Endoplasmic Reticulum Stress; Humans; Models, Biological; Neoplasms/immunology; Neoplasms/metabolism; Neoplasms/therapy; Tumor Microenvironment/immunology; Immunity; Immunotherapy; Neoplasms; Tumor Microenvironment; Biochemistry, Genetics and Molecular Biology (all); General Biochemistry, Genetics and Molecular Biology; Cancer
Abstract :
[en] Immunotherapy shifted the paradigm of cancer treatment. The clinical approval of immune checkpoint blockade and adoptive cell transfer led to considerable success in several tumor types. However, for a significant number of patients, these therapies have proven ineffective. Growing evidence shows that the metabolic requirements of immune cells in the tumor microenvironment (TME) greatly influence the success of immunotherapy. It is well established that the TME influences energy consumption and metabolic reprogramming of immune cells, often inducing them to become tolerogenic and inefficient in cancer cell eradication. Increasing nutrient availability using pharmacological modulators of metabolism or antibodies targeting specific immune receptors are strategies that support energetic rewiring of immune cells and boost their anti-tumor capacity. In this review, we describe the metabolic features of the diverse immune cell types in the context of the TME and discuss how these immunomodulatory strategies could synergize with immunotherapy to circumvent its current limitations.
Disciplines :
Immunology & infectious disease
Author, co-author :
Guerra, Luana; Experimental & Molecular Immunology, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg, Immunology and Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belvaux, Luxembourg
Bonetti, Lynn; Experimental & Molecular Immunology, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg, Immunology and Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belvaux, Luxembourg
BRENNER, Dirk ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Immunology and Genetics
External co-authors :
no
Language :
English
Title :
Metabolic Modulation of Immunity: A New Concept in Cancer Immunotherapy.
We acknowledge the valuable work of all investigators that we were unable to cite due to space limitations. D.B. is supported by the FNR-ATTRACT program ( A14/BM/7632103 ) and the FNR-CORE ( C18/BM/12691266 ). D.B., L.B., and L.G. are funded by the FNR-PRIDE ( PRIDE/11012546/NEXTIMMUNE ) scheme.
Alves, N.L., Derks, I.A., Berk, E., Spijker, R., van Lier, R.A., Eldering, E., The Noxa/Mcl-1 axis regulates susceptibility to apoptosis under glucose limitation in dividing T cells. Immunity 24 (2006), 703–716.
Amiel, E., Everts, B., Freitas, T.C., King, I.L., Curtis, J.D., Pearce, E.L., Pearce, E.J., Inhibition of mechanistic target of rapamycin promotes dendritic cell activation and enhances therapeutic autologous vaccination in mice. J. Immunol. 189 (2012), 2151–2158.
Amiel, E., Everts, B., Fritz, D., Beauchamp, S., Ge, B., Pearce, E.L., Pearce, E.J., Mechanistic target of rapamycin inhibition extends cellular lifespan in dendritic cells by preserving mitochondrial function. J. Immunol. 193 (2014), 2821–2830.
André, P., Denis, C., Soulas, C., Bourbon-Caillet, C., Lopez, J., Arnoux, T., Bléry, M., Bonnafous, C., Gauthier, L., Morel, A., et al. Anti-NKG2A mAb is a checkpoint inhibitor that promotes anti-tumor immunity by unleashing both T and NK cells. Cell 175 (2018), 1731–1743.e13.
Arts, R.J.W., Plantinga, T.S., Tuit, S., Ulas, T., Heinhuis, B., Tesselaar, M., Sloot, Y., Adema, G.J., Joosten, L.A.B., Smit, J.W.A., et al. Transcriptional and metabolic reprogramming induce an inflammatory phenotype in non-medullary thyroid carcinoma-induced macrophages. OncoImmunology, 5, 2016, e1229725.
Assmann, N., O'Brien, K.L., Donnelly, R.P., Dyck, L., Zaiatz-Bittencourt, V., Loftus, R.M., Heinrich, P., Oefner, P.J., Lynch, L., Gardiner, C.M., et al. Srebp-controlled glucose metabolism is essential for NK cell functional responses. Nat. Immunol. 18 (2017), 1197–1206.
Bachem, A., Makhlouf, C., Binger, K.J., de Souza, D.P., Tull, D., Hochheiser, K., Whitney, P.G., Fernandez-Ruiz, D., Dähling, S., Kastenmüller, W., et al. Microbiota-derived short-chain fatty acids promote the memory potential of antigen-activated CD8+ T cells. Immunity 51 (2019), 285–297.e5.
Berod, L., Friedrich, C., Nandan, A., Freitag, J., Hagemann, S., Harmrolfs, K., Sandouk, A., Hesse, C., Castro, C.N., Bähre, H., et al. De novo fatty acid synthesis controls the fate between regulatory T and T helper 17 cells. Nat. Med. 20 (2014), 1327–1333.
Beury, D.W., Parker, K.H., Nyandjo, M., Sinha, P., Carter, K.A., Ostrand-Rosenberg, S., Cross-talk among myeloid-derived suppressor cells, macrophages, and tumor cells impacts the inflammatory milieu of solid tumors. J. Leukoc. Biol. 96 (2014), 1109–1118.
Bohn, T., Rapp, S., Luther, N., Klein, M., Bruehl, T.-J., Kojima, N., Aranda Lopez, P., Hahlbrock, J., Muth, S., Endo, S., et al. Tumor immunoevasion via acidosis-dependent induction of regulatory tumor-associated macrophages. Nat. Immunol. 19 (2018), 1319–1329.
Böttcher, J.P., Bonavita, E., Chakravarty, P., Blees, H., Cabeza-Cabrerizo, M., Sammicheli, S., Rogers, N.C., Sahai, E., Zelenay, S., Reis E Sousa, C., NK Cells Stimulate Recruitment of cDC1 into the Tumor Microenvironment Promoting Cancer Immune Control. Cell 172 (2018), 1022–1037.e14.
Brand, A., Singer, K., Koehl, G.E., Kolitzus, M., Schoenhammer, G., Thiel, A., Matos, C., Bruss, C., Klobuch, S., Peter, K., et al. LDHA-associated lactic acid production blunts tumor immunosurveillance by T and NK cells. Cell Metab. 24 (2016), 657–671.
Capone, M., Giannarelli, D., Mallardo, D., Madonna, G., Festino, L., Grimaldi, A.M., Vanella, V., Simeone, E., Paone, M., Palmieri, G., et al. Baseline neutrophil-to-lymphocyte ratio (NLR) and derived NLR could predict overall survival in patients with advanced melanoma treated with nivolumab. J. Immunother. Cancer, 6, 2018, 74.
Carmona-Fontaine, C., Deforet, M., Akkari, L., Thompson, C.B., Joyce, J.A., Xavier, J.B., Metabolic origins of spatial organization in the tumor microenvironment. Proc. Natl. Acad. Sci. USA 114 (2017), 2934–2939.
Carpenter, E.L., Mick, R., Rüter, J., Vonderheide, R.H., Activation of human B cells by the agonist CD40 antibody CP-870,893 and augmentation with simultaneous toll-like receptor 9 stimulation. J. Transl. Med., 7, 2009, 93.
