely used by existing studies

to assess the performances of di�erent techniques [10, 53, 60, 70].

From the results, we �rst note that compared with non-pre-training

techniques, pre-training techniques generally achieve better per-

formances. For instance, the CB of CodeT5 with respect to the top-1

2https://pypi.org/project/dis/
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result is 22.2%, which exceeds that of Tranx (i.e., 12.7%) by 75%. Simi-

larly, the CB of CodeBERTwith respect to the top-1 result, when the

oracle is excluded from the search space, is 25.4%, which exceeds

that of Multi-modal (i.e., 17.0%) by around 50%. Furthermore, we

note from the results that the most e�ective NL2Code technique so

far is GraphCodeBERT, with the CB score of 25.8%. This is within

our expectation considering that pre-training techniques require

much more data (e.g., GraphCodeBERT and CodeT5 are pre-trained

on data from six programming languages) and thus can preserve

more domain knowledge [70]. We also note that compared with

the other two pre-training-based code generator (i.e., CodeT5 and

NatGen), SPT-Code achieves comparatively low performances. One

possible explanation, as introduced in Section 3.1, is that the pre-

training phase of SPT-Code relies on method names (which may

be syntactically incomplete) to approximate the natural language

description of the code. This setting could potentially reduce its

ability to align natural language and programming language and

generate code from natural language inputs.

Finding-1 ☞ The pre-training techniques achieve better perfor-

mances than non-pre-training techniques for both code generation

and code search. The most e�ective NL2Code technique so far is

GraphCodeBERT with the CodeBLEU of 25.8%.

We also �nd that with removing the oracle from the search space,

the e�ectiveness of code search techniques decreases signi�cantly.

Speci�cally, the CB of the state-of-the-art code search technique,

i.e., GraphCodeBERT, with respect to the top-1 results when the

oracle code is involved/excluded is 68.1%/25.8%, respectively, and

the other �ve search techniques undergo the similar decreases

when the oracle is excluded. By further investigating its search

results, we �nd that with oracle involved, it can rank the oracle

code at top-1 for 12,672 queries, which account for nearly 60%

of the total queries (12,672/22,176). That is why it can achieve a

high CBwith the oracle involved. Among the non-pre-training code

search techniques,Multi-modal achieves the best performancewhen

the oracle is involved with the CB of 44.5%. However, these four

techniques achieve nearly identical e�ectiveness when the oracle is

excluded, with respect to both top-1 and top-5 results. Speci�cally,

their CBs with respect to the top-1 and top-5 results are all around

17.0% and 23.0% respectively. Such results may indicate that there

is a gap between the current evaluation of code search techniques

and their real usefulness in practice. Indeed, the current evaluation

always assumes the existence of the exactly matched code in the

search space [17, 52, 57], which ampli�es the usefulness of code

search techniques. We thus call for a user-oriented evaluation for

future studies, that is, to investigate to what extent the retrieved

results could help developers when what they exactly need may

not be retrieved.

Finding-2 ☞ If the oracle does not exist in the search space, the

e�ectiveness of code search techniques decreases signi�cantly.

Another phenomenon we observe is that comparing with focus-

ing only on the top-1 results, the e�ectiveness of the code search

techniques increases signi�cantly if the top-5 results are consid-

ered, while that of the code generation techniques nearly remains

Figure 1: The CBs of the syntactically correct (incorrect) top-1 code

snippets generated by CodeT5.

unchanged. Speci�cally, without the oracle, the CBs of GraphCode-

BERT when considering top-1/top-5 results are 26.1%/35.3% respec-

tively, an increase of 35% when all the top-5 results are considered.

