[en] In this article we explore the relationship between the systole and the diameter of closed hyperbolic orientable surfaces. We show that they satisfy a certain inequality, which can be used to deduce that their ratio has a (genus-dependent) upper bound.
Disciplines :
Mathematics
Author, co-author :
Balacheff, Florent ✱; Department of Mathematics, Universitat Autònoma de Barcelona, Spain
Despré, Vincent ✱; Polytech Nancy, Université de Lorraine, Loria, France
PARLIER, Hugo ✱; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Mathematics (DMATH)
✱ These authors have contributed equally to this work.
External co-authors :
yes
Language :
English
Title :
Systoles and diameters of hyperbolic surfaces
Publication date :
2023
Journal title :
Journal of Mathematics of Kyoto University
ISSN :
0023-608X
Publisher :
Duke University Press
Volume :
63
Issue :
1
Pages :
211 - 222
Peer reviewed :
Peer reviewed
Funding text :
Balacheff was supported by the FSE/AEI/MICINN grant RYC-2016-19334 “Local and Global Systolic Geometry and Topology,” the AGAUR grant 2017-SGR-1725, and the FEDER/AEI/MICIU grant PGC2018-095998-B-I00 “Local and Global Invariants in Geometry.” Despréand Parlier were supported by the ANR/FNR project SoS, INTER/ANR/16/11554412/SoS, ANR-17-CE40-0033.
H. Akrout, Singularités topologiques des systoles généralisées, Topology 42 (2003), no. 2, 291-308. MR 1941437. DOI 10.1016/S0040-9383(01)00024-6.
C. Bavard, Disques extrémaux et surfaces modulaires, Ann. Fac. Sci. Toulouse Math. (6) 5 (1996), no. 2, 191-202. MR 1413853.
P. Buser, Geometry and Spectra of Compact Riemann Surfaces, Progr. Math. 106, Birkhäuser, Boston, 1992. MR 1183224.
P. Buser and P. Sarnak, On the period matrix of a Riemann surface of large genus, Invent. Math. 117 (1994), no. 1, 27-56. MR 1269424. DOI 10.1007/BF01232233.
T. Budzinski, N. Curien, and B. Petri, On the minimal diameter of closed hyperbolic surfaces, Duke Math. J. 170 (2021), no. 2, 365-377. MR 4202496. DOI 10.1215/00127094-2020-0083.
W. Fenchel, Elementary Geometry in Hyperbolic Space, De Gruyter Stud. Math. 11, De Gruyter, Berlin, 1989. MR 1004006. DOI 10.1515/9783110849455.
M. Fortier Bourque and K. Rafi, Local maxima of the systole function, J. Eur. Math. Soc. (JEMS) 24 (2022), no. 2, 623-668. MR 4382480. DOI 10.4171/jems/1113.
M. Gromov, Metric Structures for Riemannian and Non-Riemannian Spaces, Birkhäuser, Boston, 2007. MR 2307192.
F. Jenni, Über den ersten Eigenwert des Laplace-Operators auf ausgewählten Beispielen kompakter Riemannscher Flächen, Comment. Math. Helv. 59 (1984), no. 2, 193-203. MR 0749104. DOI 10.1007/BF02566345.
M. G. Katz, M. Schaps, and U. Vishne, Logarithmic growth of systole of arithmetic Riemann surfaces along congruence subgroups, J. Differential Geom. 76 (2007), no. 3, 399-422. MR 2331526.
P. Schmutz Schaller, Geometry of Riemann surfaces based on closed geodesics, Bull. Amer. Math. Soc. (N.S.) 35 (1998), no. 3, 193-214. MR 1609636. DOI 10.1090/S0273-0979-98-00750-2.