Article (Scientific journals)
The Lorentzian Lichnerowicz conjecture for real-analytic, three-dimensional manifolds
Frances, Charles; MELNICK, Karin
2023In Journal für die Reine und Angewandte Mathematik, 2023 (803), p. 183 - 218
Peer Reviewed verified by ORBi
 

Files


Full Text
lich3d_rev_may5.pdf
Author preprint (470.38 kB)
Request a copy

All documents in ORBilu are protected by a user license.

Send to



Details



Keywords :
Mathematics (all); differential geometry, conformal geometry, Lorentzian geometry
Abstract :
[en] We prove that, for a compact, 3-dimensional, real-analytic, Lorentzian manifold, if the group of conformal transformations does not preserve any metric in the conformal class, then the metric is conformally flat.
Disciplines :
Mathematics
Author, co-author :
Frances, Charles;  Institut de Recherche Mathématique Avancée, Université de Strasbourg, Strasbourg, France
MELNICK, Karin  ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Mathematics (DMATH)
External co-authors :
yes
Language :
English
Title :
The Lorentzian Lichnerowicz conjecture for real-analytic, three-dimensional manifolds
Publication date :
October 2023
Journal title :
Journal für die Reine und Angewandte Mathematik
ISSN :
0075-4102
eISSN :
1435-5345
Publisher :
Walter de Gruyter GmbH
Volume :
2023
Issue :
803
Pages :
183 - 218
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
National Science Foundation, Joan and Joseph Birman Fellowship for Women Scientists
Funding number :
DMS-2109347
Available on ORBilu :
since 27 November 2023

Statistics


Number of views
64 (3 by Unilu)
Number of downloads
0 (0 by Unilu)

Scopus citations®
 
2
Scopus citations®
without self-citations
2
OpenAlex citations
 
1
WoS citations
 
2

Bibliography


Similar publications



Contact ORBilu