In contrast, those of CodeT5 are 22.2% and 23.9% respectively, with

only slight enhancement. Such results suggest that the most quali-

�ed candidate code snippets are sometimes not ranked at the top-1

positions for code search techniques while the top-1 generated

code snippets usually reach the optimum. Therefore, recommend-

ing more results from the returned lists to the users could be useful

for code search, but such usefulness would not be signi�cant for

code generation. Despite that, we �nd the top-1 results from code

generation techniques are already promising: they can be more

similar to the oracle code compared with the retrieved results of

certain code search techniques. For instance, the CB of CodeT5

with respect to the top-1 results is 22.2% while those of the four

non-pre-training code search techniques are around 17.0%.

Finding-3 ☞ Unlike code search techniques that sometimes do

not rank the best candidates at the top-1 positions, code generation

techniques usually predict the optimum results at the top-1 posi-

tions, and their e�ectiveness can exceed that of non-pre-training

code search techniques.

We further investigate the promising results achieved by CodeT5,

the best performing code generation technique. Since it directly

generates the token sequence without any grammatical guideline

(unlike Tranx), one critical concern is that the generated code might

be syntactically incorrect. Our investigation shows that the gener-

ated top-1 code snippets are syntactically correct for 19,340 queries,

accounting for 87% of the queries in the test set. We also dissect

the CBs of these syntactically correct/incorrect code snippets and

demonstrate the results in Figure 1. We �nd that the medians of the

CBs of syntactically correct/incorrect code are very similar (22.3%

vs. 21.0%) and the di�erences between the two groups are not sta-

tistically signi�cant (i.e., with the p-value > 0.05 in a one-sided

Mann-Whitney U-Test [35]). This indicates that being syntactically

correct or not does not necessarily a�ect the metric value of the gen-

erated code. It also indicates that more metrics are needed to better

re�ect the syntax di�erences of di�erent code. We perform further

analysis towards such incorrect cases and �nd that CodeT5 often

generates a block of code recurrently. The incorrectness happens

when the token sequence exceeds a pre-de�ned length determined

by the hyper-parameter (which means CodeT5 stops generating

more tokens) while the current line is not �nished. Therefore, such

incorrect code still ful�lls certain functionalities and thus can have

high CBs. We give an example in our online repository.

Finding-4 ☞ Being syntactically correct or not does not neces-

sarily a�ect the CBs of code generated by CodeT5.
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We also carefully check our experiment results. We �nd that our

results are generally consistent with those reported in previous

studies. For instance, for four non-pre-training code search tech-

niques, our results show that if the oracle is involved, combining

information from multiple modalities can achieve the best perfor-

mance and the token sequence information is the most rewarding

single modality (i.e., Self-attention achieves higher CB than Tree-

LSTM and GGNN). This is identical to the phenomenon reported

by Wan et al. [57]. We note the TM of Tranx (2.5%) is signi�cantly

lower than the value reported in the previous study [32], which

is 18.4%. After further investigation, we �nd that their dataset is

from contest programs in which the identi�ers are usually simple

but meaningless like i, j, and k. On the contrary, our dataset is

from real-world open-source projects in which each identi�er is ex-

pected to express rich semantic information and thus may be more

complex (e.g., camel cases and underscore naming conventions [5]).

Since TM, the standard BLEU, focuses on the identi�er matching

relations, we consider our result as reasonable: it re�ects that cur-

rently semantic-meaningful identi�ers in real-world projects are

di�cult to predict.

Indeed, our results illustrate that for all the involved techniques,

their TMs are signi�cantly lower than their SMs and DMs, indicat-

ing that the inability to accurately generate identi�ers is a universal

weakness of the existing code generation/search techniques (please

note the identi�er name is ignored when calculating SM and DM).

This can be explained by the fact that program identi�ers usually

demonstrate uniqueness. For instance, Nguyen et al. [41] found

that more than 60% of the method names occur only once among

14K+ projects. Suppose an identi�er in the oracle code is unique,

the retrieved results will not match with it, and similarly, the gen-

eration techniques seem unlikely to generate it since it may not

be involved in the vocabulary from which the output is predicted.