Carretero, R., Sektioglu, I.M., Garbi, N., Salgado, O.C., Beckhove, P., Hämmerling, G.J., Eosinophils orchestrate cancer rejection by normalizing tumor vessels and enhancing infiltration of CD8(+) T cells. Nat. Immunol. 16 (2015), 609–617.
Cham, C.M., Driessens, G., O'Keefe, J.P., Gajewski, T.F., Glucose deprivation inhibits multiple key gene expression events and effector functions in CD8+ T cells. Eur. J. Immunol. 38 (2008), 2438–2450.
Chandel, N.S., Maltepe, E., Goldwasser, E., Mathieu, C.E., Simon, M.C., Schumacker, P.T., Mitochondrial reactive oxygen species trigger hypoxia-induced transcription. Proc. Natl. Acad. Sci. USA 95 (1998), 11715–11720.
Chang, C.H., Qiu, J., O'Sullivan, D., Buck, M.D., Noguchi, T., Curtis, J.D., Chen, Q., Gindin, M., Gubin, M.M., van der Windt, G.J., et al. Metabolic competition in the tumor microenvironment is a driver of cancer progression. Cell 162 (2015), 1229–1241.
Choi, B.K., Lee, D.Y., Lee, D.G., Kim, Y.H., Kim, S.H., Oh, H.S., Han, C., Kwon, B.S., 4-1BB signaling activates glucose and fatty acid metabolism to enhance CD8+ T cell proliferation. Cell. Mol. Immunol. 14 (2017), 748–757.
Chowdhury, P.S., Chamoto, K., Kumar, A., Honjo, T., PPAR-induced fatty acid oxidation in T cells increases the number of tumor-reactive CD8+ T cells and facilitates anti-PD-1 therapy. Cancer Immunol. Res. 6 (2018), 1375–1387.
Chun, E., Lavoie, S., Michaud, M., Gallini, C.A., Kim, J., Soucy, G., Odze, R., Glickman, J.N., Garrett, W.S., CCL2 promotes colorectal carcinogenesis by enhancing polymorphonuclear myeloid-derived suppressor cell population and function. Cell Rep. 12 (2015), 244–257.
Clambey, E.T., McNamee, E.N., Westrich, J.A., Glover, L.E., Campbell, E.L., Jedlicka, P., de Zoeten, E.F., Cambier, J.C., Stenmark, K.R., Colgan, S.P., Eltzschig, H.K., Hypoxia-inducible factor-1 alpha-dependent induction of FoxP3 drives regulatory T-cell abundance and function during inflammatory hypoxia of the mucosa. Proc. Natl. Acad. Sci. USA 109 (2012), E2784–E2793.
Coffelt, S.B., Wellenstein, M.D., de Visser, K.E., Neutrophils in cancer: neutral no more. Nat. Rev. Cancer 16 (2016), 431–446.
Cong, J., Wang, X., Zheng, X., Wang, D., Fu, B., Sun, R., Tian, Z., Wei, H., Dysfunction of natural killer cells by FBP1-induced inhibition of glycolysis during lung cancer progression. Cell Metab. 28 (2018), 243–255.e5.
Corzo, C.A., Cotter, M.J., Cheng, P., Cheng, F., Kusmartsev, S., Sotomayor, E., Padhya, T., McCaffrey, T.V., McCaffrey, J.C., Gabrilovich, D.I., Mechanism regulating reactive oxygen species in tumor-induced myeloid-derived suppressor cells. J. Immunol. 182 (2009), 5693–5701.
Cubillos-Ruiz, J.R., Silberman, P.C., Rutkowski, M.R., Chopra, S., Perales-Puchalt, A., Song, M., Zhang, S., Bettigole, S.E., Gupta, D., Holcomb, K., et al. ER stress sensor XBP1 controls anti-tumor immunity by disrupting dendritic cell homeostasis. Cell 161 (2015), 1527–1538.
Dang, E.V., Barbi, J., Yang, H.Y., Jinasena, D., Yu, H., Zheng, Y., Bordman, Z., Fu, J., Kim, Y., Yen, H.R., et al. Control of T(H)17/T(reg) balance by hypoxia-inducible factor 1. Cell 146 (2011), 772–784.
Dao, T.M., Matosevic, S., Immunometabolic responses of natural killer cells to inhibitory tumor microenvironment checkpoints. Immunometabolism, 1, 2019, e190003.
Delgoffe, G.M., Pollizzi, K.N., Waickman, A.T., Heikamp, E., Meyers, D.J., Horton, M.R., Xiao, B., Worley, P.F., Powell, J.D., The kinase mTOR regulates the differentiation of helper T cells through the selective activation of signaling by mTORC1 and mTORC2. Nat. Immunol. 12 (2011), 295–303.
Delyon, J., Mateus, C., Lefeuvre, D., Lanoy, E., Zitvogel, L., Chaput, N., Roy, S., Eggermont, A.M., Routier, E., Robert, C., Experience in daily practice with ipilimumab for the treatment of patients with metastatic melanoma: an early increase in lymphocyte and eosinophil counts is associated with improved survival. Ann. Oncol. 24 (2013), 1697–1703.
Ding, X., Du, H., Yoder, M.C., Yan, C., Critical role of the mTOR pathway in development and function of myeloid-derived suppressor cells in lal-/- mice. Am. J. Pathol. 184 (2014), 397–408.
Divakaruni, A.S., Hsieh, W.Y., Minarrieta, L., Duong, T.N., Kim, K.K.O., Desousa, B.R., Andreyev, A.Y., Bowman, C.E., Caradonna, K., Dranka, B.P., et al. Etomoxir inhibits macrophage polarization by disrupting CoA homeostasis. Cell Metab. 28 (2018), 490–503.e7.
Donnelly, R.P., Loftus, R.M., Keating, S.E., Liou, K.T., Biron, C.A., Gardiner, C.M., Finlay, D.K., mTORC1-dependent metabolic reprogramming is a prerequisite for NK cell effector function. J. Immunol. 193 (2014), 4477–4484.
Doughty, C.A., Bleiman, B.F., Wagner, D.J., Dufort, F.J., Mataraza, J.M., Roberts, M.F., Chiles, T.C., Antigen receptor-mediated changes in glucose metabolism in B lymphocytes: role of phosphatidylinositol 3-kinase signaling in the glycolytic control of growth. Blood 107 (2006), 4458–4465.
Everts, B., Amiel, E., van der Windt, G.J., Freitas, T.C., Chott, R., Yarasheski, K.E., Pearce, E.L., Pearce, E.J., Commitment to glycolysis sustains survival of NO-producing inflammatory dendritic cells. Blood 120 (2012), 1422–1431.
Everts, B., Amiel, E., Huang, S.C., Smith, A.M., Chang, C.H., Lam, W.Y., Redmann, V., Freitas, T.C., Blagih, J., van der Windt, G.J., et al. TLR-driven early glycolytic reprogramming via the kinases TBK1-IKKε supports the anabolic demands of dendritic cell activation. Nat. Immunol. 15 (2014), 323–332.
