[en] Adults shift their attention to the right or to the left along a spatial continuum when solving additions and subtractions, respectively. Studies suggest that these shifts not only support the exact computation of the results but also anticipatively narrow down the range of plausible answers when processing the operands. However, little is known on when and how these attentional shifts arise in childhood during the acquisition of arithmetic. Here, an eye-tracker with high spatio-temporal resolution was used to measure spontaneous eye movements, used as a proxy for attentional shifts, while children of 2nd (8 y-o; N = 50) and 4th (10 y-o; N = 48) Grade solved simple additions (e.g., 4+3) and subtractions (e.g., 3-2). Gaze patterns revealed horizontal and vertical attentional shifts in both groups. Critically, horizontal eye movements were observed in 4th Graders as soon as the first operand and the operator were presented and thus before the beginning of the exact computation. In 2nd Graders, attentional shifts were only observed after the presentation of the second operand just before the response was made. This demonstrates that spatial attention is recruited when children solve arithmetic problems, even in the early stages of learning mathematics. The time course of these attentional shifts suggests that with practice in arithmetic children start to use spatial attention to anticipatively guide the search for the answer and facilitate the implementation of solving procedures. RESEARCH HIGHLIGHTS: Additions and subtractions are associated to right and left attentional shifts in adults, but it is unknown when these mechanisms arise in childhood. Children of 8-10 years old solved single-digit additions and subtractions while looking at a blank screen. Eye movements showed that children of 8 years old already show spatial biases possibly to represent the response when knowing both operands. Children of 10 years old shift attention before knowing the second operand to anticipatively guide the search for plausible answers.
Disciplines :
Neurosciences & comportement
Auteur, co-auteur :
MASSON, Nicolas ; University of Luxembourg > Faculty of Humanities, Education and Social Sciences > Department of Behavioural and Cognitive Sciences > Team Christine SCHILTZ ; Psychological Sciences Research Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
Dormal, Valérie; Psychological Sciences Research Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
SCHILTZ, Christine ; University of Luxembourg > Faculty of Humanities, Education and Social Sciences (FHSE) > Department of Behavioural and Cognitive Sciences (DBCS) > Cognitive Science and Assessment
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Eye movements reveal that young school children shift attention when solving additions and subtractions.
Fonds De La Recherche Scientifique - FNRS Fonds National de la Recherche Luxembourg
Subventionnement (détails) :
The authors would like to thank all the children who participated to this experiment and the school teachers and staff members of the Ecole Notre Dame Immaculée (Evere, Belgium) and the Ecole Fondamentale Kinneksbond (Mamer, Luxemburg) for welcoming us and facilitating the testing sessions. We also thank Gina Andrade, Brenda Gilson, Amélie Mersch, and Adeline Rasselet for their help with the data collection. This research was supported by the Fonds National de la Recherche Scientifique (FRS‐FNRS, Belgium; grants 1.B303.21 and PDR‐T.0047.18) and by the Fonds National de la Recherche (FNR, Luxemburg; grant FNR‐INTER/FNRS/17/1178524/SNAMATH).