A concrete example is shown in Listing 1. In this case, the query

expresses the intention to remove quotes from a string. We �nd that

the semantics of the code generated by CodeT5 is nearly identical to

that of the oracle code, except that it fails to check if the string starts

and ends with double quotes (in Python, a string can be wrapped

with either single or double quotes). Therefore, the SM and DM of

CodeT5 are extremely high, both exceeding 70%. However, CodeT5

fails to accurately predict the names of the identi�ers. For instance,

it uses s to represent the input string parameter while in the oracle,

this identi�er is named as istr. Since this identi�er occurs for

many times in the code, the TM of CodeT5 is thus only 13.1%, a

relatively low value. This case also reveals that relying solely on

the BLEU value to evaluate the generated code is potentially biased,

demonstrating the rationale of a more comprehensive metric like

CodeBLEU.

Finding-5 ☞ Producing accurate program identi�ers is a univer-

sal challenge for both generation and search techniques.

4.2 RQ2: Complementarity of Existing
Techniques

To investigate the complementarity of existing NL2Code techniques,

for each technique pair, we compute the Pearson correlation (A ) [4]

with respect to their CBs achieved on each query (we focus on CB

1 # Code generated by CodeT5

2 def _remove_quotes(s):

3 if s[0] == "'" and s[-1] == "'":

4 return s[1:-1]

5 else:

6 return s

7

8 # Oracle code

9 def unquote_ends(istr):

10 if not istr:

11 return istr

12 if (istr[0]=="'" and istr[-1]=="'") or \

13 (istr[0]=='"' and istr[-1]=='"'):

14 return istr[1:-1]

15 else:

16 return istr

17

18 # Code retrieved by GraphCodeBERT

19 def strip_email_quotes(text):

20 lines = text.splitlines()

21 matches = set()

22 for line in lines:

23 prefix = re.match(r'^(\\s*>[ >]*)', line)

24 if prefix:

25 matches.add(prefix.group(1))

Listing 1: The code generated by CodeT5, the oracle code, and the

code retrieved by GraphCodeBERT for the query “Remove a single

pair of quotes from the endpoints of a string”.

here since it represents the overall e�ectiveness). Pearson correla-

tion is a widely used metric to assess the correlation degree between

two sets of data [11, 22]. Theoretically, a high Pearson correlation

coe�cient suggests that the two sets of data follow a similar trend.

In our context, it means two techniques may have similar CBs for

a speci�c query. In contrast, if two techniques have a relatively

low Pearson value, it suggests that there is little or no correlation

between their CBs. This indicates the potential existence of queries

on which the two techniques achieve rather di�erent CBs. In such

cases, they could be considered as complementary to each other.

For instance, if two techniques exhibit identical performances on

each query, their Pearson value would reach the maximum value of

1. However, they may not complement each other well because they

share similar e�ectiveness towards the same inputs. Our interpreta-

tion of A is based on the previous study [22]: negligible correlation

(|A | < 0.3), low correlation (0.3 ≤ |A | < 0.5), moderate correlation

(0.5 ≤ |A | < 0.7), high correlation (0.7 ≤ |A | < 0.9), and very high

correlation (0.9 ≤ |A | < 1).

Results are shown in Figure 2. We observe that according to the

Pearson correlation values, the selected techniques can generally

be classi�ed into three clusters as highlighted: the code generation

techniques, the non-pre-training code search techniques, and the

pre-training code search techniques. For techniques in each cluster,

they have a relatively high correlation with each other, and a rela-

tively low correlation with those from other clusters. Speci�cally,

in Figure 2a, Tranx and CodeT5 have moderate Pearson correlation

between them (i.e., 0.54). Similarly, CodeBERT and GraphCodeBERT

have high Pearson correlation (i.e., 0.76). As for the four non-pre-

training code search techniques, they all have moderate Pearson

correlation between each other (e.g., the value between Tree-LSTM

and GGNN is 0.65). In contrast, the Pearson correlation between

cross-cluster techniques is usually low or negligible (e.g., the value

between Multi-modal and GraphCodeBERT is 0.22), demonstrating

the e�ectiveness of such techniques is weakly correlated. We also
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(a) Pearson correlation for CBs of the top-1 results (b) Pearson correlation for CBs of the top-5 results

