cancer; immunity; immunometabolism; immunotherapy; metabolism; obesity; Humans; Immune System; Metabolic Networks and Pathways; Obesity/therapy; Obesity/metabolism; Tumor Microenvironment; Neoplasms/metabolism; Neoplasms; Neuroscience (all); Biochemistry, Genetics and Molecular Biology (all); History and Philosophy of Science; General Biochemistry, Genetics and Molecular Biology; General Neuroscience
Abstract :
[en] Immunometabolism considers the relationship between metabolism and immunity. Typically, researchers focus on either the metabolic pathways within immune cells that affect their function or the impact of immune cells on systemic metabolism. A more holistic approach that considers both these viewpoints is needed. On September 5-8, 2022, experts in the field of immunometabolism met for the Keystone symposium "Immunometabolism at the Crossroads of Obesity and Cancer" to present recent research across the field of immunometabolism, with the setting of obesity and cancer as an ideal example of the complex interplay between metabolism, immunity, and cancer. Speakers highlighted new insights on the metabolic links between tumor cells and immune cells, with a focus on leveraging unique metabolic vulnerabilities of different cell types in the tumor microenvironment as therapeutic targets and demonstrated the effects of diet, the microbiome, and obesity on immune system function and cancer pathogenesis and therapy. Finally, speakers presented new technologies to interrogate the immune system and uncover novel metabolic pathways important for immunity.
Disciplines :
Immunology & infectious disease
Author, co-author :
Cable, Jennifer; PhD Science Writer, New York, New York, USA
Rathmell, Jeffrey C; Vanderbilt-Ingram Cancer Center, Vanderbilt Center for Immunobiology, Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
Pearce, Erika L; Bloomberg-Kimmel Institute for Cancer Immunotherapy at Johns Hopkins, Baltimore, Maryland, USA ; Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
Ho, Ping-Chih; Department of Fundamental Oncology and Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
Haigis, Marcia C; Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA
Mamedov, Murad R; Gladstone-UCSF Institute of Genomic Immunology and Department of Medicine, University of California San Francisco, San Francisco, California, USA
Wu, Meng-Ju; Cancer Center, Massachusetts General Hospital, Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA ; Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
Kaech, Susan M; NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, California, USA
Lynch, Lydia; Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
Febbraio, Mark A; Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
Bapat, Sagar P; Diabetes Center and Department of Laboratory Medicine, University of California San Francisco, San Francisco, California, USA
Hong, Hanna S; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
Zou, Weiping; Department of Surgery, Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, Department of Pathology, Graduate Program in Immunology, Graduate Program in Cancer Biology, University of Michigan School of Medicine, Ann Arbor, Michigan, USA
Belkaid, Yasmine; Metaorganism Immunity Section, Laboratory of Immune System Biology, and NIAID Microbiome Program National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
Sullivan, Zuri A; Department of Immunobiology, Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA
Keller, Andrea; Department of Biological Chemistry and Pharmacology, College of Medicine, and Comprehensive Cancer Center, Wexner Medical Center, Arthur G. James Cancer Hospital, The Ohio State University, Columbus, Ohio, USA
Wculek, Stefanie K; Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
Green, Douglas R; St. Jude Children's Research Hospital, Memphis, Tennessee, USA
Postic, Catherine; Université Paris Cité, CNRS, INSERM, Institut Cochin, Paris, France
Amit, Ido; Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
Benitah, Salvador Aznar; Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST) and Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
Jones, Russell G; Department of Metabolism and Nutritional Programming, Van Andel Research Institute, Grand Rapids, Michigan, USA
Reina-Campos, Miguel; University of California, San Diego, La Jolla, California, USA
Torres, Santiago Valle; Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
Beyaz, Semir; Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
Brennan, Donal; UCD Gynecological Oncology Group, UCD School of Medicine, Catherine McAuley Research Centre, Mater Misericordiae University Hospital, Belfield, Ireland
O'Neill, Luke A J; School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College, Dublin, Ireland
Perry, Rachel J; Department of Cellular and Molecular Physiology and Department of Internal Medicine (Endocrinology), Yale University School of Medicine, New Haven, Connecticut, USA
BRENNER, Dirk ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Immunology and Genetics ; Experimental and Molecular Immunology, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg ; Odense Research Center for Anaphylaxis, Department of Dermatology and Allergy Center, Odense University Hospital, University of Southern Denmark, Odense, Denmark
CDC. (2022). Obesity and cancer. https://www.cdc.gov/cancer/obesity/index.htm
Elia, I., & Haigis, M. C. (2021). Metabolites and the tumour microenvironment: From cellular mechanisms to systemic metabolism. Nature Metabolism, 3, 21–32.
Wang, Z., Aguilar, E. G., Luna, J. I., Dunai, C., Khuat, L. T., Le, C. T., Mirsoian, A., Minnar, C. M., Stoffel, K. M., Sturgill, I. R., Grossenbacher, S. K., Withers, S. S., Rebhun, R. B., Hartigan-O'connor, D. J., Méndez-Lagares, G., Tarantal, A. F., Isseroff, R. R., Griffith, T. S., & Schalper, K. A. (2019). Paradoxical effects of obesity on T cell function during tumor progression and PD-1 checkpoint blockade. Nature Medicine, 25, 141–151.
