[en] Mutation of Dedicator of cytokinesis 8 (DOCK8) has previously been reported to provide resistance to the Th17 cell dependent EAE in mice. Contrary to expectation, we observed an elevation of Th17 cells in two different DOCK8 mutant mouse strains in the steady state. This was specific for Th17 cells with no change in Th1 or Th2 cell populations. In vitro Th cell differentiation assays revealed that the elevated Th17 cell population was not due to a T cell intrinsic differentiation bias. Challenging these mutant mice in the EAE model, we confirmed a resistance to this autoimmune disease with Th17 cells remaining elevated systemically while cellular infiltration in the CNS was reduced. Infiltrating T cells lost the bias toward Th17 cells indicating a relative reduction of Th17 cells in the CNS and a Th17 cell specific migration disadvantage. Adoptive transfers of Th1 and Th17 cells in EAE-affected mice further supported the Th17 cell-specific migration defect, however, DOCK8-deficient Th17 cells expressed normal Th17 cell-specific CCR6 levels and migrated toward chemokine gradients in transwell assays. This study shows that resistance to EAE in DOCK8 mutant mice is achieved despite a systemic Th17 bias.
Disciplines :
Immunology & infectious disease
Author, co-author :
Wilson, Alicia S; The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
Law, Hsei Di; The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
Knobbe-Thomsen, Christiane B; Department of Neuropathology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
Kearney, Conor J; Immune Defence Laboratory, Cancer Immunology Division, The Peter MacCallum Cancer Centre, Melbourne, Australia
Oliaro, Jane; Immune Defence Laboratory, Cancer Immunology Division, The Peter MacCallum Cancer Centre, Melbourne, Australia
Binsfeld, Carole; Department of Infection and Immunity, Experimental and Molecular Immunology, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
Burgio, Gaetan; The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
Starrs, Lora; The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
BRENNER, Dirk ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Immunology and Genetics ; Department of Infection and Immunity, Experimental and Molecular Immunology, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg ; Odense Research Center for Anaphylaxis, Department of Dermatology and Allergy Center, Odense University Hospital, University of Southern Denmark, Odense, Denmark
Randall, Katrina L; The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia ; ANU Medical School, The Australian National University, Canberra, Australian Capital Territory, Australia
Brüstle, Anne ; The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
External co-authors :
yes
Language :
English
Title :
Protection from EAE in DOCK8 mutant mice occurs despite increased Th17 cell frequencies in the periphery.
Bundesministerium für Bildung und Forschung National Health and Medical Research Council
Funding text :
Acknowledgements: A.S.W., K.L.R., and A.B. designed and analyzed the experiments and wrote the manuscript. A.S.W., H.D.L., C.B.K.T., C.J.K., J.O., C.B., G.B., L.S., and D.B. performed and analyzed experiments. This work was supported by an Australian Government Research Training Program Scholarship (A.S.W.), NHMRC project grants 1022922 (K.L.R.) and 1079318 (J.O., K.L.R.), ACT Health Private Practice Fund Major Grant 2015 and 2016 (K.L.R). C.B.K.T. was supported by the DKH (110663) and the BMBF (01ZX1401B). D.B. is funded through the FNR-ATTRACT program (A14/BM/7632103) and an FNR-CORE grant (C15/BM/10355103) of the Luxembourg National Research Fund. The authors thank all members of the Brüstle laboratory, past and present, for their support and the flow cytometry facility at The John Curtin School of Medical Research for their excellent services. The authors further thank Dr. Emmalene Bartlett for her insightful scientific editing.A.S.W., K.L.R., and A.B. designed and analyzed the experiments and wrote the manuscript. A.S.W., H.D.L., C.B.K.T., C.J.K., J.O., C.B., G.B., L.S., and D.B. performed and analyzed experiments. This work was supported by an Australian Government Research Training Program Scholarship (A.S.W.), NHMRC project grants 1022922 (K.L.R.) and 1079318 (J.O., K.L.R.), ACT Health Private Practice Fund Major Grant 2015 and 2016 (K.L.R). C.B.K.T. was supported by the DKH (110663) and the BMBF (01ZX1401B). D.B. is funded through the FNR-ATTRACT program (A14/BM/7632103) and an FNR-CORE grant (C15/BM/10355103) of the Luxembourg National Research Fund. The authors thank all members of the Br?stle laboratory, past and present, for their support and the flow cytometry facility at The John Curtin School of Medical Research for their excellent services. The authors further thank Dr. Emmalene Bartlett for her insightful scientific editing.