Figure 2: Pearson correlation results for the selected techniques.

note that the highest Pearson value (i.e., 0.76 between GraphCode-

BERT and CodeBERT) is still lower than 0.9 (the threshold of the

very high correlation degree). This indicates that the e�ectiveness

of two highly-correlated techniques may still di�er to a certain

degree on speci�c queries. We also observe the similar trend in

Figure 2b. Such results indicate that complementarities widely exist

among existing techniques.

Figure 3 illustrates the relationship among three representative

techniques of each cluster (the ones with the highest e�ectiveness

in each cluster, i.e., GraphCodeBERT, CodeT5, andMulti-modal) via a

Scatter plot. The x and y values of each scatter denote the CodeBLEU

values of two di�erent techniques achieved on a speci�c query. We

investigate both top-1 and top-5 results and �nd similar trends, so

we only show the top-1 results here. For ease of comparison, we also

draw the line y=x in the �gure. Scatters above this line represent

that the technique denoted by the vertical axis outperforms the

technique denoted by the horizontal axis on those queries and vice

versa. We observe that no technique can consistently outperform

the other competitor: even the most e�ective one, GraphCodeBERT,

can still perform worse on speci�c queries, compared with CodeT5

or Multi-modal. This further shows the complementarity of the

existing techniques.

Finding-6 ☞ Existing NL2Code techniques are complementary

since (1) they can generally be classi�ed into three clusters with

high intra-cluster Pearson correlations and low inter-cluster Pear-

son correlations; and (2) no technique can consistently outperform

the others on all the queries.

Case analysis. To demonstrate the complementarity of existing

techniques, we analyze two cases here. The �rst is shown in Listing 1

where we also list the retrieved result from GraphCodeBERT for

the same query. Due to space limitation, we only show the �rst

several lines. We recall that CodeT5 achieves a high CB on this query

(i.e., higher than 50%). We note that both the syntactic structure

and the tokens of the code returned by GraphCodeBERT are very

dissimilar to the oracle. For instance, the oracle code uses an if-else

structure while the code returned by GraphCodeBERT contains a

loop structure. Therefore, the CB of GraphCodeBERT on this query

is only 15%, which is much lower than that of CodeT5.

1 # Code generated by CodeT5

2 def migrate(self, target, **kwargs):

3 if 'commit_mode' not in kwargs:

4 kwargs['commit_mode'] = self.commit_mode

5 if 'commit_mode' not in kwargs:

6 kwargs['commit_mode'] = self.commit_mode

7 return self._migrate(target, **kwargs)

8

9 # Oracle code

10 def migrate(self, target, follow=True, **kwargs):

11 if 'id' not in self or not self['id']:

12 raise Exception('No source dataset ID found.')

13 if isinstance(target, Dataset):

14 target_id = target.id

15 else:

16 target_id = target

17 migration = DatasetMigration.create(source_id=self['id'],

18 target_id=target_id, **kwargs)

19 return migration

20

21 # Code retrieved by GraphCodeBERT

22 def migrate(self, target, follow=True, **kwargs):

23 if isinstance(target, Dataset):

24 target_id = target.id

25 else:

26 target_id = target

27 limit = kwargs.pop('limit', None)

28 params = self._build_query(limit=limit)

29 migration = DatasetMigration.create(source_id=self._dataset_id,

30 target_id=target_id, source_params=params, **kwargs)

31 return migration

Listing 2: The code generated by CodeT5, the oracle code, and the

code retrieved by GraphCodeBERT for the query “Migrate the data

from this dataset to a target dataset”.

