Paper published in a book (Scientific congresses, symposiums and conference proceedings)
Computing a Dirichlet Domain for a Hyperbolic Surface
Despré, Vincent; Kolbe, Benedikt; PARLIER, Hugo et al.
2023In Chambers, Erin W. (Ed.) 39th International Symposium on Computational Geometry, SoCG 2023
Peer reviewed
 

Files


Full Text
Dirichelet.pdf
Author preprint (934.06 kB)
Download

All documents in ORBilu are protected by a user license.

Send to



Details



Keywords :
Algorithm; Hyperbolic geometry; Topology; Voronoi diagram; Dirichlet; Hyperbolic surface; Orientable; Polynomial-time; Voronoi diagrams; Software
Abstract :
[en] This paper exhibits and analyzes an algorithm that takes a given closed orientable hyperbolic surface and outputs an explicit Dirichlet domain. The input is a fundamental polygon with side pairings. While grounded in topological considerations, the algorithm makes key use of the geometry of the surface. We introduce data structures that reflect this interplay between geometry and topology and show that the algorithm runs in polynomial time, in terms of the initial perimeter and the genus of the surface.
Disciplines :
Mathematics
Author, co-author :
Despré, Vincent ;  Université de Lorraine, CNRS, Inria, LORIA, Nancy, France
Kolbe, Benedikt ;  Hausdorff Center for Mathematics, Universität Bonn, Germany
PARLIER, Hugo  ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Mathematics (DMATH)
Teillaud, Monique ;  Université de Lorraine, CNRS, Inria, LORIA, Nancy, France
 These authors have contributed equally to this work.
External co-authors :
yes
Language :
English
Title :
Computing a Dirichlet Domain for a Hyperbolic Surface
Publication date :
June 2023
Event name :
SoCG
Event place :
Dallas, Usa
Event date :
12-06-2023 => 15-06-2023
Main work title :
39th International Symposium on Computational Geometry, SoCG 2023
Editor :
Chambers, Erin W.
Publisher :
Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing
ISBN/EAN :
978-3-9597727-3-0
Peer reviewed :
Peer reviewed
Funding text :
Funding This work was partially supported by grant ANR-17-CE40-0033 of the French National Research Agency ANR and INTER/ANR/16/11554412/SoS of the Luxembourg National Research fund FNR. Website of the SoS project: https://SoS.loria.fr/. Benedikt Kolbe: This work was done while this author was working at Université de Lorraine, CNRS, Inria, LORIA, F-54000 Nancy, France Acknowledgements The authors wish to thank the anonymous reviewer who suggested this simpler version of Section 4.
Available on ORBilu :
since 30 November 2023

Statistics


Number of views
116 (4 by Unilu)
Number of downloads
32 (0 by Unilu)

Scopus citations®
 
4
Scopus citations®
without self-citations
0
OpenAlex citations
 
0

Bibliography


Similar publications



Contact ORBilu