[en] The shrinking of glaciers is among the most iconic consequences of climate change. Despite this, the downstream consequences for ecosystem processes and related microbiome structure and function remain poorly understood. Here, using a space-for-time substitution approach across 101 glacier-fed streams (GFSs) from six major regions worldwide, we investigated how glacier shrinkage is likely to impact the organic matter (OM) decomposition rates of benthic biofilms. To do this, we measured the activities of five common extracellular enzymes and estimated decomposition rates by using enzyme allocation equations based on stoichiometry. We found decomposition rates to average 0.0129 (% d-1 ), and that decreases in glacier influence (estimated by percent glacier catchment coverage, turbidity, and a glacier index) accelerates decomposition rates. To explore mechanisms behind these relationships, we further compared decomposition rates with biofilm and stream water characteristics. We found that chlorophyll-a, temperature, and stream water N:P together explained 61% of the variability in decomposition. Algal biomass, which is also increasing with glacier shrinkage, showed a particularly strong relationship with decomposition, likely indicating their importance in contributing labile organic compounds to these carbon-poor habitats. We also found high relative abundances of chytrid fungi in GFS sediments, which putatively parasitize these algae, promoting decomposition through a fungal shunt. Exploring the biofilm microbiome, we then sought to identify bacterial phylogenetic clades significantly associated with decomposition, and found numerous positively (e.g., Saprospiraceae) and negatively (e.g., Nitrospira) related clades. Lastly, using metagenomics, we found evidence of different bacterial classes possessing different proportions of EEA-encoding genes, potentially informing some of the microbial associations with decomposition rates. Our results, therefore, present new mechanistic insights into OM decomposition in GFSs by demonstrating that an algal-based "green food web" is likely to increase in importance in the future and will promote important biogeochemical shifts in these streams as glaciers vanish.
Research center :
ULHPC - University of Luxembourg: High Performance Computing
Disciplines :
Physical, chemical, mathematical & earth Sciences: Multidisciplinary, general & others
Author, co-author :
Kohler, Tyler J ; River Ecosystems Laboratory, Alpine and Polar Environmental Research Center, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
Fodelianakis, Stilianos ; River Ecosystems Laboratory, Alpine and Polar Environmental Research Center, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
Michoud, Grégoire ; River Ecosystems Laboratory, Alpine and Polar Environmental Research Center, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
Ezzat, Leïla ; River Ecosystems Laboratory, Alpine and Polar Environmental Research Center, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
Bourquin, Massimo ; River Ecosystems Laboratory, Alpine and Polar Environmental Research Center, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
Peter, Hannes ; River Ecosystems Laboratory, Alpine and Polar Environmental Research Center, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
BUSI, Susheel Bhanu ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine > Systems Ecology > Team Paul WILMES
Pramateftaki, Paraskevi ; River Ecosystems Laboratory, Alpine and Polar Environmental Research Center, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
Deluigi, Nicola ; River Ecosystems Laboratory, Alpine and Polar Environmental Research Center, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
Styllas, Michail ; River Ecosystems Laboratory, Alpine and Polar Environmental Research Center, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
Tolosano, Matteo ; River Ecosystems Laboratory, Alpine and Polar Environmental Research Center, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
de Staercke, Vincent ; River Ecosystems Laboratory, Alpine and Polar Environmental Research Center, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
Schön, Martina ; River Ecosystems Laboratory, Alpine and Polar Environmental Research Center, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
Brandani, Jade ; River Ecosystems Laboratory, Alpine and Polar Environmental Research Center, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
Marasco, Ramona ; Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
Daffonchio, Daniele ; Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
WILMES, Paul ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Systems Ecology
Battin, Tom J ; River Ecosystems Laboratory, Alpine and Polar Environmental Research Center, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
FNR11823097 - Microbiomes In One Health, 2017 (01/09/2018-28/02/2025) - Paul Wilmes
Funders :
SNSF - Swiss National Science Foundation
Funding number :
CRSII5_180241
Funding text :
This research was supported by The NOMIS Foundation project “Vanishing Glaciers” to TJB. SBB was supported by the Synergia grant (CRSII5_180241: Swiss National Science Foundation) to TJB. PW is supported by the Luxembourg National Research Fund (FNR; PRIDE17/11823097). DD acknowledges the financial support of King Abdullah University and Technology (KAUST) through the baseline research fund. We thank the many students and technicians that assisted us with lab work and other analyses, including Emmy Marie Oppliger, Eline Grégoire, Ben Therrien, Maxwell Bergström, Florian Bielser, Dilan Resch, and Thierry Demierre. We also thank Alex Washburne for his help with the phylofactorization analysis and comments on an early draft of the manuscript. Finally, we are grateful to Scott Hotaling and one anonymous reviewer for their comments which greatly improved the manuscript. Open access funding provided by Ecole Polytechnique Federale de Lausanne.This research was supported by The NOMIS Foundation project “Vanishing Glaciers” to TJB. SBB was supported by the Synergia grant (CRSII5_180241: Swiss National Science Foundation) to TJB. PW is supported by the Luxembourg National Research Fund (FNR; PRIDE17/11823097). DD acknowledges the financial support of King Abdullah University and Technology (KAUST) through the baseline research fund.
