An integrative approach for the analysis of risk and health across the life course: challenges, innovations, and opportunities for life course research.
Data harmonization; Epidemiology; Health; Integrative data analysis; Life course; Risk factors; Social Sciences (miscellaneous); Health (social science); Health Policy; Public Health, Environmental and Occupational Health
Abstract :
[en] Life course epidemiology seeks to understand the intricate relationships between risk factors and health outcomes across different stages of life to inform prevention and intervention strategies to optimize health throughout the lifespan. However, extant evidence has predominantly been based on separate analyses of data from individual birth cohorts or panel studies, which may not be sufficient to unravel the complex interplay of risk and health across different contexts. We highlight the importance of a multi-study perspective that enables researchers to: (a) Compare and contrast findings from different contexts and populations, which can help identify generalizable patterns and context-specific factors; (b) Examine the robustness of associations and the potential for effect modification by factors such as age, sex, and socioeconomic status; and (c) Improve statistical power and precision by pooling data from multiple studies, thereby allowing for the investigation of rare exposures and outcomes. This integrative framework combines the advantages of multi-study data with a life course perspective to guide research in understanding life course risk and resilience on adult health outcomes by: (a) Encouraging the use of harmonized measures across studies to facilitate comparisons and synthesis of findings; (b) Promoting the adoption of advanced analytical techniques that can accommodate the complexities of multi-study, longitudinal data; and (c) Fostering collaboration between researchers, data repositories, and funding agencies to support the integration of longitudinal data from diverse sources. An integrative approach can help inform the development of individualized risk scores and personalized interventions to promote health and well-being at various life stages.
Disciplines :
Public health, health care sciences & services
Author, co-author :
Zuber, Sascha; Institute On Aging & Lifelong Health, University of Victoria, Victoria, BC Canada ; Center for the Interdisciplinary Study of Gerontology and Vulnerability, University of Geneva, Geneva, Switzerland
Bechtiger, Laura; Jacobs Center for Productive Youth Development, University of Zürich, Zürich, Switzerland
Bodelet, Julien Stéphane; Jacobs Center for Productive Youth Development, University of Zürich, Zürich, Switzerland
Golin, Marta; Jacobs Center for Productive Youth Development, University of Zürich, Zürich, Switzerland
Heumann, Jens; Jacobs Center for Productive Youth Development, University of Zürich, Zürich, Switzerland
KIM, Jung Hyun ; University of Luxembourg > Faculty of Humanities, Education and Social Sciences (FHSE) > Department of Social Sciences (DSOC) > Socio-Economic Inequality
KLEE, Matthias ; University of Luxembourg > Faculty of Humanities, Education and Social Sciences (FHSE) > Department of Social Sciences (DSOC) > Socio-Economic Inequality
MUR, Jure ; University of Luxembourg ; University of Edinburgh, Edinburgh, Scotland
Noll, Jennie; Pennsylvania State University, State College, PA USA
Voll, Stacey; Institute On Aging & Lifelong Health, University of Victoria, Victoria, BC Canada
O'Keefe, Patrick; Department of Neurology, Oregon Health & Science University, Portland, OR USA
Steinhoff, Annekatrin; Jacobs Center for Productive Youth Development, University of Zürich, Zürich, Switzerland ; University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
Zölitz, Ulf; Jacobs Center for Productive Youth Development, University of Zürich, Zürich, Switzerland
Muniz-Terrera, Graciela; Ohio University, Athens, OH USA
Shanahan, Lilly; Jacobs Center for Productive Youth Development, University of Zürich, Zürich, Switzerland ; Department of Psychology, University of Zürich, Zürich, Switzerland
Shanahan, Michael J; Jacobs Center for Productive Youth Development, University of Zürich, Zürich, Switzerland ; Department of Sociology, University of Zürich, Zürich, Switzerland
Hofer, Scott M; Institute On Aging & Lifelong Health, University of Victoria, Victoria, BC Canada ; Department of Neurology, Oregon Health & Science University, Portland, OR USA
An integrative approach for the analysis of risk and health across the life course: challenges, innovations, and opportunities for life course research.