Another example is shown in Listing 2. The intended functional-

ity is to migrate data from one dataset to another. The oracle code

ful�lls this by checking if the ID of the source dataset is provided,

obtaining the ID of the target dataset, and �nally performing the

migration. The code retrieved by GraphCodeBERT is only slightly

di�erent from the oracle code since it initializes a variable which

is not used by the oracle code during migration (i.e., params). The

code generated by CodeT5 di�ers signi�cantly to the oracle code

since (1) it does not perform the sanity check, (2) it generates a

block of code recurrently as we have mentioned before, and (3)

it does not rely on the DatasetMigration package to perform the

migration. Consequently, the CB of GraphCodeBERT on this query

is much higher than that of CodeT5 (57.1% vs. 29.2%).
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(a) GraphCodeBERT vs. CodeT5 (b) GraphCodeBERT vs. Multi-modal (c) CodeT5 vs. Multi-modal

Figure 3: Scatter plots of CodeBLEUs of three representative techniques with respect to the top-1 results. We also draw the line y=x for

comparison.

Table 3: The highest CodeBLEU values achievable by combining

di�erent strategies (in %).

Combinations CB (Top-1) CB (Top-5)

CodeT5 22.2 23.9

Multi-modal 17.0 23.0

GraphCodeBERT 25.8 35.1

CodeT5 + Tranx 22.4 24.1

Multi-modal + Self-attention 19.6 24.8

GraphCodeBERT + CodeBERT 28.4 37.0

GraphCodeBERT + CodeT5 30.2 37.4

GraphCodeBERT + Multi-modal 27.5 36.0

CodeT5 + Multi-modal 24.1 27.6

GraphCodeBERT + CodeT5 + Multi-modal 31.0 38.0

GraphCodeBERT + CodeT5 + CodeBERT 32.0 38.9

All (10 techniques) 35.1 40.8

These two cases demonstrate that di�erent techniques perform

well on di�erent queries and thus complement each other.

4.3 RQ3: Combination of Existing Techniques

4.3.1 RQ3.1: What is the Best Performance Achievable by Combining

Di�erent Techniques? To investigate this RQ, for each query, we

suppose all the results from a set of techniques can be inspected by

the developer and the most quali�ed code (the one with the highest

CB score) can be identi�ed and used as the �nal result of such

a technique combination. We calculate the overall performance

on the whole test set obtained in such a manner and results are

shown in Table 3. We �rst observe that several techniques together

can work better than standalone techniques, which shows that

combinations of di�erent techniques are promising. Speci�cally,

if we take all the ten techniques into consideration, the CB of the

Top-1 results can reach 35.1%, outperforming the best search and

generation techniques (i.e., GraphCodeBERT and CodeT5) by 36%

and 58%, respectively.

Finding-7 ☞ Combining the ten techniques can gain at least 35%

e�ectiveness enhancement compared with standalone techniques.

Obtaining the results of all the eight techniques, however, re-

quires much computation resource, which may not be a�ordable

in practice. Therefore, we also investigate the e�ectiveness of com-

bining a pair of techniques. Speci�cally, we combine techniques

from the same clusters (e.g., CodeT5 + Tranx shown in the second

part) and techniques across di�erent clusters (e.g., GraphCodeBERT

+ CodeT5 shown in the third part). Surprisingly, we �nd that al-

though the latter is more e�ective than the former in general (e.g.,

combining CodeT5 with Multi-modal works better than combining

it with Tranx), combining GraphCodeBERT with CodeBERT is the

most e�ective way for search-search intra-combinations: such a

strategy can achieve higher CBs than combining GraphCodeBERT

withMulti-modal and its CB with respect to the top-5 results nearly

equals to that of GraphCodeBERT + CodeT5 (37.0% vs 37.4%). This

could be explained through Figure 3 where we note that for the sub-

�gure comparing GraphCodeBERT and Multi-modal, the majority

of the scatters are below the line y=x, which means the latter only

outperforms the former on a limited set of queries. As a result, com-

bining these two techniques may not boost the e�ectiveness to a

large extent, although they have relatively low Pearson correlation.