Fares, C.M., Van Allen, E.M., Drake, C.G., Allison, J.P., Hu-Lieskovan, S., Mechanisms of resistance to immune checkpoint blockade: why does checkpoint inhibitor immunotherapy not work for all patients?. Am. Soc. Clin. Oncol. Educ. Book 39 (2019), 147–164.
Field, C.S., Baixauli, F., Kyle, R.L., Puleston, D.J., Cameron, A.M., Sanin, D.E., Hippen, K.L., Loschi, M., Thangavelu, G., Corrado, M., et al. Mitochondrial integrity regulated by lipid metabolism is a cell-intrinsic checkpoint for Treg suppressive function. Cell Metab. 31 (2020), 422–437.e5.
Franchina, D.G., Grusdat, M., Brenner, D., B-cell metabolic remodeling and cancer. Trends Cancer 4 (2018), 138–150.
Franchina, D.G., He, F., Brenner, D., Survival of the fittest: cancer challenges T cell metabolism. Cancer Lett. 412 (2018), 216–223.
Frumento, G., Rotondo, R., Tonetti, M., Damonte, G., Benatti, U., Ferrara, G.B., Tryptophan-derived catabolites are responsible for inhibition of T and natural killer cell proliferation induced by indoleamine 2,3-dioxygenase. J. Exp. Med. 196 (2002), 459–468.
Gardiner, C.M., NK cell metabolism. J. Leukoc. Biol. 105 (2019), 1235–1242.
Gauci, M.-L., Lanoy, E., Champiat, S., Caramella, C., Ammari, S., Aspeslagh, S., Varga, A., Baldini, C., Bahleda, R., Gazzah, A., et al. Long-term survival in patients responding to anti-PD-1/PD-L1 therapy and disease outcome upon treatment discontinuation. Clin. Cancer Res. 25 (2019), 946–956.
Gautier, E.L., Shay, T., Miller, J., Greter, M., Jakubzick, C., Ivanov, S., Helft, J., Chow, A., Elpek, K.G., Gordonov, S., et al., Immunological Genome Consortium. Gene-expression profiles and transcriptional regulatory pathways that underlie the identity and diversity of mouse tissue macrophages. Nat. Immunol. 13 (2012), 1118–1128.
Geiger, R., Rieckmann, J.C., Wolf, T., Basso, C., Feng, Y., Fuhrer, T., Kogadeeva, M., Picotti, P., Meissner, F., Mann, M., et al. L-arginine modulates T cell metabolism and enhances survival and anti-tumor activity. Cell 167 (2016), 829–842.e13.
Gentles, A.J., Newman, A.M., Liu, C.L., Bratman, S.V., Feng, W., Kim, D., Nair, V.S., Xu, Y., Khuong, A., Hoang, C.D., et al. The prognostic landscape of genes and infiltrating immune cells across human cancers. Nat. Med. 21 (2015), 938–945.
Giovanelli, P., Sandoval, T.A., Cubillos-Ruiz, J.R., Dendritic cell metabolism and function in tumors. Trends Immunol. 40 (2019), 699–718.
Gopalakrishnan, V., Spencer, C.N., Nezi, L., Reuben, A., Andrews, M.C., Karpinets, T.V., Prieto, P.A., Vicente, D., Hoffman, K., Wei, S.C., et al. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science 359 (2018), 97–103.
Gottfried, E., Kunz-Schughart, L.A., Ebner, S., Mueller-Klieser, W., Hoves, S., Andreesen, R., Mackensen, A., Kreutz, M., Tumor-derived lactic acid modulates dendritic cell activation and antigen expression. Blood 107 (2006), 2013–2021.
Groth, C., Hu, X., Weber, R., Fleming, V., Altevogt, P., Utikal, J., Umansky, V., Immunosuppression mediated by myeloid-derived suppressor cells (MDSCs) during tumour progression. Br. J. Cancer 120 (2019), 16–25.
Guak, H., Al Habyan, S., Ma, E.H., Aldossary, H., Al-Masri, M., Won, S.Y., Ying, T., Fixman, E.D., Jones, R.G., McCaffrey, L.M., Krawczyk, C.M., Glycolytic metabolism is essential for CCR7 oligomerization and dendritic cell migration. Nat. Commun., 9, 2018, 2463.
Guri, Y., Nordmann, T.M., Roszik, J., mTOR at the transmitting and receiving ends in tumor immunity. Front. Immunol., 9, 2018, 578.
Haas, R., Smith, J., Rocher-Ros, V., Nadkarni, S., Montero-Melendez, T., D'Acquisto, F., Bland, E.J., Bombardieri, M., Pitzalis, C., Perretti, M., et al. Lactate regulates metabolic and pro-inflammatory circuits in control of T cell migration and effector functions. PLoS Biol., 13, 2015, e1002202.
Halestrap, A.P., The monocarboxylate transporter family--Structure and functional characterization. IUBMB Life 64 (2012), 1–9.
Han, S., Feng, S., Ren, M., Ma, E., Wang, X., Xu, L., Xu, M., Glioma cell-derived placental growth factor induces regulatory B cells. Int. J. Biochem. Cell Biol. 57 (2014), 63–68.
Hanahan, D., Weinberg, R.A., Hallmarks of cancer: the next generation. Cell 144 (2011), 646–674.
Hargadon, K.M., Johnson, C.E., Williams, C.J., Immune checkpoint blockade therapy for cancer: an overview of FDA-approved immune checkpoint inhibitors. Int. Immunopharmacol. 62 (2018), 29–39.
Harmon, C., Robinson, M.W., Hand, F., Almuaili, D., Mentor, K., Houlihan, D.D., Hoti, E., Lynch, L., Geoghegan, J., O'Farrelly, C., Lactate-mediated acidification of tumor microenvironment induces apoptosis of liver-resident NK cells in colorectal liver metastasis. Cancer Immunol. Res. 7 (2019), 335–346.
Harris, I.S., Treloar, A.E., Inoue, S., Sasaki, M., Gorrini, C., Lee, K.C., Yung, K.Y., Brenner, D., Knobbe-Thomsen, C.B., Cox, M.A., et al. Glutathione and thioredoxin antioxidant pathways synergize to drive cancer initiation and progression. Cancer Cell 27 (2015), 211–222.
Hartmann, J., Schüßler-Lenz, M., Bondanza, A., Buchholz, C.J., Clinical development of CAR T cells-challenges and opportunities in translating innovative treatment concepts. EMBO Mol. Med. 9 (2017), 1183–1197.
Herber, D.L., Cao, W., Nefedova, Y., Novitskiy, S.V., Nagaraj, S., Tyurin, V.A., Corzo, A., Cho, H.I., Celis, E., Lennox, B., et al. Lipid accumulation and dendritic cell dysfunction in cancer. Nat. Med. 16 (2010), 880–886.
Ho, P.-C., Bihuniak, J.D., Macintyre, A.N., Staron, M., Liu, X., Amezquita, R., Tsui, Y.C., Cui, G., Micevic, G., Perales, J.C., et al. Phosphoenolpyruvate Is a Metabolic Checkpoint of Anti-tumor T Cell Responses. Cell 162 (2015), 1217–1228.
