[en] Regulatory T cells (Tregs) are critical for peripheral immune tolerance and homeostasis, and altered Treg behavior is involved in many pathologies, including autoimmunity and cancer. The expression of the transcription factor FoxP3 in Tregs is fundamental to maintaining their stability and immunosuppressive function. Recent studies have highlighted the crucial role that metabolic reprogramming plays in controlling Treg plasticity, stability, and function. In this review, we summarize how the availability and use of various nutrients and metabolites influence Treg metabolic pathways and activity. We also discuss how Treg-intrinsic metabolic programs define and shape their differentiation, FoxP3 expression, and suppressive capacity. Lastly, we explore how manipulating the regulation of Treg metabolism might be exploited in different disease settings to achieve novel immunotherapies.
Disciplines :
Oncology
Author, co-author :
Kurniawan, Henry; Experimental and Molecular Immunology, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg ; Immunology and Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belvaux, Luxembourg
Soriano-Baguet, Leticia; Experimental and Molecular Immunology, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg ; Immunology and Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belvaux, Luxembourg ; Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
BRENNER, Dirk ; University of Luxembourg ; Experimental and Molecular Immunology, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg ; Odense Research Center for Anaphylaxis, Department of Dermatology and Allergy Center, Odense University Hospital, University of Southern Denmark, Odense, Denmark
External co-authors :
no
Language :
English
Title :
Regulatory T cell metabolism at the intersection between autoimmune diseases and cancer.
We acknowledge the valuable work of all investigators that we were unable to cite due to space limitations. The figures were created using Biorender.com. D.B. and H.K. are supported by the FNR-ATTRACT program (A14/BM/7632103) and D.B. by FNR-CORE (C18/BM/12691266). D.B. and L.S.B. are funded by the FNR-PRIDE (PRIDE/11012546/NEXTIMMUNE) scheme.We acknowledge the valuable work of all investigators that we were unable to cite due to space limitations. The figures were created using Biorender.com. D.B. and H.K. are supported by the FNR‐ATTRACT program (A14/BM/7632103) and D.B. by FNR‐CORE (C18/BM/12691266). D.B. and L.S.B. are funded by the FNR‐PRIDE (PRIDE/11012546/NEXTIMMUNE) scheme.
Wing, K. and Sakaguchi, S., Regulatory T cells exert checks and balances on self tolerance and autoimmunity. Nat. Immunol. 2010. 11: 7–13.
Lahl, K., Loddenkemper, C., Drouin, C., Freyer, J., Arnason, J., Eberl, G., Hamann, A. et al., Selective depletion of Foxp3+ regulatory T cells induces a scurfy-like disease. J. Exp. Med. 2007. 204: 57–63.
Shevach, E. M. and Thornton, A. M., tTregs, pTregs, and iTregs: similarities and differences. Immunol. Rev. 2014. 259: 88–102.
Hori, S., Nomura, T. and Sakaguchi, S., Control of regulatory T cell development by the transcription factor Foxp3. Science 2003. 299: 1057–1061.
Deng, G., Song, X., Fujimoto, S., Piccirillo, C. A., Nagai, Y. and Greene, M. I., Foxp3 Post-translational Modifications and Treg Suppressive Activity. Front. Immunol. 2019. 10: 2486.
Dhamne, C., Chung, Y., Alousi, A. M., Cooper, L. J. and Tran, D. Q., Peripheral and thymic foxp3(+) regulatory T cells in search of origin, distinction, and function. Front. Immunol. 2013. 4: 253.
Fontenot, J. D., Gavin, M. A. and Rudensky, A. Y., Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat. Immunol. 2003. 4: 330–336.
Van Gool, F., Nguyen, M. L. T., Mumbach, M. R., Satpathy, A. T., Rosenthal, W. L., Giacometti, S., Le, D. T. et al., A Mutation in the Transcription Factor Foxp3 Drives T Helper 2 Effector Function in Regulatory T Cells. Immunity 2019. 50: 362–377 e366.
Josefowicz, S. Z., Lu, L.-F. and Rudensky, A. Y., Regulatory T Cells: Mechanisms of Differentiation and Function. Ann Rev Immunol 2012. 30: 531–564.
Shi, H. and Chi, H., Metabolic Control of Treg Cell Stability, Plasticity, and Tissue-Specific Heterogeneity. Front. Immunol. 2019. 10: 2716.
Fan, M. Y., Low, J. S., Tanimine, N., Finn, K. K., Priyadharshini, B., Germana, S. K., Kaech, S. M. and Turka, L. A., Differential Roles of IL-2 Signaling in Developing versus Mature Tregs. Cell Rep. 2018. 25: 1204–1213 e1204.
