Mathematics - Algebraic Geometry; Mathematics - Representation Theory
Résumé :
[en] We describe the point class and Todd class in the Chow ring of a quiver
moduli space, building on a result of Ellingsrud-Str{\o}mme. This, together
with the presentation of the Chow ring by the second author, makes it possible
to compute integrals on quiver moduli. To do so we construct a canonical
morphism of universal representations in great generality, and along the way
point out its relation to the Kodaira-Spencer morphism.
We illustrate the results by computing some invariants of some "small"
Kronecker moduli spaces. We also prove that the first non-trivial
(6-dimensional) Kronecker quiver moduli space is isomorphic to the zero locus
of a general section of $\mathcal{Q}^\vee(1)$ on $\operatorname{Gr}(2,8)$.
Disciplines :
Mathématiques
Auteur, co-auteur :
BELMANS, Pieter ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Mathematics (DMATH)
Alper, J. "Good moduli spaces for Artin stacks." Univ. Grenoble. Ann.Inst. Fourier. Univ. Grenoble I 63, no. 6 (2013): 2349-402. https://doi.org/10.5802/aif.2833.
Alper, J. "Adequate moduli spaces and geometrically reductive group schemes." Algebr. Geom. 1, no. 4 (2014): 489-531. https://doi.org/10.14231/AG-2014-022.
Cónsul, L. Á. and A. King. "Moduli of sheaves from moduli of Kronecker modules." In Moduli Spaces and Vector Bundles. London Math. Soc. Lecture Note Ser., vol. 359, 212-28. Cambridge: Cambridge Univ. Press, 2009. https://doi.org/10.1017/CBO9781139107037.008.
Belmans, P. "Hodge diamond cutter." https://doi.org/10.5281/zenodo.3893509. URL: https://github.com/ pbelmans/hodge-diamond-cutter.
Belmans, P., A.-M. Brecan, H. Franzen, G. Petrella, and M. Reineke. "Rigidity and Schofield's partial tilting conjecture for quiver moduli." 2023. https://arxiv.org/abs/2311.17003 [math.AG].
Belmans, P., A.-M. Brecan, H. Franzen, and M. Reineke. "Vector fields and admissible embeddings for quiver moduli." 2023. https://arxiv.org/abs/2311.17004 [math.AG].
Belmans, P., C. Damiolini, H. Franzen, V. Hoskins, S. Makarova, and T. Tajakka. "Projectivity and effective global generation of determinantal line bundles on quiver moduli." 2022. https://arxiv.org/ abs/2210.00033 [math.AG].
Brion, M. "Representations of quivers." In Geometric Methods in Representation Theory. I. Sémin. Congr., vol. 24-I, 103-44. Paris: Soc. Math. France, 2012.
Ciocan-Fontanine, I., B. Kim, and D. Maulik. "Stable quasimaps to GIT quotients." J. Geom. P hy s. 75 (2014): 17-47. https://doi.org/10.1016/j.geomphys.2013.08.019.
De Biase, L., E. Fatighenti, and F. Tanturri. "Fano 3-folds from homogeneous vector bundles over Grass-mannians." Rev. Mat. Complut. 35, no. 3 (2022): 649-710. https://doi.org/10.1007/s13163-021-00401-2.
De Poi, P., D. Faenzi, E. Mezzetti, and K. Ranestad. "Fano congruences of index 3 and alternating 3-forms." Univ. Grenoble. Ann. Inst. Fourier. Univ. Grenoble I 67, no. 5 (2017): 2099-165. https://doi.org/10.5802/aif.3131.
Drezet, J.-M. "Fibrés exceptionnels et variétés de modules de faisceaux semi-stables sur P2 (C)." J. Re in e Angew. Math. 380 (1987): 14-58. https://doi.org/10.1515/crll.1987.380.14.
Drezet, J.-M. "Groupe de Picard des variétés de modules de faisceaux semi-stables sur P2." In Singularities, Representation of Algebras, and Vector Bundles (Lambrecht, 1985). Lecture Notes in Math., vol. 1273, 337-62. Springer, Berlin, 1987. https://doi.org/10.1007/BFb0078853.