Aleotti, S., Di Girolamo, F., Massaccesi, S., & Priftis, K. (2020). Numbers around Descartes: A preregistered study on the three-dimensional SNARC effect. Cognition, 195, 104111. https://doi.org/10.1016/j.cognition.2019.104111
Andres, M., Salvaggio, S., Lefèvre, N., Pesenti, M., & Masson, N. (2020). Semantic associations between arithmetic and space: Evidence from temporal order judgements. Memory & Cognition, 48(3), 361–369. https://doi.org/10.3758/s13421-019-00975-9
Ashcraft, M. H. (1992). Cognitive arithmetic: A review of data and theory. Cognition, 44(1-2), 75–106. https://doi.org/10.1016/0010-0277(92)90051-I
Bächtold, D., Baumüller, M., & Brugger, P. (1998). Stimulus-response compatibility in representational space. Neuropsychologia, 36(8), 731–735. https://doi.org/10.1016/S0028-3932(98)00002-5
Bagnoud, J., Dewi, J., Castel, C., Mathieu, R., & Thevenot, C. (2021). Developmental changes in size effects for simple tie and non-tie addition problems in 6-to 12-year-old children and adults. Journal of Experimental Child Psychology, 201, 104987. https://doi.org/10.1016/j.jecp.2020.104987
Barrouillet, P., & Thevenot, C. (2013). On the problem-size effect in small additions: Can we really discard any counting-based account? Cognition, 128(1), 35–44. https://doi.org/10.1016/j.cognition.2013.02.018
Blini, E., Pitteri, M., & Zorzi, M. (2019). Spatial grounding of symbolic arithmetic: An investigation with optokinetic stimulation. Psychological Research, 83(1), 64–83. https://doi.org/10.1007/s00426-018-1053-0
Bulf, H., de Hevia, M. D., & Macchi Cassia, V. (2016). Small on the left, large on the right: Numbers orient visual attention onto space in preverbal infants. Developmental Science, 19(3), 394–401. https://doi.org/10.1111/desc.12315
Campbell, J. I. D., Chen, Y., & Azhar, M. (2021). Not toeing the number line for simple arithmetic: Two large-N conceptual replications of Mathieu et al. (Cognition, 2016, Experiment 1). Journal of Numerical Cognition, 7(3), 248–258. https://doi.org/10.5964/jnc.6051
Campbell, J. I., & Xue, Q. (2001). Cognitive arithmetic across cultures. Journal of Experimental Psychology: General, 130(2), 299–315. https://doi.org/10.1037/0096-3445.130.2.299
Cantlon, J. F., Merritt, D. J., & Brannon, E. M. (2016). Monkeys display classic signatures of human symbolic arithmetic. Animal Cognition, 19(2), 405–415. https://doi.org/10.1007/s10071-015-0942-5
Cipora, K., Schroeder, P. A., Soltanlou, M., & Nuerk, H. C. (2018). More space, better mathematics: Is space a powerful tool or a cornerstone for understanding arithmetic? In Visualizing mathematics (pp. 77–116). Springer. https://doi.org/10.1007/978-3-319-98767-5_4
Dehaene, S. (1992). Varieties of numerical abilities. Cognition, 44(1-2), 1–42. https://doi.org/10.1016/0010-0277(92)90049-N
Dehaene, S., Bossini, S., & Giraux, P. (1993). The mental representation of parity and number magnitude. Journal of Experimental Psychology: General, 122(3), 371. https://doi.org/10.1037/0096-3445.122.3.371
de Hevia, M. D., Veggiotti, L., Streri, A., & Bonn, C. D. (2017). At birth, humans associate “few” with left and “many” with right. Current Biology, 27(24), 3879–3884. https://doi.org/10.1016/j.cub.2017.11.024
Díaz-Barriga Yáñez, A., Couderc, A., Longo, L., Merchie, A., Chesnokova, H., Langlois, E., Thevenot, C., & Prado, J. (2020). Learning to run the number line: The development of attentional shifts during single-digit arithmetic. Annals of the New York Academy of Sciences, 1477(1), 79–90. https://doi.org/10.1111/nyas.14464
Di Giorgio, E., Lunghi, M., Rugani, R., Regolin, L., Dalla Barba, B., Vallortigara, G., & Simion, F. (2019). A mental number line in human newborns. Developmental Science, 22(6), e12801. https://doi.org/10.1111/desc.12801
Dormal, V., Schuller, A. M., Nihoul, J., Pesenti, M., & Andres, M. (2014). Causal role of spatial attention in arithmetic problem solving: Evidence from left unilateral neglect. Neuropsychologia, 60, 1–9. https://doi.org/10.1016/j.neuropsychologia.2014.05.007
