Article (Périodiques scientifiques)
Systematic analysis and optimization of early warning signals for critical transitions using distribution data.
PROVERBIO, Daniele; SKUPIN, Alexander; GONCALVES, Jorge
2023In iScience, 26 (7), p. 107156
Peer reviewed vérifié par ORBi
 

Documents


Texte intégral
Proverbio et al. - 2023 - Systematic analysis and optimization of early warn.pdf
Postprint Éditeur (3.42 MB)
Demander un accès

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Bioinformatics; Mathematical biosciences; Multidisciplinary
Résumé :
[en] Abrupt shifts between alternative regimes occur in complex systems, from cell regulation to brain functions to ecosystems. Several model-free early warning signals (EWS) have been proposed to detect impending transitions, but failure or poor performance in some systems have called for better investigation of their generic applicability. Notably, there are still ongoing debates whether such signals can be successfully extracted from data in particular from biological experiments. In this work, we systematically investigate properties and performance of dynamical EWS in different deteriorating conditions, and we propose an optimized combination to trigger warnings as early as possible, eventually verified on experimental data from microbiological populations. Our results explain discrepancies observed in the literature between warning signs extracted from simulated models and from real data, provide guidance for EWS selection based on desired systems and suggest an optimized composite indicator to alert for impending critical transitions using distribution data.
Disciplines :
Sciences du vivant: Multidisciplinaire, généralités & autres
Auteur, co-auteur :
PROVERBIO, Daniele  ;  University of Luxembourg > Luxembourg Centre for Systems Biomedicine > Imaging AI > Team Andreas HUSCH ; College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter EX4 4QL, UK
SKUPIN, Alexander  ;  University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Integrative Cell Signalling ; National Center for Microscopy and Imaging Research, University of California San Diego, Gilman Drive, La Jolla, CA 9500, USA
GONCALVES, Jorge ;  University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Systems Control ; Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
Co-auteurs externes :
no
Langue du document :
Anglais
Titre :
Systematic analysis and optimization of early warning signals for critical transitions using distribution data.
Date de publication/diffusion :
21 juillet 2023
Titre du périodique :
iScience
eISSN :
2589-0042
Maison d'édition :
Elsevier Inc., Etats-Unis
Volume/Tome :
26
Fascicule/Saison :
7
Pagination :
107156
Peer reviewed :
Peer reviewed vérifié par ORBi
Subventionnement (détails) :
The authors would thank their colleagues for valuable discussions. D.P.’s work is supported by the FNR PRIDE DTU CriTiCS , ref. 10907093 , and A.S. by the FNR ( C14/BM/7975668/CaSCAD ) and by the NIH NBCR ( NIH P41 GM103426 ).
Disponible sur ORBilu :
depuis le 01 décembre 2023

Statistiques


Nombre de vues
101 (dont 3 Unilu)
Nombre de téléchargements
1 (dont 1 Unilu)

citations Scopus®
 
15
citations Scopus®
sans auto-citations
12
citations OpenAlex
 
15
citations WoS
 
14

Bibliographie


Publications similaires



Contacter ORBilu