Dudzinski, S. O., Bader, J. E., Beckermann, K. E., Young, K. L., Hongo, R., Madden, M. Z., Abraham, A., Reinfeld, B. I., Ye, X., MacIver, N. J., Giorgio, T. D., & Rathmell, J. C. (2021). Leptin augments antitumor immunity in obesity by repolarizing tumor-associated macrophages. Journal of Immunology, 207, 3122–3130.
Tangye, S. G., Al-Herz, W., Bousfiha, A., Chatila, T., Cunningham-Rundles, C., Etzioni, A., Franco, J. L., Holland, S. M., Klein, C., Morio, T., Ochs, H. D., Oksenhendler, E., Picard, C., Puck, J., Torgerson, T. R., Casanova, J.-L., & Sullivan, K. E. (2020). Human inborn errors of immunity: 2019 Update on the classification from the International Union of Immunological Societies Expert Committee. Journal of Clinical Immunology, 40, 24–64.
Ferreira, C. R., van Karnebeek, C. D. M., Vockley, J., & Blau, N. (2019). A proposed nosology of inborn errors of metabolism. Genetics in Medicine, 21, 102–106.
Wang, X., Ni, L. u., Wan, S., Zhao, X., Ding, X., Dejean, A., & Dong, C. (2020). Febrile temperature critically controls the differentiation and pathogenicity of T helper 17 cells. Immunity, 52, 328–341.e5.e5.
Shyer, J. A., Flavell, R. A., & Bailis, W. (2020). Metabolic signaling in T cells. Cell Research, 30, 649–659.
Chang, C.-H., Qiu, J., O'sullivan, D., Buck, M. D., Noguchi, T., Curtis, J. D., Chen, Q., Gindin, M., Gubin, M. M., Van Der Windt, G. J. W., Tonc, E., Schreiber, R. D., Pearce, E. J., & Pearce, E. L. (2015). Metabolic competition in the tumor microenvironment is a driver of cancer progression. Cell, 162, 1229–1241.
Ron-Harel, N., Santos, D., Ghergurovich, J. M., Sage, P. T., A., Reddy, Lovitch, S. B., Dephoure, N., Satterstrom, F. K., Sheffer, M., Spinelli, J. B., Gygi, S., Rabinowitz, J. D., Sharpe, A. H., & Haigis, M. C. (2016). Mitochondrial biogenesis and proteome remodeling promote one-carbon metabolism for T cell activation. Cell Metabolism, 24, 104–117.
Ron-Harel, N., Notarangelo, G., Ghergurovich, J. M., Paulo, J. A., Sage, P. T., Santos, D., Satterstrom, F. K., Gygi, S. P., Rabinowitz, J. D., Sharpe, A. H., & Haigis, M. C. (2018). Defective respiration and one-carbon metabolism contribute to impaired naïve T cell activation in aged mice. Proceedings of the National Academy of Sciences of the United States of America, 115, 13347–13352.
Drijvers, J. M., Gillis, J. E., Muijlwijk, T., Nguyen, T. H., Gaudiano, E. F., Harris, I. S., Lafleur, M. W., Ringel, A. E., Yao, C.-H., Kurmi, K., Juneja, V. R., Trombley, J. D., Haigis, M. C., & Sharpe, A. H. (2021). Pharmacologic screening identifies metabolic vulnerabilities of CD8+ T cells. Cancer Immunology Research, 9, 184–199.
Elia, I., Rowe, J. H., Johnson, S., Joshi, S., Notarangelo, G., Kurmi, K., Weiss, S., Freeman, G. J., Sharpe, A. H., & Haigis, M. C. (2022). Tumor cells dictate anti-tumor immune responses by altering pyruvate utilization and succinate signaling in CD8+ T cells. Cell Metabolism, 34, 1137–1150.e6.e6.
Saura-Esteller, J., De Jong, M., King, L. A., Ensing, E., Winograd, B., De Gruijl, T. D., Parren, P. W. H. I., & Van Der Vliet, H. J. (2022). Gamma delta T-cell based cancer immunotherapy: Past-present-future. Frontiers in Immunology, 13, 915837.
Rigau, M., Ostrouska, S., Fulford, T. S., Johnson, D. N., Woods, K., Ruan, Z., Mcwilliam, H. E. G., Hudson, C., Tutuka, C., Wheatley, A. K., Kent, S. J., Villadangos, J. A., Pal, B., Kurts, C., Simmonds, J., Pelzing, M., Nash, A. D., Hammet, A., Verhagen, A. M., & Vairo, G. (2020). Butyrophilin 2A1 is essential for phosphoantigen reactivity by γδ T cells. Science, 367, eaay5516.
Tian, W., Zhang, W., Wang, Y., Jin, R., Wang, Y., Guo, H., Tang, Y., & Yao, X. (2022). Recent advances of IDH1 mutant inhibitor in cancer therapy. Frontiers in Pharmacology, 13, 982424.