Fayol, M., & Thevenot, C. (2012). The use of procedural knowledge in simple addition and subtraction problems. Cognition, 123(3), 392–403. https://doi.org/10.1016/j.cognition.2012.02.008
Fischer, M. H. (2012). A hierarchical view of grounded, embodied, and situated numerical cognition. Cognitive Processing, 13(1), 161–164. https://doi.org/10.1007/s10339-012-0477-5
Fischer, M. H., & Brugger, P. (2011). When digits help digits: Spatial–numerical associations point to finger counting as prime example of embodied cognition. Frontiers in Psychology, 2, 260. https://doi.org/10.3389/fpsyg.2011.00260
Foulsham, T., Gray, A., Nasiopoulos, E., & Kingstone, A. (2013). Leftward biases in picture scanning and line bisection: A gaze-contingent window study. Vision Research, 78, 14–25. https://doi.org/10.1016/j.visres.2012.12.001
Giurfa, M., Marcout, C., Hilpert, P., Thevenot, C., & Rugani, R. (2022). An insect brain organizes numbers on a left-to-right number line. Proceedings of the National Academy of Sciences, 119(44), e2203584119. https://doi.org/10.1073/pnas.2203584119
Glaser, M., & Knops, A. (2020). When adding is right: Temporal order judgements reveal spatial attention shifts during two-digit mental arithmetic. Quarterly Journal of Experimental Psychology, 73(7), 1115–1132. https://doi.org/10.1177/1747021820902917
Gevers, W., Verguts, T., Reynvoet, B., Caessens, B., & Fias, W. (2006). Numbers and space: a computational model of the SNARC effect. Journal of Experimental Psychology: Human Perception and Performance, 32(1), 32–44. https://doi.org/10.1037/0096-1523.32.1.32
Hartmann, M., Mast, F. W., & Fischer, M. H. (2015). Spatial biases during mental arithmetic: Evidence from eye movements on a blank screen. Frontiers in Psychology, 6, 12. https://doi.org/10.3389/fpsyg.2015.00012
Hartmann, M. (2022). Summing up: A functional role of eye movements along the mental number line for arithmetic. Acta Psychologica, 230, 103770. https://doi.org/10.1016/j.actpsy.2022.103770
Hawes, Z., & Ansari, D. (2020). What explains the relationship between spatial and mathematical skills? A review of evidence from brain and behavior. Psychonomic Bulletin & Review, 27, 465–482. https://psycnet.apa.org/doi/10.3758/s13423-019-01694-7
Holmes, K. J. (2012). Orienting Numbers in Mental Space: Horizontal Organization Trumps Vertical. Quarterly Journal of Experimental Psychology, 65(6), 1044–1051. https://doi.org/10.1080/17470218.2012.685079
Hubbard, E. M., Piazza, M., Pinel, P., & Dehaene, S. (2005). Interactions between number and space in parietal cortex. Nature Reviews Neuroscience, 6(6), 435–448. https://doi.org/10.1038/nrn1684
Jordan, N. C., Kaplan, D., Ramineni, C., & Locuniak, M. N. (2008). Development of number combination skill in the early school years: When do fingers help? Developmental Science, 11(5), 662–668. https://doi.org/10.1111/j.1467-7687.2008.00715.x
Klein, E., Huber, S., Nuerk, H. C., & Moeller, K. (2014). Operational momentum affects eye fixation behaviour. Quarterly Journal of Experimental Psychology, 67(8), 1614–1625. https://doi.org/10.1080/17470218.2014.902976
Knops, A., Thirion, B., Hubbard, E. M., Michel, V., & Dehaene, S. (2009). Recruitment of an area involved in eye movements during mental arithmetic. Science, 324, 1583–1585. https://doi.org/10.1126/science.1171599
Liu, D., Cai, D., Verguts, T., & Chen, Q. (2017). The time course of spatial attention shifts in elementary arithmetic. Scientific Reports, 7(1), 921. https://doi.org/10.1038/s41598-017-01037-3
Loetscher, T., Bockisch, C. J., Nicholls, M. E., & Brugger, P. (2010). Eye position predicts what number you have in mind. Current Biology, 20(6), R264–R265. https://doi.org/10.1016/j.cub.2010.01.015
Maris, E., & Oostenveld, R. (2007). Nonparametric statistical testing of EEG- and MEG-data. Journal of Neuroscience Methods, 164(1), 177–190. https://doi.org/10.1016/j.jneumeth.2007.03.024
Marghetis, T., Núñez, R., & Bergen, B. K. (2014). Doing arithmetic by hand: Hand movements during exact arithmetic reveal systematic, dynamic spatial processing. The Quarterly Journal of Experimental Psychology, 67(8), 1579–1596. https://doi.org/10.1080/17470218.2014.897359