Setiady, Y. Y., Coccia, J. A. and Park, P. U., In vivo depletion of CD4+FOXP3+ Treg cells by the PC61 anti-CD25 monoclonal antibody is mediated by FcgammaRIII+ phagocytes. Eur. J. Immunol. 2010. 40: 780–786.
Zeng, H. and Chi, H., Metabolic control of regulatory T cell development and function. Trends Immunol. 2015. 36: 3–12.
O'Neill, L. A., Kishton, R. J. and Rathmell, J., A guide to immunometabolism for immunologists. Nat. Rev. Immunol. 2016. 16: 553–565.
Michalek, R. D., Gerriets, V. A., Jacobs, S. R., Macintyre, A. N., MacIver, N. J., Mason, E. F., Sullivan, S. A. et al., Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets. J. Immunol. 2011. 186: 3299–3303.
Wang, R., Dillon, C. P., Shi, L. Z., Milasta, S., Carter, R., Finkelstein, D., McCormick, L. L. et al., The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation. Immunity 2011. 35: 871–882.
Sharabi, A. and Tsokos, G. C., T cell metabolism: new insights in systemic lupus erythematosus pathogenesis and therapy. Nat Rev Rheumatol 2020. 16: 100–112.
Galgani, M., De Rosa, V., La Cava, A. and Matarese, G., Role of Metabolism in the Immunobiology of Regulatory T Cells. J. Immunol. 2016. 197: 2567–2575.
Rubtsov, Y. P., Niec, R. E., Josefowicz, S., Li, L., Darce, J., Mathis, D., Benoist, C. et al., Stability of the regulatory T cell lineage in vivo. Science 2010. 329: 1667–1671.
Kastner, L., Dwyer, D. and Qin, F. X., Synergistic effect of IL-6 and IL-4 in driving fate revision of natural Foxp3+ regulatory T cells. J. Immunol. 2010. 185: 5778–5786.
Mucida, D., Park, Y., Kim, G., Turovskaya, O., Scott, I., Kronenberg, M. and Cheroutre, H., Reciprocal TH17 and regulatory T cell differentiation mediated by retinoic acid. Science 2007. 317: 256–260.
Gerriets, V. A., Kishton, R. J., Johnson, M. O., Cohen, S., Siska, P. J., Nichols, A. G., Warmoes, M. O. et al., Foxp3 and Toll-like receptor signaling balance Treg cell anabolic metabolism for suppression. Nat. Immunol. 2016. 17: 1459–1466.
Lu, L., Ma, J., Li, Z., Lan, Q., Chen, M., Liu, Y., Xia, Z. et al., All-trans retinoic acid promotes TGF-beta-induced Tregs via histone modification but not DNA demethylation on Foxp3 gene locus. PLoS One 2011. 6: e24590.
Liu, H., Yao, S., Dann, S. M., Qin, H., Elson, C. O. and Cong, Y., ERK differentially regulates Th17- and Treg-cell development and contributes to the pathogenesis of colitis. Eur. J. Immunol. 2013. 43: 1716–1726.
Hill, J. A., Hall, J. A., Sun, C.-M., Cai, Q., Ghyselinck, N., Chambon, P., Belkaid, Y. et al., Retinoic Acid Enhances Foxp3 Induction Indirectly by Relieving Inhibition from CD4+CD44hi Cells. Immunity 2008. 29: 758–770.
Passerini, L., Barzaghi, F., Curto, R., Sartirana, C., Barera, G., Tucci, F., Albarello, L. et al., Treatment with rapamycin can restore regulatory T-cell function in IPEX patients. J. Allergy Clin. Immunol. 2020. 145: 1262–1271 e1213.
Monti, P., Scirpoli, M., Maffi, P., Piemonti, L., Secchi, A., Bonifacio, E., Roncarolo, M. G. et al., Rapamycin monotherapy in patients with type 1 diabetes modifies CD4+CD25+FOXP3+ regulatory T-cells. Diabetes 2008. 57: 2341–2347.
Lu, L., Lan, Q., Li, Z., Zhou, X., Gu, J., Li, Q., Wang, J. et al., Critical role of all-trans retinoic acid in stabilizing human natural regulatory T cells under inflammatory conditions. Proc. Natl. Acad. Sci. U. S. A. 2014. 111: E3432-3440.
Shen, F., Ross, J. F., Wang, X. and Ratnam, M., Identification of a novel folate receptor, a truncated receptor, and receptor type beta in hematopoietic cells: cDNA cloning, expression, immunoreactivity, and tissue specificity. Biochemistry 1994. 33: 1209–1215.