Jacobs Center for Productive Youth Development Jacobs Foundation Harald Mohr, M.D. and Wilhelma Mohr, M.D. Research Chair in Adult Development and Aging, University of Victoria Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung National Institute on Aging of the National Institutes of Health
Funding text :
This research was supported by a Small Interdisciplinary Research Fund (SMIRF) from the Jacobs Center for Productive Youth Development, the Jacobs Foundation and research funds from the Harald Mohr, M.D. and Wilhelma Mohr, M.D. Research Chair in Adult Development and Aging, University of Victoria. Sascha Zuber acknowledges funding from the Swiss National Science Foundation (SNSF; Grant Number: P400PS_199283). Scott Hofer, Graciela Muniz, and Patrick O’Keefe were also supported by the National Institute on Aging of the National Institutes of Health under award number 1R01AG067621.
Lynch J, Smith GD. A life course approach to chronic disease epidemiology. Annu Rev Public Health. 2005;26:1–35. DOI: 10.1146/annurev.publhealth.26.021304.144505
Ben-Shlomo Y, Kuh D. A life course approach to chronic disease epidemiology: conceptual models, empirical challenges and interdisciplinary perspectives. Int J Epidemiol. 2002;31(2):285–93. 10.1093/ije/31.2.285. DOI: 10.1093/ije/31.2.285
Kuh D, Cooper R, Hardy R, Richards M, Ben-Shlomo Y. A life course approach to healthy ageing. Oxford: Oxford University Press; 2014.
Dannefer D. Cumulative advantage/disadvantage and the life course: cross-fertilizing age and social science theory. J Gerontol Series B. 2003;58(6):S327–37. 10.1093/geronb/58.6.S327. DOI: 10.1093/geronb/58.6.S327
Ferraro KF, Shippee TP. Aging and cumulative inequality: how does inequality get under the skin? Gerontologist. 2009;49(3):333–43. 10.1093/geront/gnp034. DOI: 10.1093/geront/gnp034
Burton-Jeangros C, Cullati S, Sacker A, Blane D. A life course perspective on health trajectories and transitions. Springer; 2015. DOI: 10.1007/978-3-319-20484-0
Barker DJ. The origins of the developmental origins theory. J Intern Med. 2007;261(5):412–7. 10.1111/j.1365-2796.2007.01809.x. DOI: 10.1111/j.1365-2796.2007.01809.x
Kuh D, Ben-Shlomo Y, Lynch J, Hallqvist J. Power, Life course epidemiology. J Epidemiol Community Health. 2003;57:778–83. DOI: 10.1136/jech.57.10.778
Shanahan L, Copeland WE, Costello EJ, Angold A. Child-, adolescent—and young adult-onset depressions: differential risk factors in development? Psychol Med. 2011;41(11):2265–74. 10.1017/S0033291711000675. DOI: 10.1017/S0033291711000675
Dunn E, Soare T, Raffeld M, Busso D, Crawford K, Davis K, Susser E. What life course theoretical models best explain the relationship between exposure to childhood adversity and psychopathology symptoms: recency, accumulation, or sensitive periods? Psychol Med. 2018;48(15):2562–72. 10.1017/S0033291718000181. DOI: 10.1017/S0033291718000181
Masten A, Cicchetti D. Developmental cascades. Dev Psychopathol. 2010;22(3):491–5. 10.1017/S0954579410000222. DOI: 10.1017/S0954579410000222
Chumbley J, Xu W, Potente C, Harris KM, Shanahan M. A Bayesian approach to comparing common models of life-course epidemiology. Int J Epidemiol. 2021;50(5):1660–70. 10.1093/ije/dyab073. DOI: 10.1093/ije/dyab073
Ben-Shlomo Y, Cooper R, Kuh D. The last two decades of life course epidemiology, and its relevance for research on ageing. Int J Epidemiol. 2016;45:973–88. DOI: 10.1093/ije/dyw096
Mishra G, Nitsch D, Black S, Stavola B, De Klerk N, Hardy R. A structured approach to modelling the effects of binary exposure variables over the life course. Int J Epidemiol. 2009;38(2):528–37. DOI: 10.1093/ije/dyn229
Smith AD, Heron J, Mishra G, Gilthorpe MS, Ben-Shlomo Y, Tilling K. Model selection of the effect of binary exposures over the life course. Epidemiology. 2015;26(5):719–26. 10.1097/EDE.0000000000000348. DOI: 10.1097/EDE.0000000000000348.