Holmgaard, R.B., Zamarin, D., Li, Y., Gasmi, B., Munn, D.H., Allison, J.P., Merghoub, T., Wolchok, J.D., Tumor-expressed IDO recruits and activates MDSCs in a Treg-dependent manner. Cell Rep. 13 (2015), 412–424.
Horiuchi, T., Weller, P.F., Expression of vascular endothelial growth factor by human eosinophils: upregulation by granulocyte macrophage colony-stimulating factor and interleukin-5. Am. J. Respir. Cell Mol. Biol. 17 (1997), 70–77.
Hossain, F., Al-Khami, A.A., Wyczechowska, D., Hernandez, C., Zheng, L., Reiss, K., Valle, L.D., Trillo-Tinoco, J., Maj, T., Zou, W., et al. Inhibition of fatty acid oxidation modulates immunosuppressive functions of myeloid-derived suppressor cells and enhances cancer therapies. Cancer Immunol. Res. 3 (2015), 1236–1247.
Hsu, B.E., Tabariès, S., Johnson, R.M., Andrzejewski, S., Senecal, J., Lehuédé, C., Annis, M.G., Ma, E.H., Völs, S., Ramsay, L., et al. Immature low-density neutrophils exhibit metabolic flexibility that facilitates breast cancer liver metastasis. Cell Rep. 27 (2019), 3902–3915.e6.
Hu, W., Wang, G., Huang, D., Sui, M., Xu, Y., Cancer immunotherapy based on natural killer cells: current progress and new opportunities. Front. Immunol., 10, 2019, 1205.
Huang, S., Apasov, S., Koshiba, M., Sitkovsky, M., Role of A2a extracellular adenosine receptor-mediated signaling in adenosine-mediated inhibition of T-cell activation and expansion. Blood 90 (1997), 1600–1610.
Iwakoshi, N.N., Pypaert, M., Glimcher, L.H., The transcription factor XBP-1 is essential for the development and survival of dendritic cells. J. Exp. Med. 204 (2007), 2267–2275.
Jensen, H., Potempa, M., Gotthardt, D., Lanier, L.L., Cutting edge: IL-2-induced expression of the amino acid transporters SLC1A5 and CD98 is a prerequisite for NKG2D-mediated activation of human NK cells. J. Immunol. 199 (2017), 1967–1972.
Kawalekar, O.U., O'Connor, R.S., Fraietta, J.A., Guo, L., McGettigan, S.E., Posey, A.D. Jr., Patel, P.R., Guedan, S., Scholler, J., Keith, B., et al. Distinct signaling of coreceptors regulates specific metabolism pathways and impacts memory development in CAR T cells. Immunity 44 (2016), 380–390.
Keating, S.E., Zaiatz-Bittencourt, V., Loftus, R.M., Keane, C., Brennan, K., Finlay, D.K., Gardiner, C.M., Metabolic reprogramming supports IFN-γ production by CD56bright NK cells. J. Immunol. 196 (2016), 2552–2560.
Keppel, M.P., Saucier, N., Mah, A.Y., Vogel, T.P., Cooper, M.A., Activation-specific metabolic requirements for NK cell IFN-γ production. J. Immunol. 194 (2015), 1954–1962.
Kim, J., DeBerardinis, R.J., Mechanisms and implications of metabolic heterogeneity in cancer. Cell Metab. 30 (2019), 434–446.
Kim, K., Skora, A.D., Li, Z., Liu, Q., Tam, A.J., Blosser, R.L., Diaz, L.A. Jr., Papadopoulos, N., Kinzler, K.W., Vogelstein, B., Zhou, S., Eradication of metastatic mouse cancers resistant to immune checkpoint blockade by suppression of myeloid-derived cells. Proc. Natl. Acad. Sci. USA 111 (2014), 11774–11779.
Kim, S.H., Li, M., Trousil, S., Zhang, Y., Pasca di Magliano, M., Swanson, K.D., Zheng, B., Phenformin inhibits myeloid-derived suppressor cells and enhances the anti-tumor activity of PD-1 blockade in melanoma. J. Invest. Dermatol. 137 (2017), 1740–1748.
Klebanoff, C.A., Gattinoni, L., Palmer, D.C., Muranski, P., Ji, Y., Hinrichs, C.S., Borman, Z.A., Kerkar, S.P., Scott, C.D., Finkelstein, S.E., et al. Determinants of successful CD8+ T-cell adoptive immunotherapy for large established tumors in mice. Clin. Cancer Res. 17 (2011), 5343–5352.
Kratochvill, F., Neale, G., Haverkamp, J.M., Van de Velde, L.A., Smith, A.M., Kawauchi, D., McEvoy, J., Roussel, M.F., Dyer, M.A., Qualls, J.E., Murray, P.J., TNF counterbalances the emergence of M2 tumor macrophages. Cell Rep. 12 (2015), 1902–1914.
Kurniawan, H., Franchina, D.G., Guerra, L., Bonetti, L., -Baguet, L.S., Grusdat, M., Schlicker, L., Hunewald, O., Dostert, C., Merz, M.P., et al. Glutathione restricts serine metabolism to preserve regulatory T cell function. Cell Metab. 31 (2020), 920–936.e7.
Kusmartsev, S., Eruslanov, E., Kübler, H., Tseng, T., Sakai, Y., Su, Z., Kaliberov, S., Heiser, A., Rosser, C., Dahm, P., et al. Oxidative stress regulates expression of VEGFR1 in myeloid cells: link to tumor-induced immune suppression in renal cell carcinoma. J. Immunol. 181 (2008), 346–353.
Largeot, A., Pagano, G., Gonder, S., Moussay, E., Paggetti, J., The B-side of cancer immunity: the underrated tune. Cells, 8, 2019, 449.
Lechner, M.G., Liebertz, D.J., Epstein, A.L., Characterization of cytokine-induced myeloid-derived suppressor cells from normal human peripheral blood mononuclear cells. J. Immunol. 185 (2010), 2273–2284.
Lecot, P., Sarabi, M., Pereira Abrantes, M., Mussard, J., Koenderman, L., Caux, C., Bendriss-Vermare, N., Michallet, M.-C., Neutrophil heterogeneity in cancer: from biology to therapies. Front. Immunol., 10, 2019, 2155.
Lee, K.E., Spata, M., Bayne, L.J., Buza, E.L., Durham, A.C., Allman, D., Vonderheide, R.H., Simon, M.C., Hif1a deletion reveals pro-neoplastic function of B cells in pancreatic neoplasia. Cancer Discov. 6 (2016), 256–269.
Li, Q., Harden, J.L., Anderson, C.D., Egilmez, N.K., Tolerogenic phenotype of IFN-γ-induced IDO+ dendritic cells is maintained via an autocrine IDO-kynurenine/AhR-IDO loop. J. Immunol. 197 (2016), 962–970.
Li, X., Wenes, M., Romero, P., Huang, S.C., Fendt, S.M., Ho, P.C., Navigating metabolic pathways to enhance antitumour immunity and immunotherapy. Nat. Rev. Clin. Oncol. 16 (2019), 425–441.