Similarly, we also try to combine three representative techniques

from di�erent clusters (shown as GraphCodeBERT + CodeT5 +Multi-

modal) but this is still outperformed by replacing Multi-modal with

CodeBERT. Consequently, if we are able to use only two techniques

under a resource-constrained situation, search-generation inter-

combination of GraphCodeBERT with CodeT5 and search-search

intra-combination of GraphCodeBERT with CodeBERT can provide

promising results.

Finding-8 ☞ Search-generation inter-combination of Graph-

CodeBERT with CodeT5 and search-search intra-combination of

GraphCodeBERT with CodeBERT show promising results.

4.3.2 RQ3.2: Can We Automatically Combine Di�erent Techniques?

To achieve an automatic combination, we design a post-processing

strategy where we re-rank results obtained from di�erent tech-

niques to generate the �nal outputs, inspired by a recent study [71].

Intuition. To achieve our target, we need a predictor to assess

the quality of each generated code snippet. Recall that one of our

observations is that existing techniques usually have relatively poor

performance towards TM (cf. Table 2). That is to say, if a gener-

ated code snippet has a high TM value, it is likely to achieve good

overall performance (i.e., CB). Inspired by previous studies which

point out that query tokens may represent key concepts in the

requirements [30, 37], we postulate that a code snippet with more

overlapped tokens with the query may contain more meaningful

identi�er names and thus has higher value towards TM (so as CB).

For instance, the code to implement the functionality required by

the query “convert string to int” needs to include the API int()

and it thus contains the overlapped token int. Given a query, we

denote its number of tokens as #*"C and the number of its tokens

contained in a generated code snippet as #*"> . We propose to
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Table 4: The CodeBLEU values achieved by di�erent combinations

using our strategy (in %).

Combinations CB (Top-1) CB (Top-5)

GraphCodeBERT + CodeBERT 28.3/28.4 36.5/37.0

GraphCodeBERT + CodeT5 30.0/30.2 36.9/37.4

GraphCodeBERT + CodeT5 + CodeBERT 31.8/32.0 37.9/38.9

rely on the overlap degree, which is calculated as #*">

#*"C

, to help

assess the quality of the generated code snippet: a code snippet

with a higher overlap degree is considered to be more quali�ed.

Speci�cally, to perform such analysis, the code and query are tok-

enized by the NLTK package and program identi�ers are further

split into multiple tokens based on the camel cases and underscore

naming conventions.

Hypothesis Validation. To validate our intuition, we split the

overlap degree into �ve di�erent intervals and calculate the CBs

of the top-1 code snippets returned by di�erent techniques whose

overlap degrees fall in each interval.

Results are shown in Figure 4. We note that code snippets with

higher overlap degrees are generally more similar to the oracle code

(with higher CBs), for all three representative techniques. Speci�-

cally, when the overlap degree is in the [0.8, 1] interval, the median

value of the CBs of the top-1 results returned by GraphCodeBERT

is around 40%, nearly as twice as that of the code snippets whose

overlap degree is in the [0, 0.2) interval (which is only around 20%).

We also perform the one-sided Mann-Whitney U-Test [35] to ana-

lyze the statistical signi�cance of the CB di�erences for code snip-

pets from adjacent intervals. Our Null hypothesis is that H0: code

with higher overlap degrees to the query will not achieve

signi�cantly higher CBs, and the Alternative hypothesis is H1:

code with higher overlap degrees to the query will achieve

signi�cantly higher CBs. Results reveal that the di�erences are

statistically signi�cant (i.e., p-value < 0.05) under all the cases, in-

dicating that H0 can be rejected with a con�dence level of over

0.95. Such results indicate that the overlap degree with the query

could be a competent indicator to re-assess the quality of the code

snippets returned by existing techniques.