Acinas, S. G., Sánchez, P., Salazar, G., Cornejo-Castillo, F. M., Sebastián, M., Logares, R., Royo-Llonch, M., Paoli, L., Sunagawa, S., Hingamp, P., Ogata, H., Lima-Mendez, G., Roux, S., González, J. M., Arrieta, J. M., Alam, I. S., Kamau, A., Bowler, C., Raes, J., … Gasol, J. M. (2021). Deep ocean metagenomes provide insight into the metabolic architecture of bathypelagic microbial communities. Communications Biology, 4(1). https://doi.org/10.1038/S42003-021-02112-2
Andrews, S. (2010). FastQC a quality control tool for high throughput sequence data. Retrieved from http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
Anesio, A. M., Lutz, S., Chrismas, N. A. M., & Benning, L. G. (2017). The microbiome of glaciers and ice sheets. npj Biofilms and Microbiomes, 3(1). https://doi.org/10.1038/s41522-017-0019-0
Battin, T. J., Besemer, K., Bengtsson, M. M., Romani, A. M., & Packmann, A. I. (2016). The ecology and biogeochemistry of stream biofilms. Nature Reviews Microbiology, 14(4), 251–263. https://doi.org/10.1038/nrmicro.2016.15
Battin, T. J., Kaplan, L. A., Findlay, S., Hopkinson, C. S., Marti, E., Packman, A. I., Newbold, J. D., & Sabater, F. (2008). Biophysical controls on organic carbon fluxes in fluvial networks. Nature Geoscience, 1(2), 95–100. https://doi.org/10.1038/NGEO101
Battin, T. J., Kaplan, L. A., Newbold, J. D., & Hansen, C. M. E. (2003). Contributions of microbial biofilms to ecosystem processes in stream mesocosms. Nature, 426(6965), 439–442. https://doi.org/10.1038/nature02152
Boix Canadell, M., Gómez-Gener, L., Ulseth, A. J., Clémençon, M., Lane, S. N., & Battin, T. J. (2021). Regimes of primary production and their drivers in Alpine streams. Freshwater Biology, 66(8), 1449–1463. https://doi.org/10.1111/FWB.13730
Bolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics, 30(15), 2114–2120. https://doi.org/10.1093/BIOINFORMATICS/BTU170
Bolyen, E., Rideout, J. R., Dillon, M. R., Bokulich, N. A., Abnet, C. C., Al-Ghalith, G. A., Alexander, H., Alm, E. J., Arumugam, M., Asnicar, F., Bai, Y., Bisanz, J. E., Bittinger, K., Brejnrod, A., Brislawn, C. J., Brown, C. T., Callahan, B. J., Caraballo-Rodríguez, A. M., Chase, J., … Caporaso, J. G. (2019). Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nature Biotechnology, 37(8), 852–857. https://doi.org/10.1038/s41587-019-0209-9
Boyd, E. S., Hamilton, T. L., Havig, J. R., Skidmore, M. L., & Shock, E. L. (2014). Chemolithotrophic primary production in a subglacial ecosystem. Applied and Environmental Microbiology, 80(19), 6146–6153. https://doi.org/10.1128/AEM.01956-14
Boyero, L., Pérez, J., López-Rojo, N., Tonin, A. M., Correa-Araneda, F., Pearson, R. G., Bosch, J., Albariño, R. J., Anbalagan, S., Barmuta, L. A., Beesley, L., Burdon, F. J., Caliman, A., Callisto, M., Campbell, I. C., Cardinale, B. J., Casas, J. J., Chará-Serna, A. M., Ciapała, S., … Yule, C. M. (2021). Latitude dictates plant diversity effects on instream decomposition. Science Advances, 7(13). https://doi.org/10.1126/SCIADV.ABE7860
Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M., & West, G. B. (2004). Toward a metabolic theory of ecology. Ecology, 85(7), 1771–1789. https://doi.org/10.1890/03-9000