Kinoshita, M., Kayama, H., Kusu, T., Yamaguchi, T., Kunisawa, J., Kiyono, H., Sakaguchi, S. et al., Dietary folic acid promotes survival of Foxp3+ regulatory T cells in the colon. J. Immunol. 2012. 189: 2869–2878.
Nikolouli, E., Hardtke-Wolenski, M., Hapke, M., Beckstette, M., Geffers, R., Floess, S., Jaeckel, E. et al., Alloantigen-Induced Regulatory T Cells Generated in Presence of Vitamin C Display Enhanced Stability of Foxp3 Expression and Promote Skin Allograft Acceptance. Front. Immunol. 2017. 8: 748.
Oyarce, K., Campos-Mora, M., Gajardo-Carrasco, T. and Pino-Lagos, K., Vitamin C Fosters the In Vivo Differentiation of Peripheral CD4(+) Foxp3(-) T Cells into CD4(+) Foxp3(+) Regulatory T Cells but Impairs Their Ability to Prolong Skin Allograft Survival. Front. Immunol. 2018. 9: 112.
Kasahara, H., Kondo, T., Nakatsukasa, H., Chikuma, S., Ito, M., Ando, M., Kurebayashi, Y. et al., Generation of allo-antigen-specific induced Treg stabilized by vitamin C treatment and its application for prevention of acute graft versus host disease model. International Immunology 2017. 29: 457–469.
Jeffery, L. E., Burke, F., Mura, M., Zheng, Y., Qureshi, O. S., Hewison, M., Walker, L. S. et al., 1,25-Dihydroxyvitamin D3 and IL-2 combine to inhibit T cell production of inflammatory cytokines and promote development of regulatory T cells expressing CTLA-4 and FoxP3. J. Immunol. 2009. 183: 5458–5467.
Gorman, S., Geldenhuys, S., Judge, M., Weeden, C. E., Waithman, J. and Hart, P. H., Dietary Vitamin D Increases Percentages and Function of Regulatory T Cells in the Skin-Draining Lymph Nodes and Suppresses Dermal Inflammation. Journal of Immunology Research 2016. 2016: 1–13.
Terrier, B., Derian, N., Schoindre, Y., Chaara, W., Geri, G., Zahr, N., Mariampillai, K. et al., Restoration of regulatory and effector T cell balance and B cell homeostasis in systemic lupus erythematosus patients through vitamin D supplementation. Arthritis Res. Ther. 2012. 14: R221.
Daniel, C., Sartory, N. A., Zahn, N., Radeke, H. H. and Stein, J. M., Immune modulatory treatment of trinitrobenzene sulfonic acid colitis with calcitriol is associated with a change of a T helper (Th) 1/Th17 to a Th2 and regulatory T cell profile. J. Pharmacol. Exp. Ther. 2008. 324: 23–33.
Chapman, N. M., Boothby, M. R. and Chi, H., Metabolic coordination of T cell quiescence and activation. Nat. Rev. Immunol. 2020. 20: 55–70.
Andrejeva, G. and Rathmell, J. C., Similarities and Distinctions of Cancer and Immune Metabolism in Inflammation and Tumors. Cell Metab. 2017. 26: 49–70.
Warburg, O., On the origin of cancer cells. Science 1956. 123: 309–314.
Warburg, O., Wind, F. and Negelein, E., The Metabolism of Tumors in the Body. J. Gen. Physiol. 1927. 8: 519–530.
Chen, Y., Colello, J., Jarjour, W. and Zheng, S. G., Cellular Metabolic Regulation in the Differentiation and Function of Regulatory T Cells. Cells 2019. 8.
Powell, J. D., Pollizzi, K. N., Heikamp, E. B. and Horton, M. R., Regulation of immune responses by mTOR. Annu. Rev. Immunol. 2012. 30: 39–68.
Delgoffe, G. M., Kole, T. P., Zheng, Y., Zarek, P. E., Matthews, K. L., Xiao, B., Worley, P. F. et al., The mTOR kinase differentially regulates effector and regulatory T cell lineage commitment. Immunity 2009. 30: 832–844.
Zeng, H., Yang, K., Cloer, C., Neale, G., Vogel, P. and Chi, H., mTORC1 couples immune signals and metabolic programming to establish T(reg)-cell function. Nature 2013. 499: 485–490.
Chapman, N. M., Zeng, H., Nguyen, T. M., Wang, Y., Vogel, P., Dhungana, Y., Liu, X. et al., mTOR coordinates transcriptional programs and mitochondrial metabolism of activated Treg subsets to protect tissue homeostasis. Nat. Commun. 2018. 9: 2095.
