Article (Scientific journals)
Rigidity and Schofield's partial tilting conjecture for quiver moduli
BELMANS, Pieter; Brecan, Ana-Maria; Franzen, Hans et al.
2025In Journal de l'École Polytechnique. Mathématiques
Peer Reviewed verified by ORBi
 

Files


Full Text
JEP_2025__12__1345_0.pdf
Publisher postprint (1.24 MB) Creative Commons License - Attribution
Download

All documents in ORBilu are protected by a user license.

Send to



Details



Keywords :
Mathematics - Algebraic Geometry; Mathematics - Representation Theory
Abstract :
[en] We explain how Teleman quantization can be applied to moduli spaces of quiver representations to compute the higher cohomology of the endomorphism bundle of the universal bundle. We use this to prove Schofield's partial tilting conjecture, and to show that moduli spaces of quiver representations are (infinitesimally) rigid as varieties.
Disciplines :
Mathematics
Author, co-author :
BELMANS, Pieter  ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Mathematics (DMATH)
Brecan, Ana-Maria
Franzen, Hans
PETRELLA, Gianni  ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Mathematics (DMATH)
Reineke, Markus
External co-authors :
yes
Language :
English
Title :
Rigidity and Schofield's partial tilting conjecture for quiver moduli
Publication date :
2025
Journal title :
Journal de l'École Polytechnique. Mathématiques
ISSN :
2429-7100
eISSN :
2270-518X
Publisher :
Éditions de l'École Polytechnique, Palaiseau, France
Peer reviewed :
Peer Reviewed verified by ORBi
Commentary :
25 pages, comments welcome
Available on ORBilu :
since 01 December 2023

Statistics


Number of views
75 (8 by Unilu)
Number of downloads
1 (0 by Unilu)

Scopus citations®
 
0
Scopus citations®
without self-citations
0
OpenCitations
 
0
OpenAlex citations
 
0

Bibliography


Similar publications



Contact ORBilu