Korn, T., Bettelli, E., Oukka, M. and Kuchroo, V. K., IL-17 and Th17 Cells. Annu. Rev. Immunol. 2009. 27: 485–517.
Singh, R. P., Hasan, S., Sharma, S., Nagra, S., Yamaguchi, D. T., Wong, D. T., Hahn, B. H. et al., Th17 cells in inflammation and autoimmunity. Autoimmun. Rev. 2014. 13: 1174–1181.
Langrish, C. L., Chen, Y., Blumenschein, W. M., Mattson, J., Basham, B., Sedgwick, J. D., McClanahan, T. et al., IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J. Exp. Med. 2005. 201: 233–240.
Bettelli, E., Carrier, Y., Gao, W., Korn, T., Strom, T. B., Oukka, M., Weiner, H. L. et al., Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 2006. 441: 235–238.
Ivanov, II, McKenzie, B. S., Zhou, L., Tadokoro, C. E., Lepelley, A., Lafaille, J. J., Cua, D. J. et al., The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 2006. 126: 1121–1133.
Harris, T. J., Grosso, J. F., Yen, H. R., Xin, H., Kortylewski, M., Albesiano, E., Hipkiss, E. L. et al., Cutting edge: An in vivo requirement for STAT3 signaling in TH17 development and TH17-dependent autoimmunity. J. Immunol. 2007. 179: 4313–4317.
Brustle, A., Heink, S., Huber, M., Rosenplanter, C., Stadelmann, C., Yu, P., Arpaia, E. et al., The development of inflammatory T(H)-17 cells requires interferon-regulatory factor 4. Nat. Immunol. 2007. 8: 958–966.
Jeltsch, K. M., Hu, D., Brenner, S., Zoller, J., Heinz, G. A., Nagel, D., Vogel, K. U., et al., Cleavage of roquin and regnase-1 by the paracaspase MALT1 releases their cooperatively repressed targets to promote T(H)17 differentiation. Nat. Immunol. 2014. 15: 1079–1089.
Brustle, A., Brenner, D., Knobbe, C. B., Lang, P. A., Virtanen, C., Hershenfield, B. M., Reardon, C. et al., The NF-kappaB regulator MALT1 determines the encephalitogenic potential of Th17 cells. J. Clin. Invest. 2012. 122: 4698–4709.
Zhang, Q., Davis, J. C., Lamborn, I. T., Freeman, A. F., Jing, H., Favreau, A. J., Matthews, H. F. et al., Combined immunodeficiency associated with DOCK8 mutations. N. Engl. J. Med. 2009. 361: 2046–2055.
Engelhardt, K. R., McGhee, S., Winkler, S., Sassi, A., Woellner, C., Lopez-Herrera, G., Chen, A. et al., Large deletions and point mutations involving the dedicator of cytokinesis 8 (DOCK8) in the autosomal-recessive form of hyper-IgE syndrome. J. Allergy Clin. Immunol. 2009. 124: 1289–1302 e1284.
Aydin, S. E., Kilic, S. S., Aytekin, C., Kumar, A., Porras, O., Kainulainen, L., Kostyuchenko, L. et al., and inborn errors working party of, E., DOCK8 deficiency: clinical and immunological phenotype and treatment options—a review of 136 patients. J. Clin. Immunol. 2015. 35: 189–198.