Brown, S. P., Olson, B. J. S. C., & Jumpponen, A. (2015). Fungi and algae co-occur in snow: An issue of shared habitat or algal facilitation of heterotrophs? Arctic, Antarctic, and Alpine Research, 47(4), 729–749. https://doi.org/10.1657/AAAR0014-071
Busi, S. B., Bourquin, M., Fodelianakis, S., Kohler, J., Peter, H., Pramateftaki, P., Styllas, M., Tolosano, M., Staercke, D., de Nies, L., Marasco, R., Daffonchio, D., Wilmes, P., Battin, T. J., Group, S. E., Biofilm, S., Abdullah, K., & Arabia, S. (2021). Genomic and metabolic adaptations of biofilms to ecological windows of opportunities in glacier-fed streams. BioRxiv, https://doi.org/10.1101/2021.10.07.463499
Busi, S. B., Pramateftaki, P., Brandani, J., Fodelianakis, S., Peter, H., Halder, R., Wilmes, P., & Battin, T. J. (2020). Optimised biomolecular extraction for metagenomic analysis of microbial biofilms from high-mountain streams. PeerJ, 8, 1–20. https://doi.org/10.7717/peerj.9973
Callahan, B. J., Sankaran, K., Fukuyama, J. A., McMurdie, P. J., & Holmes, S. P. (2016). Bioconductor workflow for microbiome data analysis: From raw reads to community analyses. F1000Research, 5(3), 1492. https://doi.org/10.12688/f1000research.8986.2
Cauvy-Fraunié, S., & Dangles, O. (2019). A global synthesis of biodiversity responses to glacier retreat. Nature Ecology and Evolution, 3(12), 1675–1685. https://doi.org/10.1038/s41559-019-1042-8
Cleveland, C. C., & Liptzin, D. (2007). C:N:P stoichiometry in soil: Is there a “Redfield ratio” for the microbial biomass? Biogeochemistry, 85(3), 235–252. https://doi.org/10.1007/s10533-007-9132-0
Davidson, E. A., & Janssens, I. A. (2006). Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature, 440(7081), 165–173. https://doi.org/10.1038/NATURE04514
Delgado-García, M., Contreras-Ramos, S. M., Rodríguez, J. A., Mateos-Díaz, J. C., Aguilar, C. N., & Camacho-Ruíz, R. M. (2018). Isolation of halophilic bacteria associated with saline and alkaline-sodic soils by culture dependent approach. Heliyon, 4(11), e00954. https://doi.org/10.1016/j.heliyon.2018.e00954
Dieser, M., Broemsen, E. L. J. E., Cameron, K. A., King, G. M., Achberger, A., Choquette, K., Hagedorn, B., Sletten, R., Junge, K., & Christner, B. C. (2014). Molecular and biogeochemical evidence for methane cycling beneath the western margin of the Greenland Ice Sheet. ISME Journal, 8(11), 2305–2316. https://doi.org/10.1038/ISMEJ.2014.59
Dindhoria, K., Kumar, S., & Kumar, R. (2021). Taxonomic and functional analysis of proglacial water bodies of Triloknath glacier ecosystem from North-Western Himalayas. Ecological Informatics, 64. https://doi.org/10.1016/J.ECOINF.2021.101365
Elser, J. J., Wu, C., González, A. L., Shain, D. H., Smith, H. J., Sommaruga, R., Williamson, C. E., Brahney, J., Hotaling, S., Vanderwall, J., Yu, J., Aizen, V., Aizen, E., Battin, T. J., Camassa, R., Feng, X., Jiang, H., Lu, L., Qu, J. J., … Saros, J. E. (2020). Key rules of life and the fading cryosphere: Impacts in alpine lakes and streams. Global Change Biology, 26(12), 6644–6656. https://doi.org/10.1111/gcb.15362
Enríquez, S., Duarte, C. M., & Sand-Jensen, K. (1993). Patterns in decomposition rates among photosynthetic organisms: The importance of detritus C:N:P content. Oecologia, 94(4), 457–471. https://doi.org/10.1007/BF00566960