Madathil S, Joseph L, Hardy R, Rousseau MC, Nicolau B. A Bayesian approach to investigate life course hypotheses involving continuous exposures. Int J Epidemiol. 2018;47:1623–35. DOI: 10.1093/ije/dyy107
Curran PJ, Hussong AM. Integrative data analysis: the simultaneous analysis of multiple data sets. PsychoLogical Method. 2009;14:81–100. DOI: 10.1037/a0015914
Hofer SM, Piccinin AM. Integrative data analysis through coordination of measurement and analysis protocol across independent longitudinal studies. Psychol Methods. 2009;14:150–64. DOI: 10.1037/a0015566
Hofer SM, Piccinin AM. Toward an integrative science of lifespan development and aging. J Gerontol Psychol Sci. 2010;65B:269–78. DOI: 10.1093/geronb/gbq017
Hussong AM, Curran PJ, Bauer DJ. Integrative data analysis in clinical psychology research. Annu Rev Clin Psychol. 2013;9:61–89. DOI: 10.1146/annurev-clinpsy-050212-185522
Kern ML, Hampson SE, Goldberg LR, Friedman HS. Integrating prospective longitudinal data: modeling personality and health in the terman life cycle and Hawaii longitudinal studies. Dev Psychol. 2014;50:1390–406. 10.1037/a0030874. DOI: 10.1037/a0030874
Gabelica M, Bojčić R, Puljak L. Many researchers were not compliant with their published data sharing statement: a mixed-methods study. J Clin Epidemiol. 2022;150:33–41. 10.1016/j.jclinepi.2022.05.019. DOI: 10.1016/j.jclinepi.2022.05.019
van Panhuis WG, Paul P, Emerson C, et al. A systematic review of barriers to data sharing in public health. BMC Public Health. 2014;14:1144. 10.1186/1471-2458-14-1144. DOI: 10.1186/1471-2458-14-1144
Bergeron J, Doiron D, Marcon Y, Ferretti V, Fortier I. Fostering population-based cohort data discovery: the maelstrom research cataloguing toolkit. PLoS ONE. 2018;13: e0200926. DOI: 10.1371/journal.pone.0200926
Fortier I, Raina P, Van den Heuvel ER, Griffith LE, Craig C, Saliba M, Doiron D, Stolk RP, Knoppers BM, Ferretti V, Granda P. Maelstrom research guidelines for rigorous retrospective data harmonization. Int J Epidemiol. 2016;46:103–5.
Griffith, L., van den Heuvel, E., Fortier, I., Hofer, S. M., Raina, P., Sohe, l. N., Payette, H., Wolfson, C., and Belleville, S. (2013). Harmonization of cognitive measures in individual participant data and aggregate data meta-analysis. methods research report. (prepared by the mcmaster university evidence-based practice center under contract No. 290–2007–10060-I.) AHRQ Publication No.13-EHC040-EF. Rockville, MD: Agency for Healthcare Research and Quality; March 2013. www.effectivehealthcare.ahrq.gov/reports/final.cfm.
Griffith LE, van den Heuvel E, Raina P, Fortier I, Sohel N, Hofer SM, Payette H, Wolfson C, Belleville S, Kenny M, Doiron D. Comparison of standardization methods for the harmonization of phenotype data: an application to cognitive measures. Am J Epidemiol. 2016;184(10):770–8. DOI: 10.1093/aje/kww098
Cole DA, Maxwell SE. Statistical methods for risk-outcome research: Being sensitive to longitudinal structure. Annu Rev Clin Psychol. 2009;5(1):71–96. 10.1146/annurev-clinpsy-060508-130357. DOI: 10.1146/annurev-clinpsy-060508-130357
Jennifer LS, Sauver BR, Grossardt CL, Leibson BP, Yawn LJ, Melton WA, Rocca,. Generalizability of epidemiological findings and public health decisions: an illustration from the rochester epidemiology project. Mayo Clin Proc. 2012;87(2):151–60. 10.1016/j.mayocp.2011.11.009. DOI: 10.1016/j.mayocp.2011.11.009