Wu, M.-J. u., Shi, L., Merritt, J., Zhu, A. X., & Bardeesy, N. (2022). Biology of IDH mutant cholangiocarcinoma. Hepatology, 75, 1322–1337.
Wu, M.-J. u., Shi, L., Dubrot, J., Merritt, J., Vijay, V., Wei, T.-Y. u., Kessler, E., Olander, K. E., Adil, R., Pankaj, A., Tummala, K. S., Weeresekara, V., Zhen, Y., Wu, Q., Luo, M., Shen, W., García-Beccaria, M., Fernández-Vaquero, M., Hudson, C., … Sun, Y. (2022). Mutant IDH inhibits IFNγ-TET2 signaling to promote immunoevasion and tumor maintenance in cholangiocarcinoma. Cancer Discovery, 12, 812–835.
Chen, Y., Zander, R., Khatun, A., Schauder, D. M., & Cui, W. (2018). Transcriptional and epigenetic regulation of effector and memory CD8 T cell differentiation. Frontiers in Immunology, 9, 2826.
Lien, E. C., & Vander Heiden, M. G. (2019). A framework for examining how diet impacts tumour metabolism. Nature Reviews Cancer, 19, 651–661.
Hopkins, B. D., Goncalves, M. D., & Cantley, L. C. (2016). Obesity and cancer mechanisms: Cancer metabolism. Journal of Clinical Oncology, 34, 4277–4283.
Lien, E. C., Westermark, A. M., Zhang, Y., Yuan, C., Li, Z., Lau, A. N., Sapp, K. M., Wolpin, B. M., & Vander Heiden, M. G. (2021). Low glycaemic diets alter lipid metabolism to influence tumour growth. Nature, 599, 302–307.
Beyaz, S., Mana, M. D., Roper, J., Kedrin, D., Saadatpour, A., Hong, S.-J., Bauer-Rowe, K. E., Xifaras, M. E., Akkad, A., Arias, E., Pinello, L., Katz, Y., Shinagare, S., Abu-Remaileh, M., Mihaylova, M. M., Lamming, D. W., Dogum, R., Guo, G., Bell, G. W., & Selig, M. (2016). High-fat diet enhances stemness and tumorigenicity of intestinal progenitors. Nature, 531, 53–58.
Pascual, G., Avgustinova, A., Mejetta, S., Martín, M., Castellanos, A., Attolini, C. S.-O., Berenguer, A., Prats, N., Toll, A., Hueto, J. A., Bescós, C., Di Croce, L., & Benitah, S. A. (2017). Targeting metastasis-initiating cells through the fatty acid receptor CD36. Nature, 541, 41–45.
Dyck, L., Prendeville, H., Raverdeau, M., Wilk, M. M., Loftus, R. M., Douglas, A., Mccormack, J., Moran, B., M., Wilkinson, Mills, E. L., Doughty, M., Fabre, A., Heneghan, H., Leroux, C., Hogan, A., Chouchani, E. T., O'shea, D., Brennan, D., & Lynch, L. (2022). Suppressive effects of the obese tumor microenvironment on CD8 T cell infiltration and effector function. Journal of Experimental Medicine, 219, e20210042.
Michelet, X., Dyck, L., Hogan, A., Loftus, R. M., Duquette, D., Wei, K., S., Beyaz, Tavakkoli, A., Foley, C., Donnelly, R., O'farrelly, C., Raverdeau, M., Vernon, A., Pettee, W., O'shea, D., Nikolajczyk, B. S., Mills, K. H. G., Brenner, M. B., … Lynch, L. (2018). Metabolic reprogramming of natural killer cells in obesity limits antitumor responses. Nature Immunology, 19, 1330–1340.
Nakagawa, H., Umemura, A., Taniguchi, K., Font-Burgada, J., Dhar, D., Ogata, H., Zhong, Z., Valasek, M. A., Seki, E., Hidalgo, J., Koike, K., Kaufman, R. J., & Karin, M. (2014). ER stress cooperates with hypernutrition to trigger TNF-dependent spontaneous HCC development. Cancer Cell, 26, 331–343.
Shalapour, S., Lin, X.-J., Bastian, I. N., Brain, J., Burt, A. D., Aksenov, A. A., Vrbanac, A. F., Li, W., Perkins, A., Matsutani, T., Zhong, Z., Dhar, D., Navas-Molina, J. A., Xu, J., Loomba, R., Downes, M., Yu, R. T., Evans, R. M., Dorrestein, P. C., … Karin, M. (2017). Inflammation-induced IgA+ cells dismantle anti-liver cancer immunity. Nature, 551, 340–345.
Febbraio, M. A., Reibe, S., Shalapour, S., Ooi, G. J., Watt, M. J., & Karin, M. (2019). Preclinical models for studying NASH-driven HCC: How useful are they? Cell Metabolism, 29, 18–26.
Febbraio, M. A., & Karin, M. (2021). “Sweet death”: Fructose as a metabolic toxin that targets the gut–liver axis. Cell Metabolism, 33, 2316–2328.