Espeland, E. M., Francoeur, S. N., & Wetzel, R. G. (2001). Influence of algal photosynthesis on biofilm bacterial production and associated glucosidase and xylosidase activities. Microbial Ecology, 42(4), 524–530. https://doi.org/10.1007/s00248-001-1022-8
Fell, S. C., Carrivick, J. L., Cauvy-Fraunié, S., Crespo-Pérez, V., Hood, E., Randall, K. C., Nicholass, K. J. M., Tiegs, S. D., Dumbrell, A. J., & Brown, L. E. (2021). Fungal decomposition of river organic matter accelerated by decreasing glacier cover. Nature Climate Change, 11(4), 349–353. https://doi.org/10.1038/s41558-021-01004-x
Findlay, S. E. G. (2021). Organic matter decomposition. In K. C. Weathers, D. L. Strayer, & G. E. Likens (Eds.), Fundamentals of ecosystem science (2nd ed., pp. 81–102). Academic Press. https://doi.org/10.1016/B978-0-12-812762-9.00004-6
Fodelianakis, S., Washburne, A. D., Bourquin, M., Pramateftaki, P., Kohler, T. J., Styllas, M., Tolosano, M., De Staercke, V., Schön, M., Busi, S. B., Brandani, J., Wilmes, P., Peter, H., & Battin, T. J. (2021). Microdiversity characterizes prevalent phylogenetic clades in the glacier-fed stream microbiome. ISME Journal. https://doi.org/10.1038/S41396-021-01106-6
Follstad Shah, J. J., Kominoski, J. S., Ardón, M., Dodds, W. K., Gessner, M. O., Griffiths, N. A., Hawkins, C. P., Johnson, S. L., Lecerf, A., LeRoy, C. J., Manning, D. W. P., Rosemond, A. D., Sinsabaugh, R. L., Swan, C. M., Webster, J. R., & Zeglin, L. H. (2017). Global synthesis of the temperature sensitivity of leaf litter breakdown in streams and rivers. Global Change Biology, 23(8), 3064–3075. https://doi.org/10.1111/GCB.13609
Francoeur, S. N., & Biggs, B. J. F. (2006). Short-term effects of elevated velocity and sediment abrasion on benthic algal communities. Hydrobiologia, 561(1), 59–69. https://doi.org/10.1007/s10750-005-1604-4
Franzetti, A., Tagliaferri, I., Gandolfi, I., Bestetti, G., Minora, U., Mayer, C., Azzoni, R. S., Diolaiuti, G., Smiraglia, C., & Ambrosini, R. (2016). Light-dependent microbial metabolisms drive carbon fluxes on glacier surfaces. The ISME Journal, 10(12), 2984–2988. https://doi.org/10.1038/ismej.2016.72
Gessner, M. O., & Chauvet, E. (1994). Importance of stream microfungi in controlling breakdown rates of leaf litter. Ecology, 75(6), 1807–1817. https://doi.org/10.2307/1939639
Glassman, S. I., Weihe, C., Li, J., Albright, M. B. N., Looby, C. I., Martiny, A. C., Treseder, K. K., Allison, S. D., & Martiny, J. B. H. (2018). Decomposition responses to climate depend on microbial community composition. Proceedings of the National Academy of Sciences of the United States of America, 115(47), 11994–11999. https://doi.org/10.1073/PNAS.1811269115
Hall, R. O., & Meyer, J. L. (1998). The trophic significance of bacteria in a detritus-based stream food web. Ecology, 79(6), 1995–2012. https://doi.org/10.1890/0012-9658(1998)079[1995:TTSOBI]2.0.CO;2
Hamilton, T. L., Peters, J. W., Skidmore, M. L., & Boyd, E. S. (2013). Molecular evidence for an active endogenous microbiome beneath glacial ice. ISME Journal, 7(7), 1402–1412. https://doi.org/10.1038/ISMEJ.2013.31
Hayer, M., Wymore, A. S., Hungate, B. A., Schwartz, E., Koch, B. J., & Marks, J. C. (2021). Microbes on decomposing litter in streams: Entering on the leaf or colonizing in the water? ISME Journal. https://doi.org/10.1038/S41396-021-01114-6
Hill, B. H., Elonen, C. M., Herlihy, A. T., Jicha, T. M., & Mitchell, R. M. (2017). A synoptic survey of microbial respiration, organic matter decomposition, and carbon efflux in U.S. streams and rivers. Limnology and Oceanography, 62, S147–S159. https://doi.org/10.1002/lno.10583
Hodson, A. J., & Ferguson, R. I. (1999). Fluvial suspended sediment transport from cold and warm-based glaciers in Svalbard. Earth Surface Processes and Landforms, 24(11), 957–974. https://doi.org/10.1002/(SICI)1096-9837(199910)24:11<957:AID-ESP19>3.0.CO;2-J
Hood, E., Battin, T. J., Fellman, J., O’Neel, S., & Spencer, R. G. M. (2015). Storage and release of organic carbon from glaciers and ice sheets. Nature Geoscience, 8(2), 91–96. https://doi.org/10.1038/ngeo2331
Horgby, Å., Segatto, P. L. L., Bertuzzo, E., Lauerwald, R., Lehner, B., Ulseth, A. J. J., Vennemann, T. W. W., & Battin, T. J. J. (2019). Unexpected large evasion fluxes of carbon dioxide from turbulent streams draining the world’s mountains. Nature Communications, 10(1), 4888. https://doi.org/10.1038/s41467-019-12905-z
Huang, Y., Niu, B., Gao, Y., Fu, L., & Li, W. (2010). CD-HIT Suite: A web server for clustering and comparing biological sequences. Bioinformatics, 26(5), 680–682. https://doi.org/10.1093/BIOINFORMATICS/BTQ003
Huerta-Cepas, J., Forslund, K., Coelho, L. P., Szklarczyk, D., Jensen, L. J., Von Mering, C., & Bork, P. (2017). Fast genome-wide functional annotation through orthology assignment by eggNOG-mapper. Molecular Biology and Evolution, 34(8), 2115–2122. https://doi.org/10.1093/MOLBEV/MSX148
Hyatt, D., Chen, G.-L., LoCascio, P. F., Land, M. L., Larimer, F. W., & Hauser, L. J. (2010). Prodigal: Prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics, 11(1), 119. https://doi.org/10.1186/1471-2105-11-119
Jacobsen, D., & Dangles, O. (2012). Environmental harshness and global richness patterns in glacier-fed streams. Global Ecology and Biogeography, 21(6), 647–656. https://doi.org/10.1111/J.1466-8238.2011.00699.X
Klawonn, I., van den Wyngaert, S., Parada, A. E. E., Arandia-Gorostidi, N., Whitehouse, M. J. J., Grossart, H.-P.-P., & Dekas, A. E. E. (2021). Characterizing the “fungal shunt”: Parasitic fungi on diatoms affect carbon flow and bacterial communities in aquatic microbial food webs. Proceedings of the National Academy of Sciences of the United States of America, 118(23), e2102225118. https://doi.org/10.1073/pnas.2102225118
Klindworth, A., Pruesse, E., Schweer, T., Peplies, J., Quast, C., Horn, M., & Glöckner, F. O. O. (2013). Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Research, 41(1), e1. https://doi.org/10.1093/nar/gks808
Kohler, T. J., Peter, H., Fodelianakis, S., Pramateftaki, P., Styllas, M., Tolosano, M., de Staercke, V., Schön, M., Busi, S. B., Wilmes, P., Washburne, A., & Battin, T. J. (2020). Patterns and drivers of extracellular enzyme activity in New Zealand glacier-fed streams. Frontiers in Microbiology, 11(November). https://doi.org/10.3389/fmicb.2020.591465
Krueger, F. (2018). Trim Galore. Retrieved from https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
