Communication publiée dans un ouvrage (Colloques, congrès, conférences scientifiques et actes)
Effective Automatic Feature Engineering on Financial Statements for Bankruptcy Prediction
WANG, Xin Lin; Kraussl, Zsofia; ZURAD, Maciej et al.
2023In WANG, Xin Lin; KRÄUSSL, Zsofia; Zurad, Maciej et al. (Eds.) Effective Automatic Feature Engineering on Financial Statements for Bankruptcy Prediction
Peer reviewed
 

Documents


Texte intégral
AFE_for_ICECCME.pdf
Postprint Auteur (2.84 MB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Automatic feature engineering, Bankruptcy prediction, Credit risk, Imbalanced data
Résumé :
[en] Feature engineering on financial records for bankruptcy prediction has traditionally relied significantly on domain knowledge and typically results in a range of financial ratios but with limited complexity and feature utilization due to manual design. It is often a time-consuming and error-prone procedure, confined to the domain experts’ experience, without taking into account the characteristics of different data sets. In this paper, we propose an automated feature engineering approach to generate effective, explainable, and extensible model training features. The experiments have been conducted using a publicly available record of financial statements submitted to the Luxembourg Business Registers. This approach aims to improve bankruptcy prediction for professionals who may not possess the necessary engineering expertise or efficient data. The experimental results suggest that the proposed approach can provide valuable features for model training and in most of the cases, the model’s outcomes outperforms predominantly as compared to the traditional approaches and the well-known approaches the models, thus can provide valuable features for model training.
Centre de recherche :
Interdisciplinary Centre for Security, Reliability and Trust (SnT) > SEDAN - Service and Data Management in Distributed Systems
NCER-FT - FinTech National Centre of Excellence in Research
Disciplines :
Sciences informatiques
Auteur, co-auteur :
WANG, Xin Lin  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SEDAN
Kraussl, Zsofia;  Unilu - Université du Luxembourg [LU] > Faculty of Law, Economics and Finance > Department of Finance
ZURAD, Maciej;  Yoba S.A.
BRORSSON, Mats Håkan  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SEDAN
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Effective Automatic Feature Engineering on Financial Statements for Bankruptcy Prediction
Date de publication/diffusion :
19 juillet 2023
Nom de la manifestation :
2023 3rd International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME)
Date de la manifestation :
19-21 July 2023
Sur invitation :
Oui
Titre de l'ouvrage principal :
Effective Automatic Feature Engineering on Financial Statements for Bankruptcy Prediction
Auteur, co-auteur :
WANG, Xin Lin  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SEDAN
KRÄUSSL, Zsofia ;  University of Luxembourg
Zurad, Maciej;  Yoba S.A.
BRORSSON, Mats Håkan  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SEDAN
Maison d'édition :
IEEE Xplore, Inconnu/non spécifié
Peer reviewed :
Peer reviewed
Disponible sur ORBilu :
depuis le 29 novembre 2023

Statistiques


Nombre de vues
131 (dont 21 Unilu)
Nombre de téléchargements
411 (dont 15 Unilu)

citations Scopus®
 
1
citations Scopus®
sans auto-citations
1
OpenCitations
 
1
citations OpenAlex
 
2

Bibliographie


Publications similaires



Contacter ORBilu