![]() ![]() | BAUMANN, T., BELMANS, P., & Okke van Garderen. (2024). Central curves on noncommutative surfaces. ORBilu-University of Luxembourg. https://orbilu.uni.lu/handle/10993/62543. |
![]() ![]() | BELMANS, P., Fatighenti, E., & Tanturri, F. (May 2023). Polyvector fields for Fano 3-folds. Mathematische Zeitschrift, 304 (1). doi:10.1007/s00209-023-03261-2 ![]() |
![]() ![]() | BELMANS, P., Galkin, S., & Mukhopadhyay, S. (07 March 2023). Decompositions of moduli spaces of vector bundles and graph potentials. Forum of Mathematics, Sigma, 11. doi:10.1017/fms.2023.14 ![]() |
![]() ![]() | BELMANS, P., & Krug, A. (2023). Derived categories of (nested) Hilbert schemes. Michigan Mathematical Journal. doi:10.1307/mmj/20216092 ![]() |
![]() ![]() | BELMANS, P., & Smirnov, M. (2023). Hochschild cohomology of generalised Grassmannians. Documenta Mathematica, 28 (1), 11 - 53. doi:10.4171/DM/912 ![]() |
![]() ![]() | BELMANS, P., & Franzen, H. (2023). On Chow rings of quiver moduli. International Mathematics Research Notices. doi:10.1093/imrn/rnad306 ![]() |
BELMANS, P., Fu, L., & Krug, A. (2023). Hochschild cohomology of Hilbert schemes of points on surfaces. ORBilu-University of Luxembourg. https://orbilu.uni.lu/handle/10993/57976. |
![]() ![]() | BELMANS, P. (2023). Number theory and cryptography: lecture notes. |
BELMANS, P., Brecan, A.-M., Franzen, H., & Reineke, M. (2023). Vector fields and admissible embeddings for quiver moduli. ORBilu-University of Luxembourg. https://orbilu.uni.lu/handle/10993/58616. |
BELMANS, P., Brecan, A.-M., Franzen, H., PETRELLA, G., & Reineke, M. (2023). Rigidity and Schofield's partial tilting conjecture for quiver moduli. ORBilu-University of Luxembourg. https://orbilu.uni.lu/handle/10993/58615. |
![]() ![]() | Alper, J., BELMANS, P., Bragg, D., Jason, L., & Tajakka, T. (2022). Projectivity of the moduli space of vector bundles on a curve. In Projectivity of the moduli space of vector bundles on a curve (pp. 90--125). Cambridge Univ. Press, Cambridge. ![]() |
BELMANS, P., Damiolini, C., Franzen, H., Hoskins, V., Makarova, S., & Tajakka, T. (2022). Projectivity and effective global generation of determinantal line bundles on quiver moduli. ORBilu-University of Luxembourg. https://orbilu.uni.lu/handle/10993/53547. |
BELMANS, P., Galkin, S., & Mukhopadhyay, S. (2022). Graph potentials and symplectic geometry of moduli spaces of vector bundles. ORBilu-University of Luxembourg. https://orbilu.uni.lu/handle/10993/53543. |
BELMANS, P., Galkin, S., & Mukhopadhyay, S. (2022). Decompositions of moduli spaces of vector bundles and graph potentials. ORBilu-University of Luxembourg. https://orbilu.uni.lu/handle/10993/53545. |
BELMANS, P., Galkin, S., & Mukhopadhyay, S. (2022). Graph potentials and topological quantum field theories. ORBilu-University of Luxembourg. https://orbilu.uni.lu/handle/10993/53544. |
Beckmann, T., & BELMANS, P. (2022). Homological projective duality for the Segre cubic. ORBilu-University of Luxembourg. https://orbilu.uni.lu/handle/10993/50412. |
![]() ![]() | BELMANS, P., Fu, L., & Raedschelders, T. (2022). Derived categories of flips and cubic hypersurfaces. Proc. Lond. Math. Soc. (3), 125 (6), 1452--1482. doi:10.1112/plms.12487 ![]() |
![]() ![]() | BELMANS, P., Galkin, S., & Mukhopadhyay, S. (2022). Examples violating Golyshev's canonical strip hypotheses. Exp. Math, 31 (1), 233--237. doi:10.1080/10586458.2019.1602571 ![]() |
![]() ![]() | BELMANS, P. (2022). Number theory and cryptography: lecture notes. |
![]() ![]() | BELMANS, P., Kuznetsov, A., & Smirnov, M. (2021). Derived categories of the Cayley plane and the coadjoint Grassmannian of type F. Transformation Groups. doi:10.1007/s00031-021-09657-w ![]() |
BELMANS, P. (2021). Curating Online Mathematical Resources. Notices of the American Mathematical Society, 69 (9), 1524--1527. |