Kulichevskaya, I. S., Ivanova, A. A., Baulina, O. I., Rijpstra, W. I. C., Sinninghe Damsté, J. S., & Dedysh, S. N. (2017). Fimbriiglobus ruber gen. Nov., sp. nov., a gemmata-like planctomycete from Sphagnum peat bog and the proposal of gemmataceae fam. nov. International Journal of Systematic and Evolutionary Microbiology, 67(2), 218–224. https://doi.org/10.1099/IJSEM.0.001598
Li, D., Liu, C.-M., Luo, R., Sadakane, K., & Lam, T.-W. (2015). MEGAHIT: An ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics, 31(10), 1674–1676. https://doi.org/10.1093/bioinformatics/btv033
Lowe, R. L., & LaLiberte, G. D. (2017). Benthic stream algae: Distribution and structure. Methods in Stream Ecology: Third Edition, 1, 193–221. https://doi.org/10.1016/B978-0-12-416558-8.00011-1
Martin, M. (2011). Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.Journal, 17(1), 10. https://doi.org/10.14806/EJ.17.1.200
McIlroy, S. J., & Nielsen, P. H. (2014). The family saprospiraceae. The prokaryotes: Other major lineages of bacteria and the Archaea, 9783642389542, 863–889. https://doi.org/10.1007/978-3-642-38954-2_138
Milner, A. M., Khamis, K., Battin, T. J., Brittain, J. E., Barrand, N. E., Füreder, L., Cauvy-Fraunié, S., Gíslason, G. M., Jacobsen, D., Hannah, D. M., Hodson, A. J., Hood, E., Lencioni, V., Ólafsson, J. S., Robinson, C. T., Tranter, M., & Brown, L. E. (2017). Glacier shrinkage driving global changes in downstream systems. Proceedings of the National Academy of Sciences of the United States of America, 114(37), 9770–9778. https://doi.org/10.1073/pnas.1619807114
NASA/Meti/AIST/Japan Space Systems, and U.S./Japan ASTER Science Team. (2019). ASTER Global Digital Elevation Model V003 [Data set]. NASA EOSDIS Land Processes DAAC. https://doi.org/10.5067/ASTER/ASTGTM.003
Philippot, L., Andersson, S. G. E., Battin, T. J., Prosser, J. I., Schimel, J. P., Whitman, W. B., & Hallin, S. (2010). The ecological coherence of high bacterial taxonomic ranks. Nature Reviews Microbiology, 8(7), 523–529. https://doi.org/10.1038/nrmicro2367
Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., & Glöckner, F. O. (2012). The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Research, 41(D1), D590–D596. https://doi.org/10.1093/nar/gks1219
R Core Team. (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing. Retrieved from https://www.r-project.org/
Ren, Z., Martyniuk, N., Oleksy, I. A., Swain, A., & Hotaling, S. (2019). Ecological stoichiometry of the mountain cryosphere. Frontiers in Ecology and Evolution, 7(Sep). https://doi.org/10.3389/fevo.2019.00360
Rigby, R. A., Stasinopoulos, D. M., & Lane, P. W. (2005). Generalized additive models for location, scale and shape. Journal of the Royal Statistical Society. Series C: Applied Statistics, 54(3), 507–554. https://doi.org/10.1111/J.1467-9876.2005.00510.X
Robinson, C. T., & Gessner, M. O. (2000). Nutrient addition accelerates leaf breakdown in an alpine springbrook. Oecologia, 122(2), 258–263. https://doi.org/10.1007/PL00008854
Rosemond, A. D., Benstead, J. P., Bumpers, P. M., Gulis, V., Kominoski, J. S., Manning, D. W. P., Suberkropp, K., & Wallace, J. B. (2015). Experimental nutrient additions accelerate terrestrial carbon loss from stream ecosystems. Science, 347(6226), 1142–1145. https://doi.org/10.1126/SCIENCE.AAA1958