Todoric, J., Di Caro, G., Reibe, S., Henstridge, D. C., Green, C. R., Vrbanac, A., Ceteci, F., Conche, C., Mcnulty, R., Shalapour, S., Taniguchi, K., Meikle, P. J., Watrous, J. D., Moranchel, R., Najhawan, M., Jain, M., Liu, X., Kisseleva, T., Diaz-Meco, M. T., … Karin, M. (2020). Fructose stimulated de novo lipogenesis is promoted by inflammation. Nature Metabolism, 2, 1034–1045.
Taniguchi, K., Wu, L. i.-W., Grivennikov, S. I., De Jong, P. R., Lian, I., Yu, F. a.-X., Wang, K., Ho, S. B., Boland, B. S., Chang, J. T., Sandborn, W. J., Hardiman, G., Raz, E., Maehara, Y., Yoshimura, A., Zucman-Rossi, J., Guan, K.-L., & Karin, M. (2015). A gp130-Src-YAP module links inflammation to epithelial regeneration. Nature, 519, 57–62.
Findeisen, M., Allen, T. L., Henstridge, D. C., Kammoun, H., Brandon, A. E., Baggio, L. L., Watt, K. I., Pal, M., Cron, L., Estevez, E., Yang, C., Kowalski, G. M., O'reilly, L., Egan, C., Sun, E., Thai, L. e. M., Krippner, G., Adams, T. E., Lee, R. S., … Febbraio, M. A. (2019). Treatment of type 2 diabetes with the designer cytokine IC7Fc. Nature, 574, 63–68.
Bapat, S. P., Whitty, C., Mowery, C. T., Liang, Y., Yoo, A., Jiang, Z., Peters, M. C., Zhang, L.-J., Vogel, I., Zhou, C., Nguyen, V. Q., Li, Z., Chang, C., Zhu, W. S., Hastie, A. T., He, H., Ren, X., Qiu, W., Gayer, S. G., … Marson, A. (2022). Obesity alters pathology and treatment response in inflammatory disease. Nature, 604, 337–342.
Ho, A. W., & Kupper, T. S. (2019). T cells and the skin: From protective immunity to inflammatory skin disorders. Nature Reviews Immunology, 19, 490–502.
Franchi, L., Monteleone, I., Hao, L.- Y., Spahr, M. A., Zhao, W., Liu, X., Demock, K., Kulkarni, A., Lesch, C. A., Sanchez, B., Carter, L., Marafini, I., Hu, X., Mashadova, O., Yuan, M., Asara, J. M., Singh, H., Lyssiotis, C. A., Monteleone, G., … Glick, G. D. (2017). Inhibiting oxidative phosphorylation in vivo restrains Th17 effector responses and ameliorates murine colitis. Journal of Immunology, 198, 2735–2746.
Curiel, T. J., Wei, S., Dong, H., Alvarez, X., Cheng, P., Mottram, P., Krzysiek, R., Knutson, K. L., Daniel, B., Zimmermann, M. C., David, O., Burow, M., Gordon, A., N., Dhurandhar, Myers, L., Berggren, R., Hemminki, A., Alvarez, R. D., … Zou, W. (2003). Blockade of B7-H1 improves myeloid dendritic cell-mediated antitumor immunity. Nature Medicine, 9, 562–567.
Lin, H., Wei, S., Hurt, E. M., Green, M. D., Zhao, L., Vatan, L., Szeliga, W., Herbst, R., Harms, P. W., Fecher, L. A., Vats, P., Chinnaiyan, A. M., Lao, C. D., Lawrence, T. S., Wicha, M., Hamanishi, J., Mandai, M., Kryczek, I., & Zou, W. (2018). Host expression of PD-L1 determines efficacy of PD-L1 pathway blockade-mediated tumor regression. Journal of Clinical Investigation, 128, 1708.
Tang, H., Liang, Y., Anders, R. A., Taube, J. M., Qiu, X., Mulgaonkar, A., Liu, X., Harrington, S. M., Guo, J., Xin, Y., Xiong, Y., Nham, K., Silvers, W., Hao, G., Sun, X., Chen, M., Hannan, R., Qiao, J., Dong, H., & Fu, Y.-X. (2018). PD-L1 on host cells is essential for PD-L1 blockade-mediated tumor regression. Journal of Clinical Investigation, 128, 580–588.
Li, W., Tanikawa, T., Kryczek, I., Xia, H., Li, G., Wu, K., Wei, S., Zhao, L., Vatan, L., Wen, B., Shu, P., Sun, D., Kleer, C., Wicha, M., Sabel, M., Tao, K., Wang, G., & Zou, W. (2018). Aerobic glycolysis controls myeloid-derived suppressor cells and tumor immunity via a specific CEBPB isoform in triple-negative breast cancer. Cell Metabolism, 28, 87–103.e6.
Naik, S., Bouladoux, N., Wilhelm, C., Molloy, M. J., Salcedo, R., Kastenmuller, W., Deming, C., Quinones, M., Koo, L., Conlan, S., Spencer, S., Hall, J. A., Dzutsev, A., Kong, H., Campbell, D. J., Trinchieri, G., Segre, J. A., & Belkaid, Y. (2012). Compartmentalized control of skin immunity by resident commensals. Science, 337, 1115–1119.