Lim, W.A., June, C.H., The principles of engineering immune cells to treat cancer. Cell 168 (2017), 724–740.
Lindner, S., Dahlke, K., Sontheimer, K., Hagn, M., Kaltenmeier, C., Barth, T.F., Beyer, T., Reister, F., Fabricius, D., Lotfi, R., et al. Interleukin 21-induced granzyme B-expressing B cells infiltrate tumors and regulate T cells. Cancer Res. 73 (2013), 2468–2479.
Liu, H., Shen, Z., Wang, Z., Wang, X., Zhang, H., Qin, J., Qin, X., Xu, J., Sun, Y., Increased expression of IDO associates with poor postoperative clinical outcome of patients with gastric adenocarcinoma. Sci. Rep., 6, 2016, 21319.
Liu, P.S., Wang, H., Li, X., Chao, T., Teav, T., Christen, S., Di Conza, G., Cheng, W.C., Chou, C.H., Vavakova, M., et al. α-ketoglutarate orchestrates macrophage activation through metabolic and epigenetic reprogramming. Nat. Immunol. 18 (2017), 985–994.
Loftus, R.M., Assmann, N., Kedia-Mehta, N., O'Brien, K.L., Garcia, A., Gillespie, C., Hukelmann, J.L., Oefner, P.J., Lamond, A.I., Gardiner, C.M., et al. Amino acid-dependent cMyc expression is essential for NK cell metabolic and functional responses in mice. Nat. Commun., 9, 2018, 2341.
Lv, Y., Wang, H., Liu, Z., The role of regulatory B cells in patients with acute myeloid leukemia. Med. Sci. Monit. 25 (2019), 3026–3031.
Macintyre, A.N., Gerriets, V.A., Nichols, A.G., Michalek, R.D., Rudolph, M.C., Deoliveira, D., Anderson, S.M., Abel, E.D., Chen, B.J., Hale, L.P., Rathmell, J.C., The glucose transporter Glut1 is selectively essential for CD4 T cell activation and effector function. Cell Metab. 20 (2014), 61–72.
Maj, T., Wang, W., Crespo, J., Zhang, H., Wang, W., Wei, S., Zhao, L., Vatan, L., Shao, I., Szeliga, W., et al. Oxidative stress controls regulatory T cell apoptosis and suppressor activity and PD-L1-blockade resistance in tumor. Nat. Immunol. 18 (2017), 1332–1341.
Mak, T.W., Grusdat, M., Duncan, G.S., Dostert, C., Nonnenmacher, Y., Cox, M., Binsfeld, C., Hao, Z., Brüstle, A., Itsumi, M., et al. Glutathione primes T cell metabolism for inflammation. Immunity 46 (2017), 675–689.
Marçais, A., Cherfils-Vicini, J., Viant, C., Degouve, S., Viel, S., Fenis, A., Rabilloud, J., Mayol, K., Tavares, A., Bienvenu, J., et al. The metabolic checkpoint kinase mTOR is essential for IL-15 signaling during the development and activation of NK cells. Nat. Immunol. 15 (2014), 749–757.
McMahon, G., Weir, M.R., Li, X.C., Mandelbrot, D.A., The evolving role of mTOR inhibition in transplantation tolerance. J. Am. Soc. Nephrol. 22 (2011), 408–415.
Meng, X., Grötsch, B., Luo, Y., Knaup, K.X., Wiesener, M.S., Chen, X.X., Jantsch, J., Fillatreau, S., Schett, G., Bozec, A., Hypoxia-inducible factor-1α is a critical transcription factor for IL-10-producing B cells in autoimmune disease. Nat. Commun., 9, 2018, 251.
Mezrich, J.D., Fechner, J.H., Zhang, X., Johnson, B.P., Burlingham, W.J., Bradfield, C.A., An interaction between kynurenine and the aryl hydrocarbon receptor can generate regulatory T cells. J. Immunol. 185 (2010), 3190–3198.
Michalek, R.D., Gerriets, V.A., Jacobs, S.R., Macintyre, A.N., MacIver, N.J., Mason, E.F., Sullivan, S.A., Nichols, A.G., Rathmell, J.C., Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets. J. Immunol. 186 (2011), 3299–3303.
Michelet, X., Dyck, L., Hogan, A., Loftus, R.M., Duquette, D., Wei, K., Beyaz, S., Tavakkoli, A., Foley, C., Donnelly, R., et al. Metabolic reprogramming of natural killer cells in obesity limits antitumor responses. Nat. Immunol. 19 (2018), 1330–1340.
Miller, J.S., Lanier, L.L., Natural killer cells in cancer immunotherapy. Ann. Rev. Cancer Biol. 3 (2019), 77–103.
Miller, A., Nagy, C., Knapp, B., Laengle, J., Ponweiser, E., Groeger, M., Starkl, P., Bergmann, M., Wagner, O., Haschemi, A., Exploring metabolic configurations of single cells within complex tissue microenvironments. Cell Metab. 26 (2017), 788–800.e6.
Mills, E.L., Kelly, B., Logan, A., Costa, A.S.H., Varma, M., Bryant, C.E., Tourlomousis, P., Däbritz, J.H.M., Gottlieb, E., Latorre, I., et al. Succinate dehydrogenase supports metabolic repurposing of mitochondria to drive inflammatory macrophages. Cell 167 (2016), 457–470.e13.
Mondanelli, G., Bianchi, R., Pallotta, M.T., Orabona, C., Albini, E., Iacono, A., Belladonna, M.L., Vacca, C., Fallarino, F., Macchiarulo, A., et al. A relay pathway between arginine and tryptophan metabolism confers immunosuppressive properties on dendritic cells. Immunity 46 (2017), 233–244.
Morais, R., Zinkewich-Péotti, K., Parent, M., Wang, H., Babai, F., Zollinger, M., Tumor-forming ability in athymic nude mice of human cell lines devoid of mitochondrial DNA. Cancer Res. 54 (1994), 3889–3896.
Munn, D.H., Sharma, M.D., Baban, B., Harding, H.P., Zhang, Y., Ron, D., Mellor, A.L., GCN2 kinase in T cells mediates proliferative arrest and anergy induction in response to indoleamine 2,3-dioxygenase. Immunity 22 (2005), 633–642.
Nakaya, M., Xiao, Y., Zhou, X., Chang, J.H., Chang, M., Cheng, X., Blonska, M., Lin, X., Sun, S.C., Inflammatory T cell responses rely on amino acid transporter ASCT2 facilitation of glutamine uptake and mTORC1 kinase activation. Immunity 40 (2014), 692–705.
Ni, J., Miller, M., Stojanovic, A., Garbi, N., Cerwenka, A., Sustained effector function of IL-12/15/18-preactivated NK cells against established tumors. J. Exp. Med. 209 (2012), 2351–2365.
Noman, M.Z., Desantis, G., Janji, B., Hasmim, M., Karray, S., Dessen, P., Bronte, V., Chouaib, S., PD-L1 is a novel direct target of HIF-1α, and its blockade under hypoxia enhanced MDSC-mediated T cell activation. J. Exp. Med. 211 (2014), 781–790.