Kishore, M., Cheung, K. C. P., Fu, H., Bonacina, F., Wang, G., Coe, D., Ward, E. J. et al., Regulatory T Cell Migration Is Dependent on Glucokinase-Mediated Glycolysis. Immunity 2017. 47: 875–889 e810.
Pacella, I. and Piconese, S., Immunometabolic Checkpoints of Treg Dynamics: Adaptation to Microenvironmental Opportunities and Challenges. Front. Immunol. 2019. 10: 1889.
Delgoffe, G. M., Pollizzi, K. N., Waickman, A. T., Heikamp, E., Meyers, D. J., Horton, M. R., Xiao, B. et al., The kinase mTOR regulates the differentiation of helper T cells through the selective activation of signaling by mTORC1 and mTORC2. Nat. Immunol. 2011. 12: 295–303.
Procaccini, C., De Rosa, V., Galgani, M., Abanni, L., Cali, G., Porcellini, A., Carbone, F. et al., An oscillatory switch in mTOR kinase activity sets regulatory T cell responsiveness. Immunity 2010. 33: 929–941.
Park, Y., Jin, H. S., Lopez, J., Elly, C., Kim, G., Murai, M., Kronenberg, M. et al., TSC1 regulates the balance between effector and regulatory T cells. J. Clin. Invest. 2013. 123: 5165–5178.
Apostolidis, S. A., Rodriguez-Rodriguez, N., Suarez-Fueyo, A., Dioufa, N., Ozcan, E., Crispin, J. C., Tsokos, M. G. et al., Phosphatase PP2A is requisite for the function of regulatory T cells. Nat. Immunol. 2016. 17: 556–564.
Huynh, A., DuPage, M., Priyadharshini, B., Sage, P. T., Quiros, J., Borges, C. M., Townamchai, N. et al., Control of PI(3) kinase in Treg cells maintains homeostasis and lineage stability. Nat. Immunol. 2015. 16: 188–196.
Shrestha, S., Yang, K., Guy, C., Vogel, P., Neale, G. and Chi, H., Treg cells require the phosphatase PTEN to restrain TH1 and TFH cell responses. Nat. Immunol. 2015. 16: 178–187.
Gerriets, V. A., Kishton, R. J., Nichols, A. G., Macintyre, A. N., Inoue, M., Ilkayeva, O., Winter, P. S. et al., Metabolic programming and PDHK1 control CD4+ T cell subsets and inflammation. J. Clin. Invest. 2015. 125: 194–207.
Dang, E. V., Barbi, J., Yang, H. Y., Jinasena, D., Yu, H., Zheng, Y., Bordman, Z. et al., Control of T(H)17/T(reg) balance by hypoxia-inducible factor 1. Cell 2011. 146: 772–784.
Angelin, A., Gil-de-Gomez, L., Dahiya, S., Jiao, J., Guo, L., Levine, M. H., Wang, Z. et al., Foxp3 Reprograms T Cell Metabolism to Function in Low-Glucose, High-Lactate Environments. Cell Metab. 2017. 25: 1282–1293 e1287.
Howie, D., Cobbold, S. P., Adams, E., Ten Bokum, A., Necula, A. S., Zhang, W., Huang, H. et al., Foxp3 drives oxidative phosphorylation and protection from lipotoxicity. JCI Insight 2017. 2: e89160.
Csibi, A., Lee, G., Yoon, S. O., Tong, H., Ilter, D., Elia, I., Fendt, S. M. et al., The mTORC1/S6K1 pathway regulates glutamine metabolism through the eIF4B-dependent control of c-Myc translation. Curr. Biol. 2014. 24: 2274–2280.
Weinberg, S. E., Singer, B. D., Steinert, E. M., Martinez, C. A., Mehta, M. M., Martinez-Reyes, I., Gao, P. et al., Mitochondrial complex III is essential for suppressive function of regulatory T cells. Nature 2019. 565: 495–499.
Kurniawan, H., Franchina, D. G., Guerra, L., Bonetti, L., Baguet, L. S., Grusdat, M., Schlicker, L. et al., Glutathione Restricts Serine Metabolism to Preserve Regulatory T Cell Function. Cell Metab. 2020. 31: 920–936 e927.
Ko, C. W., Qu, J., Black, D. D. and Tso, P., Regulation of intestinal lipid metabolism: current concepts and relevance to disease. Nat. Rev. Gastroenterol. Hepatol. 2020. 17: 169–183.