van den Goorbergh R, van Smeden M, Timmerman D, Van Calster B. The harm of class imbalance corrections for risk prediction models illustration and simulation using logistic regression. J Am Med Inform Assoc. 2022. 10.1093/jamia/ocac093. DOI: 10.1093/jamia/ocac093
Kim S, Egerter S, Cubbin C, Takahashi ER, Braveman P. Potential implications of missing income data in population-based surveys: an example from a postpartum survey in California. Public Health Rep. 2007;122(6):753–63. 10.1177/003335490712200607. DOI: 10.1177/003335490712200607
Steinhoff A, Shanahan L, Bechtiger L, Zimmermann J, Ribeaud D, Eisner MP, Baumgartner MR, Quednow BB. When substance use is underreported: comparing self-reports and hair toxicology in an urban cohort of young adults. J Am Acade Child Adolescent Psychiatry. 2023. 10.1016/j.jaac.2022.11.011. DOI: 10.1016/j.jaac.2022.11.011
Gilbert R, Spatz Widom C, Browne K, Fergusson D, Webb E, Janson S. Burden and consequences of child maltreatment in high-income countries. Lancet. 2009;373(9657):68–81. 10.1016/S0140-6736(08)61706-7. DOI: 10.1016/S0140-6736(08)61706-7
Barden AE, Huang R-C, Beilin LJ, Rauschert S, Tsai I-J, Oddy WH, Mori TA. Identifying young adults at high risk of cardiometabolic disease using cluster analysis and the Framingham 30-yr risk score. Nutr Metab Cardiovasc Dis. 2022;32(2):429–35. 10.1016/j.numecd.2021.10.006. DOI: 10.1016/j.numecd.2021.10.006
Peters SAE, Wang X, Lam T-H, Kim HC, Ho S, Ninomiya T, Knuiman M, Vaartjes I, Bots ML, Woodward M. Clustering of risk factors and the risk of incident cardiovascular disease in asian and caucasian populations: results from the asia pacific cohort studies collaboration. BMJ Open. 2018;8(3):e019335. 10.1136/bmjopen-2017-019335. DOI: 10.1136/bmjopen-2017-019335
Swertz M, van Enckevort E, Oliveira JL, Fortier I, Bergeron J, Thurin NH, Hyde E, Kellmann A, Pahoueshnja R, Sturkenboom M, Cunnington M, Nybo Andersen AM, Marcon Y, Gonçalves G, Gini R. Towards an interoperable ecosystem of research cohort and real-world data catalogues enabling multi-center studies. Yearb Med Inform. 2022;31(1):262–72. 10.1055/s-0042-1742522. DOI: 10.1055/s-0042-1742522
Griffith LE, van den Heuvel E, Fortier I, Sohel N, Hofer SM, Payette H, Wolfson C, Belleville S, Kenny M, Doiron D, Raina P. Statistical approaches to harmonize data on cognitive measures in systematic reviews are rarely reported. J Clin Epidemiology. 2015;68(2):154–62. DOI: 10.1016/j.jclinepi.2014.09.003
Gilbert R, Lafferty R, Hagger-Johnson G, Harron K, Zhang L-C, Smith P, Dibben C, Goldstein H. GUILD: GUidance for Information about linking data sets. J Public Health. 2018;40(1):191–8. 10.1093/pubmed/fdx037. DOI: 10.1093/pubmed/fdx037
Azizi Z, Zheng C, Mosquera L, Pilote L, El Emam K, Collaborators G-F. Can synthetic data be a proxy for real clinical trial data? A Validation study. BMJ Open. 2021;11(4):e043497. 10.1136/bmjopen-2020-043497. DOI: 10.1136/bmjopen-2020-043497
Bonnéry D, Feng Y, Henneberger AK, Johnson TL, Lachowicz M, Rose BA, Shaw T, Stapleton LM, Woolley ME, Zheng Y. The promise and limitations of synthetic data as a strategy to expand access to state-level multi-agency longitudinal data. J Res Educ Effect. 2019;12(4):616–47. 10.1080/19345747.2019.1631421. DOI: 10.1080/19345747.2019.1631421
