Article (Périodiques scientifiques)
Glacier shrinkage will accelerate downstream decomposition of organic matter and alters microbiome structure and function.
Kohler, Tyler J; Fodelianakis, Stilianos; Michoud, Grégoire et al.
2022In Global Change Biology, 28 (12), p. 3846 - 3859
Peer reviewed vérifié par ORBi
 

Documents


Texte intégral
Global Change Biology - 2022 - Kohler - Glacier shrinkage will accelerate downstream decomposition of organic matter and.pdf
Postprint Auteur (6.61 MB) Licence Creative Commons - Attribution, Pas d'Utilisation Commerciale, Pas de Modification
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
alpine biogeochemistry; carbon cycling; ecological stoichiometry; extracellular enzyme activity; microbial ecology; Water; Bacteria/genetics; Climate Change; Ecosystem; Phylogeny; Ice Cover/microbiology; Microbiota; Bacteria; Ice Cover; Global and Planetary Change; Environmental Chemistry; Ecology; Environmental Science (all); General Environmental Science
Résumé :
[en] The shrinking of glaciers is among the most iconic consequences of climate change. Despite this, the downstream consequences for ecosystem processes and related microbiome structure and function remain poorly understood. Here, using a space-for-time substitution approach across 101 glacier-fed streams (GFSs) from six major regions worldwide, we investigated how glacier shrinkage is likely to impact the organic matter (OM) decomposition rates of benthic biofilms. To do this, we measured the activities of five common extracellular enzymes and estimated decomposition rates by using enzyme allocation equations based on stoichiometry. We found decomposition rates to average 0.0129 (% d-1 ), and that decreases in glacier influence (estimated by percent glacier catchment coverage, turbidity, and a glacier index) accelerates decomposition rates. To explore mechanisms behind these relationships, we further compared decomposition rates with biofilm and stream water characteristics. We found that chlorophyll-a, temperature, and stream water N:P together explained 61% of the variability in decomposition. Algal biomass, which is also increasing with glacier shrinkage, showed a particularly strong relationship with decomposition, likely indicating their importance in contributing labile organic compounds to these carbon-poor habitats. We also found high relative abundances of chytrid fungi in GFS sediments, which putatively parasitize these algae, promoting decomposition through a fungal shunt. Exploring the biofilm microbiome, we then sought to identify bacterial phylogenetic clades significantly associated with decomposition, and found numerous positively (e.g., Saprospiraceae) and negatively (e.g., Nitrospira) related clades. Lastly, using metagenomics, we found evidence of different bacterial classes possessing different proportions of EEA-encoding genes, potentially informing some of the microbial associations with decomposition rates. Our results, therefore, present new mechanistic insights into OM decomposition in GFSs by demonstrating that an algal-based "green food web" is likely to increase in importance in the future and will promote important biogeochemical shifts in these streams as glaciers vanish.
Centre de recherche :
ULHPC - University of Luxembourg: High Performance Computing
Disciplines :
Physique, chimie, mathématiques & sciences de la terre: Multidisciplinaire, généralités & autres
Auteur, co-auteur :
Kohler, Tyler J ;  River Ecosystems Laboratory, Alpine and Polar Environmental Research Center, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
Fodelianakis, Stilianos ;  River Ecosystems Laboratory, Alpine and Polar Environmental Research Center, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
Michoud, Grégoire ;  River Ecosystems Laboratory, Alpine and Polar Environmental Research Center, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
Ezzat, Leïla ;  River Ecosystems Laboratory, Alpine and Polar Environmental Research Center, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
Bourquin, Massimo ;  River Ecosystems Laboratory, Alpine and Polar Environmental Research Center, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
Peter, Hannes ;  River Ecosystems Laboratory, Alpine and Polar Environmental Research Center, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
BUSI, Susheel Bhanu  ;  University of Luxembourg > Luxembourg Centre for Systems Biomedicine > Systems Ecology > Team Paul WILMES
Pramateftaki, Paraskevi ;  River Ecosystems Laboratory, Alpine and Polar Environmental Research Center, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
Deluigi, Nicola ;  River Ecosystems Laboratory, Alpine and Polar Environmental Research Center, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
Styllas, Michail ;  River Ecosystems Laboratory, Alpine and Polar Environmental Research Center, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
Tolosano, Matteo ;  River Ecosystems Laboratory, Alpine and Polar Environmental Research Center, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
de Staercke, Vincent ;  River Ecosystems Laboratory, Alpine and Polar Environmental Research Center, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
Schön, Martina ;  River Ecosystems Laboratory, Alpine and Polar Environmental Research Center, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
Brandani, Jade ;  River Ecosystems Laboratory, Alpine and Polar Environmental Research Center, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
Marasco, Ramona ;  Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
Daffonchio, Daniele ;  Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
WILMES, Paul  ;  University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Systems Ecology
Battin, Tom J ;  River Ecosystems Laboratory, Alpine and Polar Environmental Research Center, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
Plus d'auteurs (8 en +) Voir moins
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Glacier shrinkage will accelerate downstream decomposition of organic matter and alters microbiome structure and function.
Date de publication/diffusion :
juin 2022
Titre du périodique :
Global Change Biology
ISSN :
1354-1013
eISSN :
1365-2486
Maison d'édition :
John Wiley and Sons Inc, England
Volume/Tome :
28
Fascicule/Saison :
12
Pagination :
3846 - 3859
Peer reviewed :
Peer reviewed vérifié par ORBi
Projet FnR :
FNR11823097 - Microbiomes In One Health, 2017 (01/09/2018-28/02/2025) - Paul Wilmes
Organisme subsidiant :
SNSF - Swiss National Science Foundation
N° du Fonds :
CRSII5_180241
Subventionnement (détails) :
This research was supported by The NOMIS Foundation project “Vanishing Glaciers” to TJB. SBB was supported by the Synergia grant (CRSII5_180241: Swiss National Science Foundation) to TJB. PW is supported by the Luxembourg National Research Fund (FNR; PRIDE17/11823097). DD acknowledges the financial support of King Abdullah University and Technology (KAUST) through the baseline research fund. We thank the many students and technicians that assisted us with lab work and other analyses, including Emmy Marie Oppliger, Eline Grégoire, Ben Therrien, Maxwell Bergström, Florian Bielser, Dilan Resch, and Thierry Demierre. We also thank Alex Washburne for his help with the phylofactorization analysis and comments on an early draft of the manuscript. Finally, we are grateful to Scott Hotaling and one anonymous reviewer for their comments which greatly improved the manuscript. Open access funding provided by Ecole Polytechnique Federale de Lausanne.This research was supported by The NOMIS Foundation project “Vanishing Glaciers” to TJB. SBB was supported by the Synergia grant (CRSII5_180241: Swiss National Science Foundation) to TJB. PW is supported by the Luxembourg National Research Fund (FNR; PRIDE17/11823097). DD acknowledges the financial support of King Abdullah University and Technology (KAUST) through the baseline research fund.
Disponible sur ORBilu :
depuis le 28 novembre 2023

Statistiques


Nombre de vues
86 (dont 0 Unilu)
Nombre de téléchargements
67 (dont 0 Unilu)

citations Scopus®
 
18
citations Scopus®
sans auto-citations
8
OpenCitations
 
12
citations OpenAlex
 
22
citations WoS
 
19

Bibliographie


Publications similaires



Contacter ORBilu