Howie, D., Ten Bokum, A., Necula, A. S., Cobbold, S. P. and Waldmann, H., The Role of Lipid Metabolism in T Lymphocyte Differentiation and Survival. Front. Immunol. 2017. 8: 1949.
Theofilopoulos, A. N., Kono, D. H. and Baccala, R., The multiple pathways to autoimmunity. Nat. Immunol. 2017. 18: 716–724.
Cluxton, D., Petrasca, A., Moran, B. and Fletcher, J. M., Differential Regulation of Human Treg and Th17 Cells by Fatty Acid Synthesis and Glycolysis. Front. Immunol. 2019. 10: 115.
Field, C. S., Baixauli, F., Kyle, R. L., Puleston, D. J., Cameron, A. M., Sanin, D. E., Hippen, K. L. et al., Mitochondrial Integrity Regulated by Lipid Metabolism Is a Cell-Intrinsic Checkpoint for Treg Suppressive Function. Cell Metab. 2020. 31: 422–437 e425.
Raud, B., Roy, D. G., Divakaruni, A. S., Tarasenko, T. N., Franke, R., Ma, E. H., Samborska, B. et al., Etomoxir Actions on Regulatory and Memory T Cells Are Independent of Cpt1a-Mediated Fatty Acid Oxidation. Cell Metab. 2018. 28: 504–515 e507.
Divakaruni, A. S., Hsieh, W. Y., Minarrieta, L., Duong, T. N., Kim, K. K. O., Desousa, B. R., Andreyev, A. Y. et al., Etomoxir Inhibits Macrophage Polarization by Disrupting CoA Homeostasis. Cell Metab. 2018. 28: 490–503 e497.
O'Sullivan, D. and Pearce, E. L., Fatty acid synthesis tips the TH17-Treg cell balance. Nat. Med. 2014. 20: 1235–1236.
Berod, L., Friedrich, C., Nandan, A., Freitag, J., Hagemann, S., Harmrolfs, K., Sandouk, A. et al., De novo fatty acid synthesis controls the fate between regulatory T and T helper 17 cells. Nat. Med. 2014. 20: 1327–1333.
Howie, D., Ten Bokum, A., Cobbold, S. P., Yu, Z., Kessler, B. M. and Waldmann, H., A Novel Role for Triglyceride Metabolism in Foxp3 Expression. Front. Immunol. 2019. 10: 1860.
He, N., Fan, W., Henriquez, B., Yu, R. T., Atkins, A. R., Liddle, C., Zheng, Y. et al., Metabolic control of regulatory T cell (Treg) survival and function by Lkb1. Proc. Natl. Acad. Sci. U. S. A. 2017. 114: 12542–12547.
Yang, K., Blanco, D. B., Neale, G., Vogel, P., Avila, J., Clish, C. B., Wu, C. et al., Homeostatic control of metabolic and functional fitness of Treg cells by LKB1 signalling. Nature 2017. 548: 602–606.
Timilshina, M., You, Z., Lacher, S. M., Acharya, S., Jiang, L., Kang, Y., Kim, J. A. et al., Activation of Mevalonate Pathway via LKB1 Is Essential for Stability of Treg Cells. Cell Rep. 2019. 27: 2948–2961 e2947.
Furusawa, Y., Obata, Y., Fukuda, S., Endo, T. A., Nakato, G., Takahashi, D., Nakanishi, Y. et al., Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 2013. 504: 446–450.
Smith, P. M., Howitt, M. R., Panikov, N., Michaud, M., Gallini, C. A., Bohlooly, Y. M., Glickman, J. N. et al., The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 2013. 341: 569–573.
Cipolletta, D., Feuerer, M., Li, A., Kamei, N., Lee, J., Shoelson, S. E., Benoist, C. et al., PPAR-gamma is a major driver of the accumulation and phenotype of adipose tissue Treg cells. Nature 2012. 486: 549–553.
Bi, X., Li, F., Liu, S., Jin, Y., Zhang, X., Yang, T., Dai, Y. et al., omega-3 polyunsaturated fatty acids ameliorate type 1 diabetes and autoimmunity. J. Clin. Invest. 2017. 127: 1757–1771.
Kim, J. Y., Lim, K., Kim, K. H., Kim, J. H., Choi, J. S. and Shim, S. C., N-3 polyunsaturated fatty acids restore Th17 and Treg balance in collagen antibody-induced arthritis. PLoS One 2018. 13: e0194331.
Hou, Y., Yin, Y. and Wu, G., Dietary essentiality of “nutritionally non-essential amino acids” for animals and humans. Exp. Biol. Med. (Maywood) 2015. 240: 997–1007.