White IR, Royston P, Wood AM. Multiple imputation using chained equations: Issues and guidance for practice. Stat Med. 2011;30(4):377–99. 10.1002/sim.4067. DOI: 10.1002/sim.4067
El Emam K. Seven ways to evaluate the utility of synthetic data. IEEE Secur Priv. 2020;18(4):56–9. 10.1109/msec.2020.2992821. DOI: 10.1109/msec.2020.2992821
Reiner-Benaim A, Almog R, Gorelik Y, Hochberg I, Nassar L, Mashiach T, Khamaisi M, Lurie Y, Azzam ZS, Khoury J, Kurnik D, Beyar R. Analyzing medical research results based on synthetic data and their relation to real data results: systematic comparison from five observational studies. JMIR Med Inform. 2020;8(2):e16492. 10.2196/16492. DOI: 10.2196/16492
Muniz-Terrera G, Mendelevitch O, Barnes R, Lesh MD. Virtual cohorts and synthetic data in dementia: an illustration of their potential to advance research. Front Artif Intell. 2021;4:613956. 10.3389/frai.2021.613956. DOI: 10.3389/frai.2021.613956
Beaulieu-Jones BK, Wu ZS, Williams C, Lee R, Bhavnani SP, Byrd JB, Greene CS. Privacy-preserving generative deep neural networks support clinical data sharing. Circ Cardiovasc Qual Outcomes. 2019;12(7):e005122. 10.1161/CIRCOUTCOMES.118.005122. DOI: 10.1161/CIRCOUTCOMES.118.005122
Gaye A, Marcon Y, Isaeva J, LaFlamme P, Turner A, Jones EM, Nuotio M-L. DataSHIELD: Taking the analysis to the data, not the data to the analysis. Int J Epidemiol. 2014;43(6):1929–44. DOI: 10.1093/ije/dyu188
O’Connor M, Spry E, Patton G, Moreno-Betancur M, Arnup S, Downes M, Goldfeld S, Burgner D, Olsson CA. Better together: advancing life course research through multi-cohort analytic approaches. Adv Life Course Res. 2022;53:100499. 10.1016/j.alcr.2022.100499. DOI: 10.1016/j.alcr.2022.100499
O’Keefe P, Mann FD, Voll S, Muniz-Terrera G, Lewis N, Wanstrom L, Hofer SM, Rodgers JL. Getting a grip on secular changes: age-period-cohort modeling of grip strength in British data. J of Gerontol Med Sci. 2022;77:1413–20. DOI: 10.1093/gerona/glab192
Muniz-Terrera G, Bakra E, Hardy R, Matthews FE, Lunn D, FALCon collaboration group. Modelling life course blood pressure trajectories using Bayesian adaptive splines. Stat Methods Med Res. 2016;25(6):2767–80. 10.1177/0962280214532576. DOI: 10.1177/0962280214532576
Lin WC, Tsai CF. Missing value imputation: a review and analysis of the literature (2006–2017). Artif Intell Rev. 2020;53:1487–509. 10.1007/s10462-019-09709-4. DOI: 10.1007/s10462-019-09709-4
Thomas T, Rajabi E. A systematic review of machine learning-based missing value imputation techniques. Data Technol Appl. 2021;55(4):558–85. 10.1108/DTA-12-2020-0298. DOI: 10.1108/DTA-12-2020-0298
Mossakowski KN. Is the duration of poverty and unemployment a risk factor for heavy drinking? Soc Science Med. 2008;67(6):947–55. 10.1016/j.socscimed.2008.05.019. DOI: 10.1016/j.socscimed.2008.05.019
Bodelet, J., Potente, C., Imeri, H., Chumbley, J., Hofer, S.M., Muniz-Terrera, G., Harris, K.M., Shanahan, M.J. (2022). A Bayesian functional approach to test models of life course epidemiology over continuous time Unpublished manuscript Jacobs Center for Productive Youth Development. University of Zürich. Zürich.
