Eprint diffusé à l'origine sur un autre site (E-prints, Working papers et Carnets de recherche)
Joint Computation and Communication Resource Optimization for Beyond Diagonal UAV-IRS Empowered MEC Networks
MAHMOOD, Asad; VU, Thang Xuan; CHATZINOTAS, Symeon et al.
2023
 

Documents


Texte intégral
2311.07199.pdf
Postprint Auteur (1.77 MB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
eess.SP
Résumé :
[en] Intelligent Reconfigurable Surfaces (IRS) are crucial for overcoming challenges in coverage, capacity, and energy efficiency beyond 5G (B5G). The classical IRS architecture, employing a diagonal phase shift matrix, hampers effective passive beamforming manipulation. To unlock its full potential, Beyond Diagonal IRS (BD-IRS or IRS 2.0) emerges as a revolutionary member, transcending limitations of the diagonal IRS. This paper introduces BD-IRS deployed on unmanned aerial vehicles (BD-IRS-UAV) in Mobile Edge Computing (MEC) networks. Here, users offload tasks to the MEC server due to limited resources and finite battery life. The objective is to minimize worst-case system latency by optimizing BD-IRS-UAV deployment, local and edge computational resource allocation, task segmentation, power allocation, and received beamforming vector. The resulting non-convex/non-linear NP-hard optimization problem is intricate, prompting division into two subproblems: 1) BD-IRS-UAV deployment, local and edge computational resources, and task segmentation, and 2) power allocation, received beamforming, and phase shift design. Standard optimization methods efficiently solve each subproblem. Monte Carlo simulations provide numerical results, comparing the proposed BD-IRS-UAV-enabled MEC optimization framework with various benchmarks. Performance evaluations include comparisons with fully-connected and group-connected architectures, single-connected diagonal IRS, and binary offloading, edge computation, fixed computation, and local computation frameworks. Results show a 7.25% lower latency and a 17.77% improvement in data rate with BD-IRS compared to conventional diagonal IRS systems, demonstrating the effectiveness of the proposed optimization framework.
Disciplines :
Sciences informatiques
Auteur, co-auteur :
MAHMOOD, Asad  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom
VU, Thang Xuan  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom
CHATZINOTAS, Symeon  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom
Editeur scientifique :
KHAN, Wali Ullah  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom
OTTERSTEN, Björn  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
Langue du document :
Anglais
Titre :
Joint Computation and Communication Resource Optimization for Beyond Diagonal UAV-IRS Empowered MEC Networks
Date de publication/diffusion :
novembre 2023
Disponible sur ORBilu :
depuis le 28 novembre 2023

Statistiques


Nombre de vues
151 (dont 11 Unilu)
Nombre de téléchargements
63 (dont 2 Unilu)

Bibliographie


Publications similaires



Contacter ORBilu