Ren, W., Liu, G., Yin, J., Tan, B., Wu, G., Bazer, F. W., Peng, Y. et al., Amino-acid transporters in T-cell activation and differentiation. Cell Death. Dis. 2017. 8: e2655.
Kanai, Y., Segawa, H., Miyamoto, K., Uchino, H., Takeda, E. and Endou, H., Expression cloning and characterization of a transporter for large neutral amino acids activated by the heavy chain of 4F2 antigen (CD98). J. Biol. Chem. 1998. 273: 23629–23632.
Nicklin, P., Bergman, P., Zhang, B., Triantafellow, E., Wang, H., Nyfeler, B., Yang, H. et al., Bidirectional transport of amino acids regulates mTOR and autophagy. Cell 2009. 136: 521–534.
Bond, P., Regulation of mTORC1 by growth factors, energy status, amino acids and mechanical stimuli at a glance. J Int Soc Sports Nutr 2016. 13.
Ikeda, K., Kinoshita, M., Kayama, H., Nagamori, S., Kongpracha, P., Umemoto, E., Okumura, R. et al., Slc3a2 mediates branched-chain amino-acid-dependent maintenance of regulatory T cells. Cell Rep. 2017. 21: 1824–1838.
Shi, H., Chapman, N. M., Wen, J., Guy, C., Long, L., Dhungana, Y., Rankin, S. et al., Amino acids license kinase mTORC1 activity and Treg cell function via small G proteins Rag and Rheb. Immunity 2019. 51: 1012–1027 e1017.
Yu, H. R., Tsai, C. C., Chang, L. S., Huang, H. C., Cheng, H. H., Wang, J. Y., Sheen, J. M. et al., l-Arginine-dependent epigenetic regulation of interleukin-10, but not transforming growth factor-beta, production by neonatal regulatory T lymphocytes. Front. Immunol. 2017. 8: 487.
Curran, T. A., Jalili, R. B., Farrokhi, A. and Ghahary, A., IDO expressing fibroblasts promote the expansion of antigen specific regulatory T cells. Immunobiology 2014. 219: 17–24.
Carr, E. L., Kelman, A., Wu, G. S., Gopaul, R., Senkevitch, E., Aghvanyan, A., Turay, A. M. and Frauwirth, K. A., Glutamine uptake and metabolism are coordinately regulated by ERK/MAPK during T lymphocyte activation. J. Immunol. 2010. 185: 1037–1044.
Klysz, D., Tai, X., Robert, P. A., Craveiro, M., Cretenet, G., Oburoglu, L., Mongellaz, C. et al., Glutamine-dependent alpha-ketoglutarate production regulates the balance between T helper 1 cell and regulatory T cell generation. Sci. Signal 2015. 8: ra97.
Song, E. K., Yim, J. M., Yim, J. Y., Song, M. Y., Rho, H. W., Yim, S. K., Han, Y. H. et al., Glutamine protects mice from acute graft-versus-host disease (aGVHD). Biochem. Biophys. Res. Commun. 2013. 435: 94–99.
Ye, J., Fan, J., Venneti, S., Wan, Y. W., Pawel, B. R., Zhang, J., Finley, L. W. et al., Serine catabolism regulates mitochondrial redox control during hypoxia. Cancer Discov. 2014. 4: 1406–1417.
Mak, T. W., Grusdat, M., Duncan, G. S., Dostert, C., Nonnenmacher, Y., Cox, M., Binsfeld, C. et al., Glutathione primes T cell metabolism for inflammation. Immunity 2017. 46: 675–689.
Mason, G. M., Lowe, K., Melchiotti, R., Ellis, R., de Rinaldis, E., Peakman, M., Heck, S. et al., Phenotypic complexity of the human regulatory T cell compartment revealed by mass cytometry. J. Immunol. 2015. 195: 2030–2037.
Procaccini, C., Carbone, F., Di Silvestre, D., Brambilla, F., De Rosa, V., Galgani, M., Faicchia, D. et al., The proteomic landscape of human ex vivo regulatory and conventional T cells reveals specific metabolic requirements. Immunity 2016. 44: 712.
De Rosa, V., Galgani, M., Porcellini, A., Colamatteo, A., Santopaolo, M., Zuchegna, C., Romano, A. et al., Glycolysis controls the induction of human regulatory T cells by modulating the expression of FOXP3 exon 2 splicing variants. Nat. Immunol. 2015. 16: 1174–1184.
Miyara, M., Gorochov, G., Ehrenstein, M., Musset, L., Sakaguchi, S. and Amoura, Z., Human FoxP3+ regulatory T cells in systemic autoimmune diseases. Autoimmun. Rev. 2011. 10: 744–755.