O'Neill, L.A.J., Pearce, E.J., Immunometabolism governs dendritic cell and macrophage function. J. Exp. Med. 213 (2016), 15–23.
O'Sullivan, D., Sanin, D.E., Pearce, E.J., Pearce, E.L., Metabolic interventions in the immune response to cancer. Nat. Rev. Immunol. 19 (2019), 324–335.
Ohl, K., Fragoulis, A., Klemm, P., Baumeister, J., Klock, W., Verjans, E., Böll, S., Möllmann, J., Lehrke, M., Costa, I., et al. Nrf2 is a central regulator of metabolic reprogramming of myeloid-derived suppressor cells in steady state and sepsis. Front. Immunol., 9, 2018, 1552.
Ohta, A., Kini, R., Ohta, A., Subramanian, M., Madasu, M., Sitkovsky, M., The development and immunosuppressive functions of CD4(+) CD25(+) FoxP3(+) regulatory T cells are under influence of the adenosine-A2A adenosine receptor pathway. Front. Immunol., 3, 2012, 190.
Opitz, C.A., Litzenburger, U.M., Sahm, F., Ott, M., Tritschler, I., Trump, S., Schumacher, T., Jestaedt, L., Schrenk, D., Weller, M., et al. An endogenous tumour-promoting ligand of the human aryl hydrocarbon receptor. Nature 478 (2011), 197–203.
Osorio, F., Tavernier, S.J., Hoffmann, E., Saeys, Y., Martens, L., Vetters, J., Delrue, I., De Rycke, R., Parthoens, E., Pouliot, P., et al. The unfolded-protein-response sensor IRE-1α regulates the function of CD8α+ dendritic cells. Nat. Immunol. 15 (2014), 248–257.
Parameswaran, R., Ramakrishnan, P., Moreton, S.A., Xia, Z., Hou, Y., Lee, D.A., Gupta, K., deLima, M., Beck, R.C., Wald, D.N., Repression of GSK3 restores NK cell cytotoxicity in AML patients. Nat. Commun., 7, 2016, 11154.
Park, J., Lee, S.E., Hur, J., Hong, E.B., Choi, J.-I., Yang, J.-M., Kim, J.-Y., Kim, Y.-C., Cho, H.-J., Peters, J.M., et al. M-CSF from cancer cells induces fatty acid synthase and PPARβ/δ activation in tumor myeloid cells, leading to tumor progression. Cell Rep. 10 (2015), 1614–1625.
Perez, C.R., De Palma, M., Engineering dendritic cell vaccines to improve cancer immunotherapy. Nat. Commun., 10, 2019, 5408.
Pilipow, K., Scamardella, E., Puccio, S., Gautam, S., De Paoli, F., Mazza, E.M., De Simone, G., Polletti, S., Buccilli, M., Zanon, V., et al. Antioxidant metabolism regulates CD8+ T memory stem cell formation and antitumor immunity. JCI Insight, 3, 2018, e122299.
Pilon-Thomas, S., Kodumudi, K.N., El-Kenawi, A.E., Russell, S., Weber, A.M., Luddy, K., Damaghi, M., Wojtkowiak, J.W., Mulé, J.J., Ibrahim-Hashim, A., Gillies, R.J., Neutralization of tumor acidity improves antitumor responses to immunotherapy. Cancer Res. 76 (2016), 1381–1390.
Porter, L., Toepfner, N., Bashant, K.R., Guck, J., Ashcroft, M., Farahi, N., Chilvers, E.R., Metabolic profiling of human eosinophils. Front. Immunol., 9, 2018, 1404.
Pötzl, J., Roser, D., Bankel, L., Hömberg, N., Geishauser, A., Brenner, C.D., Weigand, M., Röcken, M., Mocikat, R., Reversal of tumor acidosis by systemic buffering reactivates NK cells to express IFN-γ and induces NK cell-dependent lymphoma control without other immunotherapies. Int. J. Cancer 140 (2017), 2125–2133.
Qiu, J., Villa, M., Sanin, D.E., Buck, M.D., O'Sullivan, D., Ching, R., Matsushita, M., Grzes, K.M., Winkler, F., Chang, C.H., et al. Acetate promotes T cell effector function during glucose restriction. Cell Rep. 27 (2019), 2063–2074.e5.
Quintana, A., Schwindling, C., Wenning, A.S., Becherer, U., Rettig, J., Schwarz, E.C., Hoth, M., T cell activation requires mitochondrial translocation to the immunological synapse. Proc. Natl. Acad. Sci. USA 104 (2007), 14418–14423.
Raud, B., Roy, D.G., Divakaruni, A.S., Tarasenko, T.N., Franke, R., Ma, E.H., Samborska, B., Hsieh, W.Y., Wong, A.H., Stüve, P., et al. Etomoxir actions on regulatory and memory T cells are independent of Cpt1a-mediated fatty acid oxidation. Cell Metab. 28 (2018), 504–515.e7.
Reczek, C.R., Chandel, N.S., The two faces of reactive oxygen species in cancer. Ann. Rev. Cancer Biol. 1 (2017), 79–98.
Reichman, H., Karo-Atar, D., Munitz, A., Emerging roles for eosinophils in the tumor microenvironment. Trends Cancer 2 (2016), 664–675.
Renner, K., Bruss, C., Schnell, A., Koehl, G., Becker, H.M., Fante, M., Menevse, A.N., Kauer, N., Blazquez, R., Hacker, L., et al. Restricting glycolysis preserves T cell effector functions and augments checkpoint therapy. Cell Rep. 29 (2019), 135–150.e9.
Rice, C.M., Davies, L.C., Subleski, J.J., Maio, N., Gonzalez-Cotto, M., Andrews, C., Patel, N.L., Palmieri, E.M., Weiss, J.M., Lee, J.-M., et al. Tumour-elicited neutrophils engage mitochondrial metabolism to circumvent nutrient limitations and maintain immune suppression. Nat. Commun., 9, 2018, 5099.
Rodriguez, P.C., Quiceno, D.G., Zabaleta, J., Ortiz, B., Zea, A.H., Piazuelo, M.B., Delgado, A., Correa, P., Brayer, J., Sotomayor, E.M., et al. Arginase I production in the tumor microenvironment by mature myeloid cells inhibits T-cell receptor expression and antigen-specific T-cell responses. Cancer Res. 64 (2004), 5839–5849.
Rosenberg, S.A., Restifo, N.P., Yang, J.C., Morgan, R.A., Dudley, M.E., Adoptive cell transfer: a clinical path to effective cancer immunotherapy. Nat. Rev. Cancer 8 (2008), 299–308.
Schadendorf, D., Hodi, F.S., Robert, C., Weber, J.S., Margolin, K., Hamid, O., Patt, D., Chen, T.T., Berman, D.M., Wolchok, J.D., Pooled analysis of long-term survival data from phase II and phase III trials of ipilimumab in unresectable or metastatic melanoma. J. Clin. Oncol. 33 (2015), 1889–1894.
Scharping, N.E., Menk, A.V., Moreci, R.S., Whetstone, R.D., Dadey, R.E., Watkins, S.C., Ferris, R.L., Delgoffe, G.M., The tumor microenvironment represses T cell mitochondrial biogenesis to drive intratumoral T cell metabolic insufficiency and dysfunction. Immunity 45 (2016), 374–388.
Scharping, N.E., Menk, A.V., Whetstone, R.D., Zeng, X., Delgoffe, G.M., Efficacy of PD-1 blockade is potentiated by metformin-induced reduction of tumor hypoxia. Cancer Immunol. Res. 5 (2017), 9–16.
Schindler, K., Harmankaya, K., Kuk, D., Mangana, J., Michielin, O., Hoeller, C., Dummer, R., Pehamberger, H., Wolchok, J.D., Postow, M.A., Correlation of absolute and relative eosinophil counts with immune-related adverse events in melanoma patients treated with ipilimumab. J. Clin. Oncol., 32, 2014, 9096.
Schioppa, T., Moore, R., Thompson, R.G., Rosser, E.C., Kulbe, H., Nedospasov, S., Mauri, C., Coussens, L.M., Balkwill, F.R., B regulatory cells and the tumor-promoting actions of TNF-α during squamous carcinogenesis. Proc. Natl. Acad. Sci. USA 108 (2011), 10662–10667.
Schlecker, E., Stojanovic, A., Eisen, C., Quack, C., Falk, C.S., Umansky, V., Cerwenka, A., Tumor-infiltrating monocytic myeloid-derived suppressor cells mediate CCR5-dependent recruitment of regulatory T cells favoring tumor growth. J. Immunol. 189 (2012), 5602–5611.
Sena, L.A., Li, S., Jairaman, A., Prakriya, M., Ezponda, T., Hildeman, D.A., Wang, C.R., Schumacker, P.T., Licht, J.D., Perlman, H., et al. Mitochondria are required for antigen-specific T cell activation through reactive oxygen species signaling. Immunity 38 (2013), 225–236.
Sharma, S., Yang, S.C., Zhu, L., Reckamp, K., Gardner, B., Baratelli, F., Huang, M., Batra, R.K., Dubinett, S.M., Tumor cyclooxygenase-2/prostaglandin E2-dependent promotion of FOXP3 expression and CD4+ CD25+ T regulatory cell activities in lung cancer. Cancer Res. 65 (2005), 5211–5220.
Sharma, M.D., Hou, D.Y., Liu, Y., Koni, P.A., Metz, R., Chandler, P., Mellor, A.L., He, Y., Munn, D.H., Indoleamine 2,3-dioxygenase controls conversion of Foxp3+ Tregs to TH17-like cells in tumor-draining lymph nodes. Blood 113 (2009), 6102–6111.
Shi, L.Z., Wang, R., Huang, G., Vogel, P., Neale, G., Green, D.R., Chi, H., HIF1alpha-dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and Treg cells. J. Exp. Med. 208 (2011), 1367–1376.
Shim, H., Dolde, C., Lewis, B.C., Wu, C.-S., Dang, G., Jungmann, R.A., Dalla-Favera, R., Dang, C.V., c-Myc transactivation of LDH-A: implications for tumor metabolism and growth. Proc. Natl. Acad. Sci. USA 94 (1997), 6658–6663.
Sica, A., Strauss, L., Consonni, F.M., Travelli, C., Genazzani, A., Porta, C., Metabolic regulation of suppressive myeloid cells in cancer. Cytokine Growth Factor Rev. 35 (2017), 27–35.
Sinclair, L.V., Rolf, J., Emslie, E., Shi, Y.B., Taylor, P.M., Cantrell, D.A., Control of amino-acid transport by antigen receptors coordinates the metabolic reprogramming essential for T cell differentiation. Nat. Immunol. 14 (2013), 500–508.
Snijdewint, F.G., Kaliński, P., Wierenga, E.A., Bos, J.D., Kapsenberg, M.L., Prostaglandin E2 differentially modulates cytokine secretion profiles of human T helper lymphocytes. J. Immunol. 150 (1993), 5321–5329.
Song, M., Cubillos-Ruiz, J.R., Endoplasmic reticulum stress responses in intratumoral immune cells: implications for cancer immunotherapy. Trends Immunol. 40 (2019), 128–141.
Sonveaux, P., Copetti, T., De Saedeleer, C.J., Végran, F., Verrax, J., Kennedy, K.M., Moon, E.J., Dhup, S., Danhier, P., Frérart, F., et al. Targeting the lactate transporter MCT1 in endothelial cells inhibits lactate-induced HIF-1 activation and tumor angiogenesis. PLoS ONE, 7, 2012, e33418.
Stiff, A., Trikha, P., Mundy-Bosse, B., McMichael, E., Mace, T.A., Benner, B., Kendra, K., Campbell, A., Gautam, S., Abood, D., et al. Nitric oxide production by myeloid-derived suppressor cells plays a role in impairing Fc receptor-mediated natural killer cell function. Clin. Cancer Res. 24 (2018), 1891–1904.
Sukumar, M., Liu, J., Ji, Y., Subramanian, M., Crompton, J.G., Yu, Z., Roychoudhuri, R., Palmer, D.C., Muranski, P., Karoly, E.D., et al. Inhibiting glycolytic metabolism enhances CD8+ T cell memory and antitumor function. J. Clin. Invest. 123 (2013), 4479–4488.
Sun, C., Xu, J., Huang, Q., Huang, M., Wen, H., Zhang, C., Wang, J., Song, J., Zheng, M., Sun, H., et al. High NKG2A expression contributes to NK cell exhaustion and predicts a poor prognosis of patients with liver cancer. OncoImmunology, 6, 2016, e1264562.
Tan, A.S., Baty, J.W., Dong, L.F., Bezawork-Geleta, A., Endaya, B., Goodwin, J., Bajzikova, M., Kovarova, J., Peterka, M., Yan, B., et al. Mitochondrial genome acquisition restores respiratory function and tumorigenic potential of cancer cells without mitochondrial DNA. Cell Metab. 21 (2015), 81–94.
Tanaka, A., Sakaguchi, S., Regulatory T cells in cancer immunotherapy. Cell Res. 27 (2017), 109–118.
Tang, L., Zheng, Y., Melo, M.B., Mabardi, L., Castaño, A.P., Xie, Y.-Q., Li, N., Kudchodkar, S.B., Wong, H.C., Jeng, E.K., et al. Enhancing T cell therapy through TCR-signaling-responsive nanoparticle drug delivery. Nat. Biotechnol. 36 (2018), 707–716.
Templeton, A.J., McNamara, M.G., Šeruga, B., Vera-Badillo, F.E., Aneja, P., Ocaña, A., Leibowitz-Amit, R., Sonpavde, G., Knox, J.J., Tran, B., et al. Prognostic role of neutrophil-to-lymphocyte ratio in solid tumors: a systematic review and meta-analysis. J. Natl. Cancer Inst., 106, 2014, dju124.
Terrén, I., Orrantia, A., Vitallé, J., Zenarruzabeitia, O., Borrego, F., NK cell metabolism and tumor microenvironment. Front. Immunol., 10, 2019, 2278.