Madathil S, Rousseau MC, Joseph L, Coutlée F, Schlecht NF, Franco E, Nicolau B. Latency of tobacco smoking for head and neck cancer among HPV-positive and HPV-negative individuals. Int J Cancer. 2020;147(1):56–64. DOI: 10.1002/ijc.32708
Megahed FM, Chen Y-J, Megahed A, Ong Y, Altman N, Krzywinski M. The class imbalance problem. Nat Methods. 2021;18(11):1270–2. 10.1038/s41592-021-01302-4. DOI: 10.1038/s41592-021-01302-4
van Alten S, Domingue BW, Galama T, Marees AT. Reweighting the UK biobank to reflect its underlying sampling population substantially reduces pervasive selection bias due to volunteering. Epidemiology. 2022. 10.1101/2022.05.16.22275048. DOI: 10.1101/2022.05.16.22275048
Afrose S, Song W, Nemeroff CB, Lu C, Yao D. Subpopulation-specific machine learning prognosis for underrepresented patients with double prioritized bias correction. medRxiv. 2022. 10.1101/2021.03.26.21254401. DOI: 10.1101/2021.03.26.21254401
Elor Y, Averbuch-Elor H. To SMOTE, or not to SMOTE? arXiv 2201 08528. ArXiv. 2022. 10.4550/arXiv.220.1.08528. DOI: 10.4550/arXiv.220.1.08528
Ishaq A, Sadiq S, Umer M, Ullah S, Mirjalili S, Rupapara V, Nappi M. Improving the prediction of heart failure patients’ survival using SMOTE and effective data mining techniques. IEEE Access. 2021. 10.1109/ACCESS.2021.3064084. DOI: 10.1109/ACCESS.2021.3064084
Franklin JC, Ribeiro JD, Fox KR, et al. Risk factors for suicidal thoughts and behaviors: a meta-analysis of 50 years of research. Psychol Bull. 2016. 10.1037/bul0000084. DOI: 10.1037/bul0000084
Wilkinson M, Dumontier M, Aalbersberg I, et al. The FAIR guiding principles for scientific data management and stewardship. Sci Data. 2016;3:160018. 10.1038/sdata.2016.18. DOI: 10.1038/sdata.2016.18
Steel MFJ. Model averaging and its use in economics. J Econom Lit. 2020;58(3):644–719. 10.1257/jel.20191385. DOI: 10.1257/jel.20191385
Holman D, Walker A. Understanding unequal ageing: towards a synthesis of intersectionality and life course analyses. Eur J Ageing. 2021;18:239–55. 10.1007/s10433-020-00582-7. DOI: 10.1007/s10433-020-00582-7
Jackson D, Riley R, White IR. Multivariate meta-analysis: potential and promise. Stat Med. 2011;30(20):2481–98. 10.1002/sim.4172. DOI: 10.1002/sim.4172
Jackson D, White IR, Riley RD. Quantifying the impact of between-study heterogeneity in multivariate meta-analyses. Stat Med. 2012;31(29):3805–20. 10.1002/sim.5453. DOI: 10.1002/sim.5453
Thompson SG, Higgins JP. How should meta-regression analyses be undertaken and interpreted? Stat Med. 2002;21(11):1559–73. 10.1002/sim.1187. DOI: 10.1002/sim.1187
Collins GS, Reitsma JB, Altman DG, Moons KGM. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD statement. BMJ. 2015;350:g7594. 10.1136/bmj.g7594. DOI: 10.1136/bmj.g7594
Sindi S, Calov E, Fokkens J, Ngandu T, Soininen H, Tuomilehto J, Kivipelto M. The CAIDE dementia risk score app: the development of an evidence-based mobile application to predict the risk of dementia. Alzheimers Dement (Amst). 2015;1(3):328–33. 10.1016/j.dadm.2015.06.005. DOI: 10.1016/j.dadm.2015.06.005
Zhang Z, Rousson V, Lee WC, Ferdynus C, Chen M, Qian X, Guo Y. Written on behalf of AME big-data clinical trial collaborative group decision curve analysis: a technical note. Ann Transl Med. 2018;6(15):308. 10.21037/atm.2018.07.02. DOI: 10.21037/atm.2018.07.02
Danese A, McEwen BS. adverse childhood experiences, allostasis, allostatic load, and age-related disease. Physiol Behav. 2012;106(1):29–39. 10.1016/j.physbeh.2011.08.019. DOI: 10.1016/j.physbeh.2011.08.019
Kalmakis KA, Chandler GE. Health consequences of adverse childhood experiences: a systematic review. J Am Assoc Nurse Pract. 2015;27(8):457–65. 10.1002/2327-6924.12215. DOI: 10.1002/2327-6924.12215
Karr JE, Graham RB, Hofer SM, Muniz-Terrera G. When does cognitive decline begin? A systematic review of change point studies on accelerated decline in cognitive and neurological outcomes preceding mild cognitive impairment, dementia, and death. Psychol Aging. 2018;33(2):195–218. 10.1037/pag0000236. DOI: 10.1037/pag0000236
Branje S, Geeraerts S, de Zeeuw EL, Oerlemans AM, Koopman-Verhoeff ME, Schulz S, Nelemans S, Meeus W, Hartman CA, Hillegers MHJ, Oldehinkel AJ, Boomsma DI. Intergenerational transmission: theoretical and methodological issues and an introduction to four Dutch cohorts. Develop Cognit Neurosci. 2020;45:100835. 10.1016/j.dcn.2020.100835. DOI: 10.1016/j.dcn.2020.100835