Randall, K. L., Lambe, T., Johnson, A. L., Treanor, B., Kucharska, E., Domaschenz, H., Whittle, B. et al., Dock8 mutations cripple B cell immunological synapses, germinal centers and long-lived antibody production. Nat. Immunol. 2009. 10: 1283–1291.
Randall, K. L., Chan, S. S., Ma, C. S., Fung, I., Mei, Y., Yabas, M., Tan, A. et al., DOCK8 deficiency impairs CD8 T cell survival and function in humans and mice. J. Exp. Med. 2011. 208: 2305–2320.
Lambe, T., Crawford, G., Johnson, A. L., Crockford, T. L., Bouriez-Jones, T., Smyth, A. M., Pham, T. H. et al., DOCK8 is essential for T-cell survival and the maintenance of CD8 + T-cell memory. Eur. J. Immunol. 2011. 41: 3423–3435.
Crawford, G., Enders, A., Gileadi, U., Stankovic, S., Zhang, Q., Lambe, T., Crockford, T. L. et al., DOCK8 is critical for the survival and function of NKT cells. Blood 2013. 122: 2052–2061.
Harada, Y., Tanaka, Y., Terasawa, M., Pieczyk, M., Habiro, K., Katakai, T., Hanawa-Suetsugu, K. et al., DOCK8 is a Cdc42 activator critical for interstitial dendritic cell migration during immune responses. Blood 2012. 119: 4451–4461.
Zhang, Q., Dove, C. G., Hor, J. L., Murdock, H. M., Strauss-Albee, D. M., Garcia, J. A., Mandl, J. N. et al., DOCK8 regulates lymphocyte shape integrity for skin antiviral immunity. J. Exp. Med. 2014. 211: 2549–2566.
Tangye, S. G., Pillay, B., Randall, K. L., Avery, D. T., Phan, T. G., Gray, P., Ziegler, J. B. et al., Dedicator of cytokinesis 8-deficient CD4 + T cells are biased to a TH2 effector fate at the expense of TH1 and TH17 cells. J. Allergy Clin. Immunol. 2017. 139: 933–949.
Xu, X., Han, L., Zhao, G., Xue, S., Gao, Y., Xiao, J., Zhang, S. et al., LRCH1 interferes with DOCK8-Cdc42-induced T cell migration and ameliorates experimental autoimmune encephalomyelitis. J. Exp. Med. 2017. 214: 209–226.
Flesch, I. E., Randall, K. L., Hollett, N. A., Di Law, H., Miosge, L. A., Sontani, Y., Goodnow, C. C. et al., Delayed control of herpes simplex virus infection and impaired CD4(+) T-cell migration to the skin in mouse models of DOCK8 deficiency. Immunol. Cell Biol. 2015. 93: 517–521.
Janssen, E., Tohme, M., Hedayat, M., Leick, M., Kumari, S., Ramesh, N., Massaad, M. J. et al., A DOCK8-WIP-WASp complex links T cell receptors to the actin cytoskeleton. J. Clin. Invest. 2016. 126: 3837–3851.
Heink, S., Yogev, N., Garbers, C., Herwerth, M., Aly, L., Gasperi, C., Husterer, V. et al., Trans-presentation of IL-6 by dendritic cells is required for the priming of pathogenic TH17 cells. Nat. Immunol. 2017. 18: 74–85.
Lee, Y., Awasthi, A., Yosef, N., Quintana, F. J., Xiao, S., Peters, A., Wu, C. et al., Induction and molecular signature of pathogenic TH17 cells. Nat. Immunol. 2012. 13: 991–999.
Hirota, K., Yoshitomi, H., Hashimoto, M., Maeda, S., Teradaira, S., Sugimoto, N., Yamaguchi, T. et al., Preferential recruitment of CCR6-expressing Th17 cells to inflamed joints via CCL20 in rheumatoid arthritis and its animal model. J. Exp. Med. 2007. 204: 2803–2812.