Thommen, D.S., Koelzer, V.H., Herzig, P., Roller, A., Trefny, M., Dimeloe, S., Kiialainen, A., Hanhart, J., Schill, C., Hess, C., et al. A transcriptionally and functionally distinct PD-1+ CD8+ T cell pool with predictive potential in non-small-cell lung cancer treated with PD-1 blockade. Nat. Med. 24 (2018), 994–1004.
Triplett, T.A., Garrison, K.C., Marshall, N., Donkor, M., Blazeck, J., Lamb, C., Qerqez, A., Dekker, J.D., Tanno, Y., Lu, W.C., et al. Reversal of indoleamine 2,3-dioxygenase-mediated cancer immune suppression by systemic kynurenine depletion with a therapeutic enzyme. Nat. Biotechnol. 36 (2018), 758–764.
van der Windt, G.J., O'Sullivan, D., Everts, B., Huang, S.C., Buck, M.D., Curtis, J.D., Chang, C.H., Smith, A.M., Ai, T., Faubert, B., et al. CD8 memory T cells have a bioenergetic advantage that underlies their rapid recall ability. Proc. Natl. Acad. Sci. USA 110 (2013), 14336–14341.
Veglia, F., Tyurin, V.A., Mohammadyani, D., Blasi, M., Duperret, E.K., Donthireddy, L., Hashimoto, A., Kapralov, A., Amoscato, A., Angelini, R., et al. Lipid bodies containing oxidatively truncated lipids block antigen cross-presentation by dendritic cells in cancer. Nat. Commun., 8, 2017, 2122.
Végran, F., Boidot, R., Michiels, C., Sonveaux, P., Feron, O., Lactate influx through the endothelial cell monocarboxylate transporter MCT1 supports an NF-κB/IL-8 pathway that drives tumor angiogenesis. Cancer Res. 71 (2011), 2550–2560.
Velásquez, S.Y., Killian, D., Schulte, J., Sticht, C., Thiel, M., Lindner, H.A., Short term hypoxia synergizes with interleukin 15 priming in driving glycolytic gene transcription and supports human natural killer cell activities. J. Biol. Chem. 291 (2016), 12960–12977.
Viel, S., Marçais, A., Guimaraes, F.S., Loftus, R., Rabilloud, J., Grau, M., Degouve, S., Djebali, S., Sanlaville, A., Charrier, E., et al. TGF-β inhibits the activation and functions of NK cells by repressing the mTOR pathway. Sci. Signal., 9, 2016, ra19.
Vigano, S., Alatzoglou, D., Irving, M., Ménétrier-Caux, C., Caux, C., Romero, P., Coukos, G., Targeting adenosine in cancer immunotherapy to enhance T-cell function. Front. Immunol., 10, 2019, 925.
Vitale, I., Manic, G., Coussens, L.M., Kroemer, G., Galluzzi, L., Macrophages and metabolism in the tumor microenvironment. Cell Metab. 30 (2019), 36–50.
Wang, R., Dillon, C.P., Shi, L.Z., Milasta, S., Carter, R., Finkelstein, D., McCormick, L.L., Fitzgerald, P., Chi, H., Munger, J., Green, D.R., The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation. Immunity 35 (2011), 871–882.
Warburg, O., On the origin of cancer cells. Science 123 (1956), 309–314.
Weinberg, F., Ramnath, N., Nagrath, D., Reactive oxygen species in the tumor microenvironment: an overview. Cancers (Basel), 11, 2019, 1191.
Wejksza, K., Lee-Chang, C., Bodogai, M., Bonzo, J., Gonzalez, F.J., Lehrmann, E., Becker, K., Biragyn, A., Cancer-produced metabolites of 5-lipoxygenase induce tumor-evoked regulatory B cells via peroxisome proliferator-activated receptor α. J. Immunol. 190 (2013), 2575–2584.
Wenes, M., Shang, M., Di Matteo, M., Goveia, J., Martín-Pérez, R., Serneels, J., Prenen, H., Ghesquière, B., Carmeliet, P., Mazzone, M., Macrophage metabolism controls tumor blood vessel morphogenesis and metastasis. Cell Metab. 24 (2016), 701–715.
Yan, D., Adeshakin, A.O., Xu, M., Afolabi, L.O., Zhang, G., Chen, Y.H., Wan, X., Lipid metabolic pathways confer the immunosuppressive function of myeloid-derived suppressor cells in tumor. Front. Immunol., 10, 2019, 1399.
Yang, M., Ma, C., Liu, S., Shao, Q., Gao, W., Song, B., Sun, J., Xie, Q., Zhang, Y., Feng, A., et al. HIF-dependent induction of adenosine receptor A2b skews human dendritic cells to a Th2-stimulating phenotype under hypoxia. Immunol. Cell Biol. 88 (2010), 165–171.
Zaiatz-Bittencourt, V., Finlay, D.K., Gardiner, C.M., Canonical TGF-β signaling pathway represses human NK cell metabolism. J. Immunol. 200 (2018), 3934–3941.
Zaynagetdinov, R., Sherrill, T.P., Gleaves, L.A., McLoed, A.G., Saxon, J.A., Habermann, A.C., Connelly, L., Dulek, D., Peebles, R.S. Jr., Fingleton, B., et al. Interleukin-5 facilitates lung metastasis by modulating the immune microenvironment. Cancer Res. 75 (2015), 1624–1634.
Zelenay, S., van der Veen, A.G., Böttcher, J.P., Snelgrove, K.J., Rogers, N., Acton, S.E., Chakravarty, P., Girotti, M.R., Marais, R., Quezada, S.A., et al. Cyclooxygenase-Dependent Tumor Growth through Evasion of Immunity. Cell 162 (2015), 1257–1270.
Zhang, Y., Kurupati, R., Liu, L., Zhou, X.Y., Zhang, G., Hudaihed, A., Filisio, F., Giles-Davis, W., Xu, X., Karakousis, G.C., et al. Enhancing CD8+ T cell fatty acid catabolism within a metabolically challenging tumor microenvironment increases the efficacy of melanoma immunotherapy. Cancer Cell 32 (2017), 377–391.e9.
Zhang, Y.X., Zhao, Y.Y., Shen, J., Sun, X., Liu, Y., Liu, H., Wang, Y., Wang, J., Nanoenabled modulation of acidic tumor microenvironment reverses anergy of infiltrating T cells and potentiates anti-PD-1 therapy. Nano Lett. 19 (2019), 2774–2783.
Zheng, X., Zhang, N., Qian, L., Wang, X., Fan, P., Kuai, J., Lin, S., Liu, C., Jiang, W., Qin, S., et al. CTLA4 blockade promotes vessel normalization in breast tumors via the accumulation of eosinophils. Int. J. Cancer 146 (2020), 1730–1740.
Zhou, X., Su, Y.X., Lao, X.M., Liang, Y.J., Liao, G.Q., CD19(+)IL-10(+) regulatory B cells affect survival of tongue squamous cell carcinoma patients and induce resting CD4(+) T cells to CD4(+)Foxp3(+) regulatory T cells. Oral Oncol. 53 (2016), 27–35.