Strategy. Motivated by our validation, we design a combination

strategy to integrate the results from di�erent techniques whose

overall process is straightforward. Given a natural language descrip-

tion (i.e., the query), di�erent techniques are executed and their

results are stored into a candidate code snippet pool. After that, we

use a heuristic that assesses the overlap degree between the query

and each candidate code snippet to re-rank those candidates: code

snippets possessing high overlaps with the query are ranked at

the top positions. Consequently, results from di�erent techniques

are re-ranked together and integrated into one list at this step, and

the output is the �nal combination result. In this study, to keep

reasonable trade-o�s between the e�ectiveness and e�ciency, we

combine the top-5 results of each selected technique.

Evaluation Results. To investigate the e�ectiveness of our

proposed combination strategy, we select the three representative

techniques (i.e., GraphCodeBERT, CodeBERT, and CodeT5) identi�ed

through our analysis in Section 4.3, and evaluate the performances

after combining two or all of them. Results are shown in Table 4

where the data in the format “x/y” denotes the e�ectiveness ob-

tained by our strategy/the best performance achievable by di�erent

combinations.

We �nd that our combination strategy is generally e�ective: all

the combinations can nearly reach their maximum potential. For

instance, if for each query, the maximum CodeBLEU value from

GraphCodeBERT and CodeT5 is achieved, then the average Code-

BLEU value of the top-1 results is 30.2%. By using our strategy,

such a combination can have a CodeBLEU of 30.0% with respect

to the top-1 results. Moreover, given the data in Table 2, such an

automatic combination can outperform each standalone technique

by 16% (30.0% vs. 25.8%) and 35% (30.0% vs. 22.2%), respectively. We

also note that search-generation inter-combination works more

e�ectively than search-search intra-combination: the combination

of GraphCodeBERT + CodeT5 achieves higher CodeBLEUs than

the combination of GraphCodeBERT + CodeBERT with respect to

both top-1 and top-5 results, especially when we only focus on the

top-1 results (30.0% vs. 28.3%). This indicates that in a resource con-

strained scenario where we can only execute a few techniques (e.g.,

two), combining code search and code generation techniques is rec-

ommended. Furthermore, our strategy is also extensible: the e�ec-

tiveness of the combination keeps increasing when involving more

techniques. Speci�cally, the CodeBLEU value of the top-1 results

increases by nearly two percentage points when all three represen-

tative techniques are combined, compared with only considering

two of them (31.8% vs. 30.0%). As a result, further e�ectiveness

enhancement is expected when involving more techniques.

Finding-9 ☞ A simple heuristic-based post-processing strategy

can lead to signi�cant e�ectiveness enhancement compared with

each standalone technique.

5 DISCUSSION

5.1 Implications: It Takes Two to Tango

Our investigation shows that code search and code generation

techniques share certain complementarities: a query that is not

handled e�ectively by one technique may be addressed well by the

other. Therefore, developers may consider using both of them in

their development activities to boost their productivity. Our study

proposes a post-processing approach for combining these two types

of techniques. In fact, we also explore a pre-processing way for

combination where we train a model to predict whether a search or

generation technique should be used for a given query. Speci�cally,

we use a pre-trained BERT model to embed the query and train a

fully-connected layer to predict if GraphCodeBERT or CodeT5 is to

be used (as a preliminary exploration, we focus on combining the

most e�ective search and generation techniques), but the accuracy

is only 60% on our dataset. Therefore, for researchers, e�orts could

be devoted to devise more e�ective way for combination in the

future.