Drezet, J.-M. "Cohomologie des variétés de modules de hauteur nulle." Math. Ann. 281, no. 1 (1988): 43-85. https://doi.org/10.1007/BF01449215.
Dyer, B. and A. Polishchuk. "NC-smooth algebroid thickenings for families of vector bundles and quiver representations." Compositio Math. 155, no. 4 (2019): 681-710. https://doi.org/10.1112/S0010437 X19007115.
Ellingsrud, G., R. Piene, and S. A. Strømme. "On the variety of nets of quadrics defining twisted cubics." In Space Curves (Rocca di Papa, 1985). Lecture Notes in Math., vol. 1266, 84-96. Berlin: Springer, 1987. https:// doi.org/10.1007/BFb0078179.
Ellingsrud, G. and S. A. Strømme. "Towards the Chow ring of the Hilbert scheme of P2." J. Reine Angew. Math. 441 (1993): 33-44.
Ellingsrud, G. and S. A. Strømme. "The number of twisted cubic curves on the general quintic threefold." Math. Scand. 76, no. 1 (1995): 5-34. https://doi.org/10.7146/math.scand.a-12522.
Franzen, H. "Chow rings of fine quiver moduli are tautologically presented." Math. Z. 279, no. 3-4 (2015): 1197-223. https://doi.org/10.1007/s00209-015-1409-8.
Fulton, W. Intersection Theory. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, vol. 2, 2nd ed. Springer, 1998. https://doi.org/10.1007/978-1-4612-1700-8.
Gothen, P. B. and A. D. King. "Homological algebra of twisted quiver bundles." J. London Math. Soc. (2) 71, no. 1 (2005): 85-99. https://doi.org/10.1112/S0024610704005952.
Hille, L. and J. A. de la Peña. "Stable representations of quivers." J. Pure Appl. Algebra 172, no. 2-3 (2002): 205-24. https://doi.org/10.1016/S0022-4049(01)00167-0.
Huybrechts, D. and M. Lehn. The Geometry of Moduli Spaces of Sheaves, 2nd ed. Cambridge Mathematical Library. Cambridge: Cambridge University Press, 2010. https://doi.org/10.1017/CBO9780511711985.
Iliev, A. and L. Manivel. "Severi varieties and their varieties of reductions." J. Reine Angew. Math. 2005 (2005): 93-139. https://doi.org/10.1515/crll.2005.2005.585.93.
King, A. D. "Moduli of representations of finite-dimensional algebras." Quart. J. Math. Oxford Ser. (2) 45, no. 180 (1994): 515-30. https://doi.org/10.1093/qmath/45.4.515.
King, A. D. and C. H. Walter. "On Chow rings of fine moduli spaces of modules." J. Reine Angew. Math. 1995 (1995): 179-88. https://doi.org/10.1515/crll.1995.461.179.
Köchle, O. "On Fano 4-fold of index 1 and homogeneous vector bundles over Grassmannians." Math. Z. 218, no. 4 (1995): 563-75. https://doi.org/10.1007/BF02571923.
Ramanan, S. "The moduli spaces of vector bundles over an algebraic curve." Math. Ann. 200 (1973): 69-84. https://doi.org/10.1007/BF01578292.
Reineke, M. "The Harder-Narasimhan system in quantum groups and cohomology of quiver moduli." Invent. Math. 152, no. 2 (2003): 349-68. https://doi.org/10.1007/s00222-002-0273-4.
Reineke, M. "Moduli of representations of quivers." In Trends in Representation Theory of Algebras and Related Topi cs. EMS Ser. Congr. Rep., 589-637. Zörich: Eur. Math. Soc., 2008. https://doi.org/10.4171/062-1/14.
Reineke, M. and S. Schröer. "Brauer groups for quiver moduli." Algebr. Geom. 4, no. 4 (2017): 452-71. https://doi.org/10.14231/2017-024.
Song, J. Version commit d47b26b. URL: https://github.com/8d1h/IntersectionTheory.
The Stacks Project Authors. The Stacks Project, 2023. https://stacks.math.columbia.edu.