Naik, S., Bouladoux, N., Linehan, J. L., Han, S.-J., Harrison, O. J., Wilhelm, C., Conlan, S., Himmelfarb, S., Byrd, A. L., Deming, C., Quinones, M., Brenchley, J. M., Kong, H. H., Tussiwand, R., Murphy, K. M., Merad, M., Segre, J. A., & Belkaid, Y. (2015). Commensal–dendritic-cell interaction specifies a unique protective skin immune signature. Nature, 520, 104–108.
Linehan, J. L., Harrison, O. J., Han, S.-J., Byrd, A. L., Vujkovic-Cvijin, I., Villarino, A. V., Sen, S. K., Shaik, J., Smelkinson, M., Tamoutounour, S., Collins, N., Bouladoux, N., Dzutsev, A., Rosshart, S. P., Arbuckle, J. H., Wang, C.-R., Kristie, T. M., Rehermann, B., Trinchieri, G., … Belkaid, Y. (2018). Non-classical immunity controls microbiota impact on skin immunity and tissue repair. Cell, 172, 784–796.e18.
Harrison, O. J., Linehan, J. L., Shih, H.-Y., Bouladoux, N., Han, S.-J., Smelkinson, M., Sen, S. K., Byrd, A. L., Enamorado, M., Yao, C., Tamoutounour, S., Van Laethem, F., Hurabielle, C., Collins, N., Paun, A., Salcedo, R., O'shea, J. J., & Belkaid, Y. (2019). Commensal-specific T cell plasticity promotes rapid tissue adaptation to injury. Science, 363, eaat6280.
Constantinides, M. G., Link, V. M., Tamoutounour, S., Wong, A. C., Perez-Chaparro, P. J., Han, S.-J. i., Chen, Y. E., Li, K., Farhat, S., Weckel, A., Krishnamurthy, S. R., Vujkovic-Cvijin, I., Linehan, J. L., Bouladoux, N., Merrill, E. D., Roy, S., Cua, D. J., Adams, E. J., Bhandoola, A., … Belkaid, Y. (2019). MAIT cells are imprinted by the microbiota in early life and promote tissue repair. Science, 366, eaax6624.
Lima-Junior, D. S., Krishnamurthy, S. R., Bouladoux, N., Collins, N., Han, S.-J., Chen, E. Y., Constantinides, M. G., Link, V. M., Lim, A. I., Enamorado, M., Cataisson, C., Gil, L., Rao, I., Farley, T. K., Koroleva, G., Attig, J., Yuspa, S. H., Fischbach, M. A., Kassiotis, G., & Belkaid, Y. (2021). Endogenous retroviruses promote homeostatic and inflammatory responses to the microbiota. Cell, 184, 3794–3811.e19.
Sullivan, Z. A., Khoury-Hanold, W., Lim, J., Smillie, C., Biton, M., Reis, B. S., Zwick, R. K., Pope, S. D., Israni-Winger, K., Parsa, R., Philip, N. H., Rashed, S., Palm, N., Wang, A., Mucida, D., Regev, A., & Medzhitov, R. (2021). γδ T cells regulate the intestinal response to nutrient sensing. Science, 371, eaba8310.
Kayagaki, N., Stowe, I. B., Lee, B. L., O'rourke, K., Anderson, K., Warming, S., Cuellar, T., Haley, B., Roose-Girma, M., Phung, Q. T., Liu, P. S., Lill, J. R., Li, H., Wu, J., Kummerfeld, S., Zhang, J., Lee, W. P., Snipas, S. J., Salvesen, G. S., … Dixit, V. M. (2015). Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature, 526, 666–671.
Shi, J., Zhao, Y., Wang, K., Shi, X., Wang, Y., Huang, H., Zhuang, Y., Cai, T., Wang, F., & Shao, F. (2015). Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature, 526, 660–665.
Liu, X., Zhang, Z., Ruan, J., Pan, Y., Magupalli, V. G., Wu, H., & Lieberman, J. (2016). Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores. Nature, 535, 153–158.
Kuang, S., Zheng, J., Yang, H., Li, S., Duan, S., Shen, Y., Ji, C., Gan, J., Xu, X.-W., & Li, J. (2017). Structure insight of GSDMD reveals the basis of GSDMD autoinhibition in cell pyroptosis. Proceedings of the National Academy of Sciences of the United States of America, 114, 10642–10647.
Xia, S., Zhang, Z., Magupalli, V. G., Pablo, J. L., Dong, Y., Vora, S. M., Wang, L., Fu, T.-M., Jacobson, M. P., Greka, A., Lieberman, J., Ruan, J., & Wu, H. (2021). Gasdermin D pore structure reveals preferential release of mature interleukin-1. Nature, 593, 607–611.
Russell, D. G., Huang, L. u., & Vanderven, B. C. (2019). Immunometabolism at the interface between macrophages and pathogens. Nature Reviews Immunology, 19, 291–304.