5.2 Comparison with ChatGPT

ChatGPT is a hot chatbot that can interact with humans in a con-

versational way.3 To compare it with the study subjects in this

3https://chat.openai.com/chat
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(a) GraphCodeBERT (b) CodeBERT (c) CodeT5

Figure 4: The performances of three representative techniques under di�erent overlap degrees.

paper, we also investigate its code generation performance on our

test set. To perform this experiment, we leverage the ChatGPT API

(accessed on May 9, 2023) with the prompts to the model in the

form of “Assume that you are a Python programmer. Please write

a Python function that ...”, followed by the query contents. The

�rst sentence is to prepare ChatGPT for the code generation task

while the second one describes the detailed requirement. We set the

temperature parameter to be 0, which ensures that ChatGPT always

return the code with the highest probability. Results show that on

average, the CodeBLEU score of the code returned by ChatGPT is

21.1%, which is slightly lower than that of the state-of-the-art code

generation techniques such as CodeT5. Such results indicate that

although ChatGPT can provide detailed instructions to develop-

ers, its performance may not exceed those of the state-of-the-art

NL2Code techniques if we only focus on the generated code. One

possible explanation could be that the state-of-the-art code gen-

eration techniques have been adequately �ne-tuned for this task,

whereas ChatGPT is optimized for arti�cial general intelligence

(AGI) and not speci�cally optimized for the task of code generation.

5.3 The Existence of Code Similar to the Oracle

In this study, to mimic the real scenario of applying code search

techniques, we remove the oracle code from the search space for

each query. One following question is that is there any code snippet

in the search space similar to the oracle one? To investigate such a

question, we utilize a state-of-the-art code clone detector, NIL [40],

to identify code clone pairs among our test set. We recall that NIL is

a token-based clone detector since it identi�es code clones based on

the N-gram representation and the longest common subsequence

of code token sequences. That is to say, the detected clones of

the oracle code can be transformed to the oracle through minor

modi�cations on their code tokens. Results show thatmore than 75%

(i.e., 17,068/22,176) of the code snippets have the corresponding

clones in the search space. This indicates that for most queries,

code snippets that can match the query with minor modi�cations

exist in the search space and a quali�ed code search technique is

supposed to rank such code snippets at top positions. By analyzing

the search logs of developers, the previous study [47] concludes

that developers sometimes get nothing from their searches. This

observation suggests that in a realistic setting, it is not always

possible for all the queries to have code snippets that are similar to

the oracle, as otherwise developers could always obtain a solution

by making minor modi�cations to the oracle’s clones. Our setting

is aligned with this assumption and is well-suited for practical

scenarios.

5.4 Threats to Validity

External Threats. Code search and code generation are active

research �elds with a number of approaches being proposed during

the last years. It is thus quite hard to involve all of them in this

study. The selected approaches in this paper are state-of-the-art

and have served as baselines for many studies [32, 52], and thus

can be considered as representative ones safely.

Internal Threats. In our study, we use the code comment as

the query, which is widely adopted by existing studies [28, 49, 57,

60, 64]. The rationale is that the comment usually summarises the

main functionality of the code, making the code-comment pair

close to actual use scenarios. Existing studies have shown that

common queries from developers are similar to the comments (i.e.,

either being identical to the comment or by slightly prepending the

comment with “how to”/“how do I”) [17, 34].

We rely on the CodeBLEU score to serve as a proxy of code

quality, following existing studies [10, 33, 70, 72]. The previous

study [46] has demonstrated that CodeBLEU is strongly related

with human evaluations, which means code with higher CodeBLEU

scores is more quali�ed to ful�ll the intended functionality, as

judged by humans. Our case analysis also shows that code with

higher CodeBLEU scores is more semantically similar to the oracle

code. As a result, we leave assessing the usefulness of the generated

code from the developers’ perspective as our future work.

6 CONCLUSION

In this paper, we evaluate the e�ectiveness of ten representative

NL2Code techniques on a large-scale dataset. Through in-depth

analysis of their correlation degrees and case analysis, we show

that existing NL2Code techniques complement each other well. We

also investigate the theoretical upper-bound e�ectiveness which

can be achieved by combining di�erent techniques and �nd that

it outperforms those of standalone techniques to a large extent.

Therefore, future studies could be undertaken to further utilize the

complementarity of NL2Code techniques. Moreover, we design a

strategy to automatically combine results from di�erent techniques

and achieve promising results. All code and data in this study are

publicly available online [58].
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