Masson, N., Andres, M., Alsamour, M., Bollen, Z., & Pesenti, M. (2020). Spatial biases in mental arithmetic are independent of reading/writing habits: Evidence from French and Arabic speakers. Cognition, 200, 104262. https://doi.org/10.1016/j.cognition.2020.104262
Masson, N., Letesson, C., & Pesenti, M. (2018). Time course of overt attentional shifts in mental arithmetic: Evidence from gaze metrics. The Quarterly Journal of Experimental Psychology, 71(4), 1009–1019. https://doi.org/10.1080/17470218.2017.1318931
Masson, N., & Pesenti, M. (2014). Attentional bias induced by solving simple and complex addition and subtraction problems. The Quarterly Journal of Experimental Psychology, 67, 1514–1526. https://doi.org/10.1080/17470218.2014.903985
Masson, N., & Pesenti, M. (2016). Interference of lateralized distractors on arithmetic problem solving: A functional role for attention shifts in mental calculation. Psychological Research, 80, 640–651. https://doi.org/10.1007/s00426-015-0668-7
Masson, N., & Pesenti, M. (2023). A functional role for oculomotor preparation in mental arithmetic evidenced by the abducted eye paradigm. Psychological Research, 87, 919–928. https://doi.org/10.1007/s00426-022-01696-6
Masson, N., Pesenti, M., Coyette, F., Andres, M., & Dormal, V. (2018). Shifts of spatial attention underlie numerical comparison and mental arithmetic: Evidence from a patient with right unilateral neglect. Neuropsychology, 31(7), 822–833. https://doi.org/10.1037/neu0000361
Masson, N., Pesenti, M., & Dormal, V. (2017). Impact of optokinetic stimulation on mental arithmetic. Psychological Research, 81(4), 840–849. https://doi.org/10.1007/s00426-016-0784-z
Mathieu, R., Epinat-Duclos, J., Léone, J., Fayol, M., Thevenot, C., & Prado, J. (2018). Hippocampal spatial mechanisms relate to the development of arithmetic symbol processing in children. Developmental Cognitive Neuroscience, 30, 324–332. https://doi.org/10.1016/j.dcn.2017.06.001
Mathieu, R., Gourjon, A., Couderc, A., Thevenot, C., & Prado, J. (2016). Running the number line: Rapid shifts of attention in single-digit arithmetic. Cognition, 146, 229–239. https://doi.org/10.1016/j.cognition.2015.10.002
Mathôt, S., Schreij, D., & Theeuwes, J. (2012). OpenSesame: An open-source, graphical experiment builder for the social sciences. Behavior Research Methods, 44(2), 314–324. https://doi.org/10.3758/s13428-011-0168-7
Mathôt, S., Van der Linden, L., Grainger, J., & Vitu, F. (2013). The pupillary light response reveals the focus of covert visual attention. PloS one, 8(10), e78168. https://doi.org/10.1371/journal.pone.0078168
MATLAB. (2018). The MathWorks Inc, Natick, Massachusetts, United States.
McCloskey, M., Caramazza, A., & Basili, A. (1985). Cognitive mechanisms in number processing and calculation: Evidence from dyscalculia. Brain and Cognition, 4(2), 171–196. https://doi.org/10.1016/0278-2626(85)90069-7
McCrink, K., Dehaene, S., & Dehaene-Lambertz, G. (2007). Moving along the number line: Operational momentum in nonsymbolic arithmetic. Perception & Psychophysics, 69(8), 1324–1333. https://doi.org/10.3758/BF03192949
McCrink, K., & Opfer, J. E. (2014). Development of spatial-numerical associations. Current Directions in Psychological Science, 23(6), 439–445. https://doi.org/10.1177/0963721414549751
MNFP. (2011). Plan d’études: Ecole Fondamentale. Retrieved August 28, 2023, from https://men.public.lu/dam-assets/catalogue-publications/courriers-de-leducation-nationale/numeros-speciaux/plan-etudes-ecoles-fondamentale.pdf
Myachykov, A., Cangelosi, A., Ellis, R., & Fischer, M. H. (2015). The oculomotor resonance effect in spatial–numerical mapping. Acta Psychologica, 161, 162–169. https://doi.org/10.1016/j.actpsy.2015.09.006
Patro, K., Fischer, U., Nuerk, H. C., & Cress, U. (2016). How to rapidly construct a spatial–numerical representation in preliterate children (at least temporarily). Developmental Science, 19(1), 126–144. https://doi.org/10.1111/desc.12296
