Statistics and Probability; Statistics, Probability and Uncertainty
Abstract :
[en] A classical characterization result, which can be traced back to Gauss, states that the maximum likelihood estimator (MLE) of the location parameter equals the sample mean for any possible univariate samples of any possible sizes n if and only if the samples are drawn from a Gaussian population. A similar result, in the two-dimensional case, is given in von Mises (1918) for the Fisher-von Mises-Langevin (FVML) distribution, the equivalent of the Gaussian law on the unit circle. Half a century later, Bingham and Mardia (1975) extend the result to FVML distributions on the unit sphere (Formula Presented.), k ≥ 2. In this paper, we present a general MLE characterization theorem for a large subclass of rotationally symmetric distributions on SK-1, k ≥ 2, including the FVML distribution.
Disciplines :
Mathematics
Author, co-author :
Duerinckx, Mitia; Département de Mathématique, Université Libre de Bruxelles, Bruxelles, Belgium
LEY, Christophe ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Mathematics (DMATH) ; E.C.A.R.E.S. and Département de Mathématique, Université Libre de Bruxelles, Bruxelles, Belgium
External co-authors :
yes
Language :
English
Title :
Maximum likelihood characterization of rotationally symmetric distributions on the sphere
Acknowledgement. Christophe Ley thanks the Fonds National de la Recherche Scientifique, Communauté fran¸caise de Belgique, for support via a Mandat de Chargéde Recherche.
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Aczél, J. and Dhombres, J. (1989). Functional equations in several variables with applications to mathematics, information theory and to the natural and social sciences. In Encyclopedia Math. Appl., vol. 31. Cambridge University Press, Cambridge.
Arnold, K.J. (1941). On spherical probability distributions. Ph.D. thesis, Massachusetts Institute of Technology.
Azzalini, A. and Genton, M.G. (2007). On Gauss’s characterization of the normal distribution. Bernoulli, 13, 169–174.
Bingham, M.S. and Mardia, K.V. (1975). Characterizations and applications. In Statistical Distributions for Scientific Work, vol. 3, (G.P. Patil, S. Kotz and J.K. Ord, eds.). Reidel, Dordrecht and Boston, pp. 387–398.
Breitenberger, E. (1963). Analogues of the normal distribution on the circle and the sphere. Biometrika, 50, 81–88.
Chang, T. (2004). Spatial statistics. Statist. Sci., 19, 624–635.
Duerinckx, M., Ley, C. and Swan, Y. (2012). Maximum likelihood characterization of distributions. arXiv:1207.2805.
Fisher, R.A. (1953). Dispersion on a sphere. Proc. R. Soc. Lond. Ser. A, 217, 295–305.
Fisher, N.I. (1985). Spherical medians. J. R. Stat. Soc. Ser. B, 47, 342–348.
Gauss, C.F. (1809). Theoria motus corporum coelestium in sectionibus conicis solem ambientium. Perthes et Besser, Hamburg. English translation by C.H. Davis, reprinted by Dover, New York (1963).
Jones, M.C. and Pewsey, A. (2005). A family of symmetric distributions on the circle. J. Amer. Statist. Assoc., 100, 1422–1428.
Kagan, A.M., Linnik, Y.V. and Rao, C.R. (1973). Characterization problems in mathematical statistics. Wiley, New York.
Langevin, P. (1905). Sur la théorie du magnétisme. J. Phys., 4, 678–693; