[en] We compute the Hochschild–Kostant–Rosenberg decomposition of the Hochschild cohomology of Fano 3-folds. This is the first step in understanding the non-trivial Gerstenhaber algebra structure of this invariant, and yields some initial insights in the classification of Poisson structures on Fano 3-folds of higher Picard rank.
Disciplines :
Mathematics
Author, co-author :
BELMANS, Pieter ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Mathematics (DMATH)
Fatighenti, Enrico; Dipartimento di Matematica, Università di Bologna, Bologna, Italy
Tanturri, Fabio; Dipartimento di Matematica, Università di Genova, Genova, Italy
External co-authors :
yes
Language :
English
Title :
Polyvector fields for Fano 3-folds
Publication date :
May 2023
Journal title :
Mathematische Zeitschrift
ISSN :
0025-5874
eISSN :
1432-1823
Publisher :
Springer Science and Business Media Deutschland GmbH
Open access funding provided by Università degli Studi di Genova within the CRUI-CARE Agreement.We would like to thank Marcello Bernardara, Alexander Kasprzyk, Brent Pym and Helge Ruddat for interesting conversations. We want to thank Burt Totaro for pointing out the subtletly explained in Remark 3.6. We want to thank the referee for a careful reading and interesting comments that improved the paper. And most of all we want to thank Alexander Kuznetsov for many conversations over the years about Fano 3-folds, and comments on an earlier version of this paper. The first author was partially supported by the FWO (Research Foundation–Flanders). The second and third author are members of INdAM-GNSAGA.We would like to thank Marcello Bernardara, Alexander Kasprzyk, Brent Pym and Helge Ruddat for interesting conversations. We want to thank Burt Totaro for pointing out the subtletly explained in Remark . We want to thank the referee for a careful reading and interesting comments that improved the paper. And most of all we want to thank Alexander Kuznetsov for many conversations over the years about Fano 3-folds, and comments on an earlier version of this paper. The first author was partially supported by the FWO (Research Foundation–Flanders). The second and third author are members of INdAM-GNSAGA.
Belmans, Pieter, Smirnov, Maxim: Hochschild cohomology of generalised Grassmannians. accepted for publication in Documenta Mathematica arXiv:1911.09414v1 [math.AG]
Bernardara, Marcello, Fatighenti, Enrico, Manivel, Laurent, Tanturri, Fabio: Fano fourfolds of K3 type (2021). arXiv:2111.13030 [math.AG]
Bondal, Alexey: Noncommutative deformations and Poisson brackets on projective spaces. eprint: MPI/93-67. https://www.mpim-bonn.mpg.de/preblob/4912
Bosma, Wieb, Cannon, John, Playoust, Catherine: The Magma algebra system. The user language. I. J. Symbolic Comput. 24(3–4), 235–265 (1997). https://doi.org/10.1006/jsco.1996.0125. (Computational algebra and number theory (London, 1993). 0747-7171)
Calaque, Damien, Van den Bergh, Michel: Hochschild cohomology and Atiyah classes. Adv. Math. 224(5), 1839–1889 (2010). 10.1016/j.aim.2010.01.012 DOI: 10.1016/j.aim.2010.01.012
Cǎldǎraru, Andrei: The Mukai pairing. II. The Hochschild-Kostant-Rosenberg isomorphism. Adv. Math. 194(1), 34–66 (2005). 10.1016/j.aim.2004.05.012 DOI: 10.1016/j.aim.2004.05.012
Chen, Yuan, Guo, Yanhong, Yunge, Xu.: The Gerstenhaber bracket of Hochschild cohomology of triangular quadratic monomial algebra. Indian J. Pure Appl. Math. 46(2), 175–190 (2015). 10.1007/s13226-015-0120-0 DOI: 10.1007/s13226-015-0120-0
Coates, Tom, Corti, Alessio, Galkin, Sergey, Kasprzyk, Alexander: Quantum periods for 3-dimensional Fano manifolds. Geom. Topol. 20(1), 103–256 (2016). 10.2140/gt.2016.20.103 DOI: 10.2140/gt.2016.20.103
Dolgachev, Igor: Weighted projective varieties. In: Group actions and vector fields (Vancouver, B.C., 1981). vol. 956. Lecture Notes in Math. pp. 34–71. Springer, Berlin (1982). https://doi.org/10.1007/BFb0101508
Eisenbud, David, Mustaţǎ, Mircea, Stillman, Mike: Cohomology on toric varieties and local cohomology with monomial supports. J. Symbolic Comput. 29(4–5), 583–600 (2000). https://doi.org/10.1006/jsco.1999.0326. (Symbolic computation in algebra, analysis, and geometry (Berkeley, CA, 1998))
Grayson, Daniel R., Stillman, Michael E.: Macaulay2, a software system for research in algebraic geometry. http://www.math.uiuc.edu/Macaulay2/
Hemelsoet, Nicolas, Voorhaar, Rik: A computer algorithm for the BGG resolution. J. Algebra 569, 758–783 (2021). 10.1016/j.jalgebra.2020.09.043 DOI: 10.1016/j.jalgebra.2020.09.043
Hong, Wei: Holomorphic polyvector fields on toric varieties. arXiv:2010.07053v1 [math.AG]
Huybrechts, Daniel, Rennemo, Jørgen Vold.: Hochschild cohomology versus the Jacobian ring and the Torelli theorem for cubic fourfolds. Algebr. Geom. 6(1), 76–99 (2019). 10.14231/AG-2019-005 DOI: 10.14231/AG-2019-005
Iskovskih, Vasiliĭ Alekseevich: Fano threefolds. I. Izv. Akad. Nauk SSSR Ser. Mat. 41(3), 516–562, 717 (1977)
Iskovskih, Vasiliĭ Alekseevich.: Fano threefolds. II. Izv. Akad. Nauk SSSR Ser. Mat. 42(3), 506–549 (1978)
Iskovskih, Vasiliĭ Alekseevich., Prokhorov, Yuri: Fano varieties. Algebraic geometry. Encyclopaedia Math. Sci., vol. 47, pp. 1–247. Springer, Berlin (1999)
Jahnke, Priska, Radloff, Ivo: Fano threefolds with sections in ΩV1(1). Math. Nachr. 280(1–2), 127–139 (2007). 10.1002/mana.200410469 DOI: 10.1002/mana.200410469
Katzarkov, Ludmil, Kontsevich, Maxim, Pantev, Tony: Bogomolov-Tian-Todorov theorems for Landau-Ginzburg models. J. Differential Geom. 105(1), 55–117 (2017) DOI: 10.4310/jdg/1483655860
Keller, Bernhard: Derived invariance of higher structures on the Hochschild complex (2005). https://webusers.imj-prg.fr/~bernhard.keller/publ/dih.pdf
Kontsevich, Maxim: Deformation quantization of algebraic varieties. Lett. Math. Phys. 56(3), 271–294 (2001). https://doi.org/10.1023/A:1017957408559. (EuroConférence Moshé Flato 2000, Part III (Dijon))
Kontsevich, Maxim: Deformation quantization of Poisson manifolds. Lett. Math. Phys. 66(3), 157–216 (2003). 10.1023/B:MATH.0000027508.00421.bf DOI: 10.1023/B:MATH.0000027508.00421.bf
Kuznetsov, Alexander: Height of exceptional collections and Hochschild cohomology of quasiphantom categories. J. Reine Angew. Math. 708, 213–243 (2015). 10.1515/crelle-2013-0077 DOI: 10.1515/crelle-2013-0077
Kuznetsov, Alexander: Hochschild homology and semiorthogonal decompositions. arXiv:0904.4330v1 [math.AG]
Kuznetsov, Alexander, Prokhorov, Yuri, Shramov, Constantin: Hilbert schemes of lines and conics and automorphism groups of Fano threefolds. Jpn. J. Math. 13(1), 109–185 (2018). 10.1007/s11537-017-1714-6 DOI: 10.1007/s11537-017-1714-6
Lowen, Wendy, Van den Bergh, Michel: Deformation theory of abelian categories. Trans. Amer. Math. Soc. 358(12), 5441–5483 (2006). 10.1090/S0002-9947-06-03871-2 DOI: 10.1090/S0002-9947-06-03871-2