Pinhas, M., & Fischer, M. H. (2008). Mental movements without magnitude? A study of spatial biases in symbolic arithmetic. Cognition, 109(3), 408–415. https://doi.org/10.1016/j.cognition.2008.09.003
Pinhas, M., Shaki, S., & Fischer, M. H. (2014). Heed the signs: Operation signs have spatial associations. The Quarterly Journal of Experimental Psychology, 67(8), 1527–1540. https://doi.org/10.1080/17470218.2014.892516
Poletti, C., Yáñez, A. D. B., Prado, J., & Thevenot, C. (2023). The development of simple addition problem solving in children: Reliance on automatized counting or memory retrieval depends on both expertise and problem size. Journal of Experimental Child Psychology, 234, 105710. https://doi.org/10.1016/j.jecp.2023.105710
Proctor, R. W., & Cho, Y. S. (2006). Polarity correspondence: A general principle for performance of speeded binary classification tasks. Psychological Bulletin, 132(3), 416. https://doi.org/10.1037/0033-2909.132.3.416
Rugani, R., & de Hevia, M. D. (2017). Number-space associations without language: Evidence from preverbal human infants and non-human animal species. Psychonomic Bulletin & Review, 24(2), 352–369. https://doi.org/10.3758/s13423-016-1126-2
Rugani, R., Fontanari, L., Simoni, E., Regolin, L., & Vallortigara, G. (2009). Arithmetic in newborn chicks. Proceedings of the Royal Society B: Biological Sciences, 276(1666), 2451–2460. https://doi.org/10.1098/rspb.2009.0044
Rugani, R., Vallortigara, G., Priftis, K., & Regolin, L. (2015). Number-space mapping in the newborn chick resembles humans’ mental number line. Science, 347(6221), 534–536. https://doi.org/10.1126/science.aaa1379
Salvaggio, S., Andres, M., Zénon, A., & Masson, N. (2022). Pupil size variations reveal covert shifts of attention induced by numbers. Psychonomic Bulletin & Review, 29, 1844–1853. https://doi.org/10.3758/s13423-022-02094-0
Salvaggio, S., Masson, N., & Andres, M. (2019). Eye position reflects the spatial coding of numbers during magnitude comparison. Journal of Experimental Psychology: Learning, Memory, and Cognition, 45(10), 1910–1921. https://doi.org/10.1037/xlm0000681
Salvaggio, S., Masson, N., Zénon, A., & Andres, M. (2022). The predictive role of eye movements in mental arithmetic. Experimental Brain Research, 240(5), 1331–1340. https://doi.org/10.1007/s00221-022-06329-3
Sahan, M. I., van Dijck, J. P., & Fias, W. (2022). Eye-movements reveal the serial position of the attended item in verbal working memory. Psychonomic Bulletin & Review, 29, 530–540. https://doi.org/10.3758/s13423-021-02005-9
Shaki, S., Fischer, M. H., & Petrusic, W. M. (2009). Reading habits for both words and numbers contribute to the SNARC effect. Psychonomic Bulletin & Review, 16(2), 328–331. https://doi.org/10.3758/PBR.16.2.328
Stoianov, I., Kramer, P., Umilta, C., & Zorzi, M. (2008). Visuospatial priming of the mental number line. Cognition, 106(2), 770–779. https://doi.org/10.1016/j.cognition.2007.04.013
Strauch, C., Romein, C., Naber, M., Van der Stigchel, S., & Ten Brink, A. F. (2022). The orienting response drives pseudoneglect—Evidence from an objective pupillometric method. Cortex, 151, 259–271. https://doi.org/10.1016/j.cortex.2022.03.006
Toomarian, E. Y., & Hubbard, E. M. (2018). On the genesis of spatial-numerical associations: Evolutionary and cultural factors co-construct the mental number line. Neuroscience & Biobehavioral Reviews, 90, 184–199. https://doi.org/10.1016/j.neubiorev.2018.04.010
Uittenhove, K., Thevenot, C., & Barrouillet, P. (2016). Fast automated counting procedures in addition problem solving: When are they used and why are they mistaken for retrieval? Cognition, 146, 289–303. https://doi.org/10.1016/j.cognition.2015.10.008
Wiemers, M., Bekkering, H., & Lindemann, O. (2014). Spatial interferences in mental arithmetic: Evidence from the motion–arithmetic compatibility effect. The Quarterly Journal of Experimental Psychology, 67(8), 1557–1570. https://doi.org/10.1080/17470218.2014.889180
Winter, B., Matlock, T., Shaki, S., & Fischer, M. H. (2015). Mental number space in three dimensions. Neuroscience & Biobehavioral Reviews, 57, 209–219. https://doi.org/10.1016/j.neubiorev.2015.09.005