Benhamed, F., Denechaud, P.-D., Lemoine, M., Robichon, C., Moldes, M., Bertrand-Michel, J., Ratziu, V., Serfaty, L., Housset, C., Capeau, J., Girard, J., Guillou, H., & Postic, C. (2012). The lipogenic transcription factor ChREBP dissociates hepatic steatosis from insulin resistance in mice and humans. Journal of Clinical Investigation, 122, 2176–2194.
Iroz, A., Montagner, A., Benhamed, F., Levavasseur, F., Polizzi, A., Anthony, E., Régnier, M., Fouché, E., Lukowicz, C., Cauzac, M., Tournier, E., Do-Cruzeiro, M., Daujat-Chavanieu, M., Gerbal-Chalouin, S., Fauveau, V., Marmier, S., Burnol, A.-F., Guilmeau, S., Lippi, Y., … Postic, C. (2017). A specific ChREBP and PPARα cross-talk is required for the glucose-mediated FGF21 response. Cell Reports, 21, 403–416.
Bricambert, J., Alves-Guerra, M.-C., Esteves, P., Prip-Buus, C., Bertrand-Michel, J., Guillou, H., Chang, C. J., Vander Wal, M. N., Canonne-Hergaux, F., Mathurin, P., Raverdy, V., Pattou, F., Girard, J., Postic, C., & Dentin, R. (2018). The histone demethylase Phf2 acts as a molecular checkpoint to prevent NAFLD progression during obesity. Nature Communications, 9, 2092.
Parlati, L., Regnier, M., Guillou, H., & Postic, C. (2021). New targets for NAFLD. JHEP Reports, 3(6), 100346.
Bond, M. R., & Hanover, J. A. (2015). A little sugar goes a long way: The cell biology of O-GlcNAc. Journal of Cell Biology, 208, 869–880.
Guinez, C., Filhoulaud, G., Rayah-Benhamed, F., Marmier, S., Dubuquoy, C., Dentin, R., Moldes, M., Burnol, A.-F., Yang, X., Lefebvre, T., Girard, J., & Postic, C. (2011). O-GlcNAcylation increases ChREBP protein content and transcriptional activity in the liver. Diabetes, 60, 1399–1413.
Cohen, Y. C., Zada, M., Wang, S.-Y., Bornstein, C., David, E., Moshe, A., Li, B., Shlomi-Loubaton, S., Gatt, M. E., Gur, C., Lavi, N., Ganzel, C., Luttwak, E., Chubar, E., Rouvio, O., Vaxman, I., Pasvolsky, O., Ballan, M., Tadmor, T., … Amit, I. (2021). Identification of resistance pathways and therapeutic targets in relapsed multiple myeloma patients through single-cell sequencing. Nature Medicine, 27, 491–503.
Gur, C., Wang, S.-Y., Sheban, F., Zada, M., Li, B., Kharouf, F., Peleg, H., Aamar, S., Yalin, A., Kirschenbaum, D., Braun-Moscovici, Y., Jaitin, D. A., Meir-Salame, T., Hagai, E., Kragesteen, B. K., Avni, B., Grisariu, S., Bornstein, C., Shlomi-Loubaton, S., … Amit, I. (2022). LGR5 expressing skin fibroblasts define a major cellular hub perturbed in scleroderma. Cell, 185, 1373–1388.e20.
Giladi, A., Cohen, M., Medaglia, C., Baran, Y., Li, B., Zada, M., Bost, P., Blecher-Gonen, R., Salame, T.-M., Mayer, J. U., David, E., Ronchese, F., Tanay, A., & Amit, I. (2020). Dissecting cellular crosstalk by sequencing physically interacting cells. Nature Biotechnology, 38, 629–637.
Katzenelenbogen, Y., Sheban, F., Yalin, A., Yofe, I., Svetlichnyy, D., Jaitin, D. A., Bornstein, C., Moshe, A., Keren-Shaul, H., Cohen, M., Wang, S.-Y., Li, B., David, E., Salame, T.-M., Weiner, A., & Amit, I. (2020). Coupled scRNA-seq and intracellular protein activity reveal an immunosuppressive role of TREM2 in cancer. Cell, 182, 872–885.e19.
Cohen, M., Giladi, A., Barboy, O., Hamon, P., Li, B., Zada, M., Gurevich-Shapiro, A., Beccaria, C. G., David, E., Maier, B. B., Buckup, M., Kamer, I., Deczkowska, A., Le Berichel, J., Bar, J., Iannacone, M., Tanay, A., Merad, M., & Amit, I. (2022). The interaction of CD4+ helper T cells with dendritic cells shapes the tumor microenvironment and immune checkpoint blockade response. Nature Cancer, 3, 303–317.
Martin-Perez, M., Urdiroz-Urricelqui, U., Bigas, C., & Benitah, S. A. (2022). The role of lipids in cancer progression and metastasis. Cell Metabolism, 34, 1675–1699.
Delaunay, S., Pascual, G., Feng, B., Klann, K., Behm, M., Hotz-Wagenblatt, A., Richter, K., Zaoui, K., Herpel, E., Münch, C., Dietmann, S., Hess, J., Benitah, S. A., & Frye, M. (2022). Mitochondrial RNA modifications shape metabolic plasticity in metastasis. Nature, 607, 593–603.