Lowen, Wendy, Van den Bergh, Michel: Hochschild cohomology of abelian categories and ringed spaces. Adv. Math. 198(1), 172–221 (2005). 10.1016/j.aim.2004.11.010 DOI: 10.1016/j.aim.2004.11.010
Lunts, Valery, Przyjalkowski, Victor: Landau-Ginzburg Hodge numbers for mirrors of del Pezzo surfaces. Adv. Math. 329, 189–216 (2018). 10.1016/j.aim.2018.02.024 DOI: 10.1016/j.aim.2018.02.024
Markarian, Nikita: The Atiyah class, Hochschild cohomology and the Riemann-Roch theorem. J. Lond. Math. Soc. (2) 79(1), 129–143 (2009). 10.1112/jlms/jdn064 DOI: 10.1112/jlms/jdn064
Mori, Shigefumi, Mukai, Shigeru: Classification of Fano 3-folds with B 2 ≥ 2. Manuscripta Math. 36(2), 147–162 (1981/82). https://doi.org/10.1007/BF01170131
Mori, Shigefumi, Mukai, Shigeru: Classification of Fano 3-folds with B2≥ 2 I. Algebraic and topological theories (Kinosaki, 1984), pp. 496–545. Kinokuniya, Tokyo (1986)
Mukai, Shigeru: Biregular classification of Fano 3-folds and Fano manifolds of coindex 3. Proc. Nat. Acad. Sci. U.S.A. 86(9), 3000–3002 (1989). 10.1073/pnas.86.9.3000 DOI: 10.1073/pnas.86.9.3000
Mukai, Shigeru, Umemura, Hiroshi: Minimal rational threefolds. In: Algebraic geometry (Tokyo/Kyoto, 1982). vol. 1016. Lecture Notes in Math. pp. 490–518. Springer, Berlin (1983). https://doi.org/10.1007/BFb0099976
Mustaţǎ, Mircea: Vanishing theorems on toric varieties. Tohoku Math. J. (2) 54(3), 451–470 (2002) DOI: 10.2748/tmj/1113247605
Polishchuk, Alexander: Algebraic geometry of Poisson brackets. J. Math. Sci. (New York) 84(5). Algebraic geometry 7, 1413–1444 (1997). https://doi.org/10.1007/BF02399197
Przhiyalkovskiǐ, Victor, Chel’tsov, Ivan, Shramov, Constantin A.: Fano threefolds with infinite automorphism groups. Izv. Ross. Akad. Nauk Ser. Mat. 83(4), 226–280 (2019). 10.4213/im8834 DOI: 10.4213/im8834
Pym, Brent: Constructions and classifications of projective Poisson varieties. Lett. Math. Phys. 108(3), 573–632 (2018). 10.1007/s11005-017-0984-5 DOI: 10.1007/s11005-017-0984-5
Redondo, María Julia., Roman, Lucrecia: Gerstenhaber algebra structure on the Hochschild cohomology of quadratic string algebras. Algebr. Represent. Theory 21(1), 61–86 (2018). 10.1007/s10468-017-9704-1 DOI: 10.1007/s10468-017-9704-1
Smith, Gregory G.: NormalToricVarieties: a package for working with normal toric varieties. Version 1.8. A Macaulay2 package available at https://github.com/Macaulay2/M2/tree/master/M2/Macaulay2/packages
Solotar, Andrea: The Gerstenhaber bracket in Hochschild cohomology: Methods and examples. In: Representation theory and beyond. vol. 758. Contemp. Math. Amer. Math. Soc., pp. 287–298. Providence, RI (2020). https://doi.org/10.1090/conm/758/15240
The Stacks project authors (2021) The Stacks project. https://stacks.math.columbia.edu
Swan, Richard G.: Hochschild cohomology of quasiprojective schemes. J. Pure Appl. Algebra 110(1), 57–80 (1996). https://doi.org/10.1016/0022-4049(95)00091-7. (0022-4049)
Toda, Yukinobu: Deformations and Fourier-Mukai transforms. J. Differential Geom. 81(1), 197–224 (2009) DOI: 10.4310/jdg/1228400631
Totaro, Burt: Bott vanishing for Fano 3-folds (2023). arXiv:2302.08142 [math.AG]
Yekutieli, Amnon: The continuous Hochschild cochain complex of a scheme. Canad. J. Math. 54(6), 1319–1337 (2002). 10.4153/CJM-2002-051-8 DOI: 10.4153/CJM-2002-051-8