Senga, Y., Yabe, S., Nakamura, T., & Kagami, M. (2018). Influence of parasitic chytrids on the quantity and quality of algal dissolved organic matter (AOM). Water Research, 145, 346–353. https://doi.org/10.1016/J.WATRES.2018.08.037
Singer, G. A., Fasching, C., Wilhelm, L., Niggemann, J., Steier, P., Dittmar, T., & Battin, T. J. (2012). Biogeochemically diverse organic matter in Alpine glaciers and its downstream fate. Nature Geoscience, 5(10), 710–714. https://doi.org/10.1038/NGEO1581
Sinsabaugh, R. L., Hill, B. H., & Follstad Shah, J. J. (2009). Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment. Nature, 462(7274), 795–798. https://doi.org/10.1038/nature08632
Sinsabaugh, R. L., Lauber, C. L., Weintraub, M. N., Ahmed, B., Allison, S. D., Crenshaw, C., Contosta, A. R., Cusack, D., Frey, S., Gallo, M. E., Gartner, T. B., Hobbie, S. E., Holland, K., Keeler, B. L., Powers, J. S., Stursova, M., Takacs-Vesbach, C., Waldrop, M. P., Wallenstein, M. D., … Zeglin, L. H. (2008). Stoichiometry of soil enzyme activity at global scale. Ecology Letters, 11(11), 1252–1264. https://doi.org/10.1111/j.1461-0248.2008.01245.x
Sinsabaugh, R. L., Manzoni, S., Moorhead, D. L., & Richter, A. (2013). Carbon use efficiency of microbial communities: Stoichiometry, methodology and modelling. Ecology Letters, 16(7), 930–939. https://doi.org/10.1111/ele.12113
Sinsabaugh, R. L., & Moorhead, D. L. (1994). Resource allocation to extracellular enzyme production: A model for nitrogen and phosphorus control of litter decomposition. Soil Biology and Biochemistry, 26(10), 1305–1311. https://doi.org/10.1016/0038-0717(94)90211-9
Sinsabaugh, R. L., & Shah, J. J. F. (2012). Ecoenzymatic stoichiometry and ecological theory. Annual Review of Ecology, Evolution, and Systematics, 43, 313–343. https://doi.org/10.1146/annurev-ecolsys-071112-124414
Sinsabaugh, R. L., Turner, B. L., Talbot, J. M., Waring, B. G., Powers, J. S., Kuske, C. R., Moorhead, D. L., & Shah, J. J. F. (2016). Stoichiometry of microbial carbon use efficiency in soils. Ecological Monographs, 86(2), 172–189. https://doi.org/10.1890/15-2110.1
Sinsabaugh, R. L., van Horn, D. J., Shah, J. J. F., & Findlay, S. (2010). Ecoenzymatic stoichiometry in relation to productivity for freshwater biofilm and plankton communities. Microbial Ecology, 60(4), 885–893. https://doi.org/10.1007/s00248-010-9696-4
Stoeck, T., Bass, D., Nebel, M., Christen, R., Jones, M. D. M., Breiner, H. W., & Richards, T. A. (2010). Multiple marker parallel tag environmental DNA sequencing reveals a highly complex eukaryotic community in marine anoxic water. Molecular Ecology, 19(Suppl. 1), 21–31. https://doi.org/10.1111/J.1365-294X.2009.04480.X
Swift, D. A., Nienow, P. W., & Hoey, T. B. (2005). Basal sediment evacuation by subglacial meltwater: Suspended sediment transport from Haut Glacier d’Arolla, Switzerland. Earth Surface Processes and Landforms, 30(7), 867–883. https://doi.org/10.1002/ESP.1197
Tapia-Torres, Y., Elser, J. J., Souza, V., & García-Oliva, F. (2015). Ecoenzymatic stoichiometry at the extremes: How microbes cope in an ultra-oligotrophic desert soil. Soil Biology and Biochemistry, 87, 34–42. https://doi.org/10.1016/j.soilbio.2015.04.007