Dominguez-Villar, M. and Hafler, D. A., Regulatory T cells in autoimmune disease. Nat. Immunol. 2018. 19: 665–673.
Li, W., Qu, G., Choi, S. C., Cornaby, C., Titov, A., Kanda, N., Teng, X. et al., Targeting T cell activation and lupus autoimmune phenotypes by inhibiting glucose transporters. Front. Immunol. 2019. 10: 833.
Shi, L. Z., Wang, R., Huang, G., Vogel, P., Neale, G., Green, D. R. and Chi, H., HIF1alpha-dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and Treg cells. J. Exp. Med. 2011. 208: 1367–1376.
Patel, C. H. and Powell, J. D., Targeting T cell metabolism to regulate T cell activation, differentiation and function in disease. Curr. Opin. Immunol. 2017. 46: 82–88.
Liu, R. T., Zhang, M., Yang, C. L., Zhang, P., Zhang, N., Du, T., Ge, M. R. et al., Enhanced glycolysis contributes to the pathogenesis of experimental autoimmune neuritis. J Neuroinflammation 2018. 15: 51.
Lee, S. Y., Lee, S. H., Yang, E. J., Kim, E. K., Kim, J. K., Shin, D. Y. and Cho, M. L., Metformin ameliorates inflammatory bowel disease by suppression of the STAT3 signaling pathway and regulation of the between Th17/Treg balance. PLoS One 2015. 10: e0135858.
Sun, Y., Tian, T., Gao, J., Liu, X., Hou, H., Cao, R., Li, B. et al., Metformin ameliorates the development of experimental autoimmune encephalomyelitis by regulating T helper 17 and regulatory T cells in mice. J. Neuroimmunol. 2016. 292: 58–67.
Lee, C. F., Lo, Y. C., Cheng, C. H., Furtmuller, G. J., Oh, B., Andrade-Oliveira, V., Thomas, A. G. et al., Preventing allograft rejection by targeting immune metabolism. Cell Rep. 2015. 13: 760–770.
Berg, J., Tymoczko, J. and Stryer, L., Fatty acids are synthesized and degraded by different pathways. Biochemistry. 5th ed. W. H. Freeman, New York 2002.
Alissafi, T., Kalafati, L., Lazari, M., Filia, A., Kloukina, I., Manifava, M., Lim, J. H. et al., Mitochondrial oxidative damage underlies regulatory T cell defects in autoimmunity. Cell Metab. 2020. 32: P591-604.
Vinay, D. S., Ryan, E. P., Pawelec, G., Talib, W. H., Stagg, J., Elkord, E., Lichtor, T. et al., Immune evasion in cancer: Mechanistic basis and therapeutic strategies. Semin. Cancer Biol. 2015. 35: S185-S198.
Wang, Y. A., Li, X. L., Mo, Y. Z., Fan, C. M., Tang, L., Xiong, F., Guo, C. et al., Effects of tumor metabolic microenvironment on regulatory T cells. Mol. Cancer 2018. 17: 168.
Franchina, D. G., He, F. and Brenner, D., Survival of the fittest: cancer challenges T cell metabolism. Cancer Lett. 2018. 412: 216–223.
Guerra, L., Bonetti, L. and Brenner, D., Metabolic modulation of immunity: a new concept in cancer immunotherapy. Cell Rep. 2020. 32: 107848.
Shang, B., Liu, Y., Jiang, S. J. and Liu, Y., Prognostic value of tumor-infiltrating FoxP3+ regulatory T cells in cancers: a systematic review and meta-analysis. Sci. Rep. 2015. 5: 15179.
Liu, C., Workman, C. J. and Vignali, D. A., Targeting regulatory T cells in tumors. FEBS J. 2016. 283: 2731–2748.
Chao, J. L. and Savage, P. A., Unlocking the complexities of tumor-associated regulatory T cells. J. Immunol. 2018. 200: 415–421.
Ohue, Y. and Nishikawa, H., Regulatory T (Treg) cells in cancer: can Treg cells be a new therapeutic target? Cancer Sci. 2019. 110: 2080–2089.
Rivadeneira, D. B. and Delgoffe, G. M., Antitumor T-cell reconditioning: improving metabolic fitness for optimal cancer immunotherapy. Clinical Cancer Research 2018. 24: 2473–2481.
Pacella, I., Procaccini, C., Focaccetti, C., Miacci, S., Timperi, E., Faicchia, D., Severa, M. et al., Fatty acid metabolism complements glycolysis in the selective regulatory T cell expansion during tumor growth. Proc. Natl. Acad. Sci. U. S. A. 2018. 115: E6546-E6555.