Pascual, G., Domínguez, D., Elosúa-Bayes, M., Beckedorff, F., Laudanna, C., Bigas, C., Douillet, D., Greco, C., Symeonidi, A., Hernández, I., Gil, S. R., Prats, N., Bescós, C., Shiekhattar, R., Amit, M., Heyn, H., Shilatifard, A., & Benitah, S. A. (2021). Dietary palmitic acid promotes a prometastatic memory via Schwann cells. Nature, 599, 485–490.
Kaymak, I., Williams, K. S., Cantor, J. R., & Jones, R. G. (2021). Immunometabolic interplay in the tumor microenvironment. Cancer Cell, 39, 28–37.
Sheldon, R. D., Ma, E. H., Decamp, L. M., Williams, K. S., & Jones, R. G. (2021). Interrogating in vivo T-cell metabolism in mice using stable isotope labeling metabolomics and rapid cell sorting. Nature Protocols, 16, 4494–4521.
Ma, E. H., Verway, M. J., Johnson, R. M., Roy, D. G., Steadman, M., Hayes, S., Williams, K. S., Sheldon, R. D., Samborska, B., Kosinski, P. A., Kim, H., Griss, T., Faubert, B., Condotta, S. A., Krawczyk, C. M., Deberardinis, R. J., Stewart, K. M., Richer, M. J., Chubukov, V., … Jones, R. G. (2019). Metabolic profiling using stable isotope tracing reveals distinct patterns of glucose utilization by physiologically activated CD8+ T cells. Immunity, 51, 856–870.e5.e5.
Kaymak, I., Luda, K. M., Duimstra, L. R., Ma, E. H., Longo, J., Dahabieh, M. S., Faubert, B., Oswald, B. M., Watson, M. J., Kitchen-Goosen, S. M., Decamp, L. M., Compton, S. E., Fu, Z., Deberardinis, R. J., Williams, K. S., Sheldon, R. D., & Jones, R. G. (2022). Carbon source availability drives nutrient utilization in CD8+ T cells. Cell Metabolism, 34, 1298–1311.e6.e6.
Reina-Campos, M., Scharping, N. E., & Goldrath, A. W. (2021). CD8+ T cell metabolism in infection and cancer. Nature Reviews Immunology, 21, 718–738.
Scheja, L., & Heeren, J. (2019). The endocrine function of adipose tissues in health and cardiometabolic disease. Nature Reviews Endocrinology, 15, 507–524.
Vasanthakumar, A., Chisanga, D., Blume, J., Gloury, R., Britt, K., Henstridge, D. C., Zhan, Y., Torres, S. V., Liene, S., Collins, N., Cao, E., Sidwell, T., Li, C., Spallanzani, R. G., Liao, Y., Beavis, P. A., Gebhardt, T., Trevaskis, N., Nutt, S. L., … Kallies, A. (2020). Sex-specific adipose tissue imprinting of regulatory T cells. Nature, 579, 581–585.
Beyaz, S., Mana, M. D., & Yilmaz, Ö. H. (2021). High-fat diet activates a PPAR-δ program to enhance intestinal stem cell function. Cell Stem Cell, 28, 598–599.
Beyaz, S., Chung, C., Mou, H., Bauer-Rowe, K. E., Xifaras, M. E., Ergin, I., Dohnalova, L., Biton, M., Shekhar, K., Eskiocak, O., Papciak, K., Ozler, K., Almeqdadi, M., Yueh, B., Fein, M., Annamalai, D., Valle-Encinas, E., Erdemir, A., Dogum, K., … Yilmaz, Ö. H. (2021). Dietary suppression of MHC class II expression in intestinal epithelial cells enhances intestinal tumorigenesis. Cell Stem Cell, 28, 1922–1935.e5.
Ross, R. C., Akinde, Y. M., Schauer, P. R., Le Roux, C. W., Brennan, D., Jernigan, A. M., Bueter, M., & Albaugh, V. L. (2022). The role of bariatric and metabolic surgery in the development, diagnosis, and treatment of endometrial cancer. Frontiers in Surgery, 9, 943544.
Nagle, C. M., Marquart, L., Bain, C. J., O'brien, S., Lahmann, P. H., Quinn, M., Oehler, M. K., Obermair, A., Spurdle, A. B., & Webb, P. M. (2013). Impact of weight change and weight cycling on risk of different subtypes of endometrial cancer. European Journal of Cancer, 49, 2717–2726.
Janda, M., Robledo, K. P., Gebski, V., Armes, J. E., Alizart, M., Cummings, M., Chen, C., Leung, Y., Sykes, P., Mcnally, O., Oehler, M. K., Walker, G., Garrett, A., Tang, A., Land, R., Nicklin, J. L., Chetty, N., Perrin, L. C., Hoet, G., … Obermair, A. (2021). Complete pathological response following levonorgestrel intrauterine device in clinically stage 1 endometrial adenocarcinoma: Results of a randomized clinical trial. Gynecologic Oncology, 161, 143–151.