Tiegs, S. D., Costello, D. M., Isken, M. W., Woodward, G., McIntyre, P. B., Gessner, M. O., Chauvet, E., Griffiths, N. A., Flecker, A. S., Acuña, V., Albariño, R., Allen, D. C., Alonso, C., Andino, P., Arango, C., Aroviita, J., Barbosa, M. V. M., Barmuta, L. A., Baxter, C. V., … Zwart, J. A. (2019). Global patterns and drivers of ecosystem functioning in rivers and riparian zones. Science Advances, 5(1), eaav0486. https://doi.org/10.1126/sciadv.aav0486
Uehlinger, U., Robinson, C. T., Hieber, M., & Zah, R. (2010). The physico-chemical habitat template for periphyton in alpine glacial streams under a changing climate. Hydrobiologia, 657(1), 107–121. https://doi.org/10.1007/s10750-009-9963-x
Vinšová, P., Kohler, T. J., Simpson, M. J., Hajdas, I., Yde, J. C., Falteisek, L., Žárský, J. D., Yuan, T., Tejnecký, V., Mercl, F., Hood, E., & Stibal, M. (2022). The biogeochemical legacy of arctic subglacial sediments exposed by glacier retreat. Global Biogeochemical Cycles, 36(3). https://doi.org/10.1029/2021GB007126
von Lützow, M., & Kögel-Knabner, I. (2009). Temperature sensitivity of soil organic matter decomposition—What do we know? Biology and Fertility of Soils, 46(1), 1–15. https://doi.org/10.1007/s00374-009-0413-8
Washburne, A. D., Silverman, J. D., Leff, J. W., Bennett, D. J., Darcy, J. L., Mukherjee, S., Fierer, N., & David, L. A. (2017). Phylogenetic factorization of compositional data yields lineage-level associations in microbiome datasets. PeerJ, 5(2), e2969. https://doi.org/10.7717/peerj.2969
Washburne, A. D., Silverman, J. D., Morton, J. T., Becker, D. J., Crowley, D., Mukherjee, S., David, L. A., & Plowright, R. K. (2019). Phylofactorization: A graph partitioning algorithm to identify phylogenetic scales of ecological data. Ecological Monographs, 89(2), e01353. https://doi.org/10.1002/ecm.1353
Webster, J. R., & Benfield, E. F. (1986). Vascular plant breakdown in freshwater ecosystems. Annual Review of Ecology and Systematics, 17, 567–594. https://doi.org/10.1146/ANNUREV.ES.17.110186.003031
Webster, J. R., & Meyer, J. L. (1997). Organic matter budgets for streams: A synthesis. Journal of the North American Benthological Society, 16(1), 141–161. https://doi.org/10.2307/1468247
Wilhelm, L., Singer, G. A., Fasching, C., Battin, T. J., & Besemer, K. (2013). Microbial biodiversity in glacier-fed streams. ISME Journal, 7(8), 1651–1660. https://doi.org/10.1038/ismej.2013.44
Wood, D. E., & Salzberg, S. L. (2014). Kraken: Ultrafast metagenomic sequence classification using exact alignments. Genome Biology, 15(3), R46. https://doi.org/10.1186/gb-2014-15-3-r46
Woodcroft, B. J. (2020). CoverM. Retrieved from https://github.com/wwood/CoverM
Yarza, P., Yilmaz, P., Panzer, K., Glöckner, F. O., & Reich, M. (2017). A phylogenetic framework for the kingdom Fungi based on 18S rRNA gene sequences. Marine Genomics, 36, 33–39. https://doi.org/10.1016/j.margen.2017.05.009
Zah, R., & Uehlinger, U. (2001). Particulate organic matter inputs to a glacial stream ecosystem in the Swiss Alps. Freshwater Biology, 46(12), 1597–1608. https://doi.org/10.1046/J.1365-2427.2001.00847.X