Reboldi, A., Coisne, C., Baumjohann, D., Benvenuto, F., Bottinelli, D., Lira, S., Uccelli, A. et al., C-C chemokine receptor 6-regulated entry of TH-17 cells into the CNS through the choroid plexus is required for the initiation of EAE. Nat. Immunol. 2009. 10: 514–523.
Yamazaki, T., Yang, X. O., Chung, Y., Fukunaga, A., Nurieva, R., Pappu, B., Martin-Orozco, N. et al., CCR6 regulates the migration of inflammatory and regulatory T cells. J. Immunol. 2008. 181: 8391–8401.
Villares, R., Cadenas, V., Lozano, M., Almonacid, L., Zaballos, A., Martinez, A. C. and Varona, R., CCR6 regulates EAE pathogenesis by controlling regulatory CD4+ T-cell recruitment to target tissues. Eur. J. Immunol. 2009. 39: 1671–1681.
Loetscher, P., Pellegrino, A., Gong, J. H., Mattioli, I., Loetscher, M., Bardi, G., Baggiolini, M. et al., The ligands of CXC chemokine receptor 3, I-TAC, Mig, and IP10, are natural antagonists for CCR3. J. Biol. Chem. 2001. 276: 2986–2991.
Baron, J. L., Madri, J. A., Ruddle, N. H., Hashim, G. and Janeway, C. A., Jr., Surface expression of alpha 4 integrin by CD4 T cells is required for their entry into brain parenchyma. J. Exp. Med. 1993. 177: 57–68.
Keles, S., Charbonnier, L. M., Kabaleeswaran, V., Reisli, I., Genel, F., Gulez, N., Al-Herz, W. et al., Dedicator of cytokinesis 8 regulates signal transducer and activator of transcription 3 activation and promotes TH17 cell differentiation. J. Allergy Clin. Immunol. 2016. 138: 1384–1394 e1382.
Luci, C., Reynders, A., Ivanov, II, Cognet, C., Chiche, L., Chasson, L., Hardwigsen, J. et al., Influence of the transcription factor RORgammat on the development of NKp46+ cell populations in gut and skin. Nat Immunol 2009. 10: 75–82.
Singh, A. K., Eken, A., Fry, M., Bettelli, E. and Oukka, M., DOCK8 regulates protective immunity by controlling the function and survival of RORgammat+ ILCs. Nat. Commun. 2014. 5: 4603.
Rothhammer, V., Heink, S., Petermann, F., Srivastava, R., Claussen, M. C., Hemmer, B. and Korn, T., Th17 lymphocytes traffic to the central nervous system independently of alpha4 integrin expression during EAE. J. Exp. Med. 2011. 208: 2465–2476.
Brenner, D., Brustle, A., Lin, G. H., Lang, P. A., Duncan, G. S., Knobbe-Thomsen, C. B., St Paul, M. et al., Toso controls encephalitogenic immune responses by dendritic cells and regulatory T cells. Proc. Natl. Acad. Sci. USA 2014. 111: 1060–1065.
Oliaro, J., Van Ham, V., Sacirbegovic, F., Pasam, A., Bomzon, Z., Pham, K., Ludford-Menting, M. J. et al., Asymmetric cell division of T cells upon antigen presentation uses multiple conserved mechanisms. J. Immunol. 2010. 185: 367–375.
Brenner, D., Brechmann, M., Rohling, S., Tapernoux, M., Mock, T., Winter, D., Lehmann, W. D. et al., Phosphorylation of CARMA1 by HPK1 is critical for NF-kappaB activation in T cells. Proc. Natl. Acad. Sci. USA 2009. 106: 14508–14513.
Cossarizza, A., Chang, H.D., Radbruch, A., Andrä, I, Annunziato, F., Bacher, P., Barnaba, V. et al., Guidelines for the use of flow cytometry and cell sorting in immunological studies Eur. J. Immunol. 2017. 47: 1584–1797.