Renner, K., Singer, K., Koehl, G. E., Geissler, E. K., Peter, K., Siska, P. J. and Kreutz, M., Metabolic hallmarks of tumor and immune cells in the tumor microenvironment. Front. Immunol. 2017. 8: 248.
Franchina, D. G., Dostert, C. and Brenner, D., Reactive oxygen species: involvement in T cell signaling and metabolism. Trends Immunol. 2018. 39: 489–502.
Mougiakakos, D., Johansson, C. C. and Kiessling, R., Naturally occurring regulatory T cells show reduced sensitivity toward oxidative stress-induced cell death. Blood 2009. 113: 3542–3545.
Liu, X., Mo, W., Ye, J., Li, L., Zhang, Y., Hsueh, E. C., Hoft, D. F. et al., Regulatory T cells trigger effector T cell DNA damage and senescence caused by metabolic competition. Nat. Commun. 2018. 9: 249.
Curiel, T. J., Coukos, G., Zou, L., Alvarez, X., Cheng, P., Mottram, P., Evdemon-Hogan, M. et al., Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat. Med. 2004. 10: 942–949.
Clambey, E. T., McNamee, E. N., Westrich, J. A., Glover, L. E., Campbell, E. L., Jedlicka, P., de Zoeten, E. F. et al., Hypoxia-inducible factor-1 alpha-dependent induction of FoxP3 drives regulatory T-cell abundance and function during inflammatory hypoxia of the mucosa. Proc. Natl. Acad. Sci. U. S. A. 2012. 109: E2784-2793.
Ben-Shoshan, J., Maysel-Auslender, S., Mor, A., Keren, G. and George, J., Hypoxia controls CD4+CD25+ regulatory T-cell homeostasis via hypoxia-inducible factor-1alpha. Eur. J. Immunol. 2008. 38: 2412–2418.
Hsiao, H. W., Hsu, T. S., Liu, W. H., Hsieh, W. C., Chou, T. F., Wu, Y. J., Jiang, S. T. et al., Deltex1 antagonizes HIF-1alpha and sustains the stability of regulatory T cells in vivo. Nat. Commun. 2015. 6: 6353.
Miska, J., Lee-Chang, C., Rashidi, A., Muroski, M. E., Chang, A. L., Lopez-Rosas, A., Zhang, P. et al., HIF-1alpha Is a Metabolic Switch between Glycolytic-Driven Migration and Oxidative Phosphorylation-Driven Immunosuppression of Tregs in Glioblastoma. Cell Rep. 2019. 27: 226–237 e224.
Pavlova, Natalya N., and Thompson, Craig B., The emerging hallmarks of cancer metabolism. Cell Metab. 2016. 23: 27–47.
Wang, H., Franco, F., Tsui, Y. C., Xie, X., Trefny, M. P., Zappasodi, R., Mohmood, S. R. et al., CD36-mediated metabolic adaptation supports regulatory T cell survival and function in tumors. Nat. Immunol. 2020. 21: 298–308.
McDonnell, E., Crown, S. B., Fox, D. B., Kitir, B., Ilkayeva, O. R., Olsen, C. A., Grimsrud, P. A. et al., Lipids reprogram metabolism to become a major carbon source for histone acetylation. Cell Rep. 2016. 17: 1463–1472.
Opitz, C. A., Litzenburger, U. M., Sahm, F., Ott, M., Tritschler, I., Trump, S., Schumacher, T. et al., An endogenous tumour-promoting ligand of the human aryl hydrocarbon receptor. Nature 2011. 478: 197–203.
Braun, D., Longman, R. S. and Albert, M. L., A two-step induction of indoleamine 2,3 dioxygenase (IDO) activity during dendritic-cell maturation. Blood 2005. 106: 2375–2381.
Platten, M., von Knebel Doeberitz, N., Oezen, I., Wick, W. and Ochs, K., Cancer immunotherapy by targeting IDO1/TDO and their downstream effectors. Front. Immunol. 2014. 5: 673.
Sharma, M. D., Shinde, R., McGaha, T. L., Huang, L., Holmgaard, R. B., Wolchok, J. D., Mautino, M. R. et al., The PTEN pathway in Tregs is a critical driver of the suppressive tumor microenvironment. Sci Adv 2015. 1: e1500845.
Mascanfroni, I. D., Takenaka, M. C., Yeste, A., Patel, B., Wu, Y., Kenison, J. E., Siddiqui, S. et al., Metabolic control of type 1 regulatory T cell differentiation by AHR and HIF1-alpha. Nat. Med. 2015. 21: 638–646.