Vosoughi, K., Atieh, J., Khanna, L., Khoshbin, K., Prokop, L. J., Davitkov, P., Murad, M. H., & Camilleri, M. (2021). Association of glucagon-like peptide 1 analogs and agonists administered for obesity with weight loss and adverse events: A systematic review and network meta-analysis. EClinicalMedicine, 42, 101213.
Buckley, C. D., Chernajovsky, L., Chernajovsky, Y., Modis, L. K., O'neill, L. A., Brown, D., Connor, R., Coutts, D., Waterman, E. A., & Tak, P. P. (2021). Immune-mediated inflammation across disease boundaries: Breaking down research silos. Nature Immunology, 22, 1344–1348.
Coll, R. C., & O'neill, L. A. J. (2011). The cytokine release inhibitory drug CRID3 targets ASC oligomerisation in the NLRP3 and AIM2 inflammasomes. PLoS ONE, 6, e29539.
Ryan, D. G., Murphy, M. P., Frezza, C., Prag, H. A., Chouchani, E. T., O'neill, L. A., & Mills, E. L. (2019). Coupling Krebs cycle metabolites to signalling in immunity and cancer. Nature Metabolism, 1, 16–33.
Lin, J., Ren, J., Gao, D. S., Dai, Y. i., & Yu, L. (2021). The emerging application of itaconate: Promising molecular targets and therapeutic opportunities. Frontiers in Chemistry, 9, 669308.
Ylisaukko-Oja, S. K., Cybulski, C., Lehtonen, R., Kiuru, M., Matyjasik, J., Szymañska, A., Szymañska-Pasternak, J., Dyrskjot, L., Butzow, R., Orntoft, T. F., Launonen, V., Lubiñski, J., & Aaltonen, L. A. (2006). Germline fumarate hydratase mutations in patients with ovarian mucinous cystadenoma. European Journal of Human Genetics, 14, 880–883.
Xiao, M., Yang, H., Xu, W., Ma, S., Lin, H., Zhu, H., Liu, L., Liu, Y., Yang, C., Xu, Y., Zhao, S., Ye, D., Xiong, Y., & Guan, K.-L. (2012). Inhibition of α-KG-dependent histone and DNA demethylases by fumarate and succinate that are accumulated in mutations of FH and SDH tumor suppressors. Genes & Development, 26, 1326–1338.
Leitner, B. P., & Perry, R. J. (2020). The impact of obesity on tumor glucose uptake in breast and lung cancer. JNCI Cancer Spectrology, 4, pkaa007.
Kichenadasse, G., Miners, J. O., Mangoni, A. A., Rowland, A., Hopkins, A. M., & Sorich, M. J. (2020). Association between body mass index and overall survival with immune checkpoint inhibitor therapy for advanced non-small cell lung cancer. JAMA Oncology, 6, 512–518.
Mcquade, J. L., Daniel, C. R., Hess, K. R., Mak, C., Wang, D. Y., Rai, R. R., Park, J. J., Haydu, L. E., Spencer, C., Wongchenko, M., Lane, S., Lee, D.-Y., Kaper, M., Mckean, M., Beckermann, K. E., Rubinstein, S. M., Rooney, I., Musib, L., Budha, N., … Davies, M. A. (2018). Association of body-mass index and outcomes in patients with metastatic melanoma treated with targeted therapy, immunotherapy, or chemotherapy: A retrospective, multicohort analysis. Lancet Oncology, 19, 310–322.
Rabin-Court, A., Rodrigues, M. R., Zhang, X.-M., & Perry, R. J. (2019). Obesity-associated, but not obesity-independent, tumors respond to insulin by increasing mitochondrial glucose oxidation. PLoS ONE, 14, e0218126.
Akingbesote, N. D., Norman, A., Zhu, W., Halberstam, A. A., Zhang, X., Foldi, J., Lustberg, M. B., & Perry, R. J. (2022). A precision medicine approach to metabolic therapy for breast cancer in mice. Communications Biology, 5, 478.
Mak, T. W., Grusdat, M., Duncan, G. S., Dostert, C., Nonnenmacher, Y., Cox, M., Binsfeld, C., Hao, Z., Brüstle, A., Itsumi, M., Jäger, C., Chen, Y., Pinkenburg, O., Camara, B., Ollert, M., Bindslev-Jensen, C., Vasiliou, V., Gorrini, C., Lang, P. A., … Brenner, D. (2017). Glutathione primes T cell metabolism for inflammation. Immunity, 46, 675–689.
Kurniawan, H., Franchina, D. G., Guerra, L., Bonetti, L., Baguet, L. S., Grusdat, M., Schlicker, L., Hunewald, O., Dostert, C., Merz, M. P., Binsfeld, C., Duncan, G. S., Farinelle, S., Nonnenmacher, Y., Haight, J., Das Gupta, D., Ewen, A., Taskesen, R., Halder, R., … Brenner, D. (2020). Glutathione restricts serine metabolism to preserve regulatory T cell function. Cell Metabolism, 31, 920–936.e7.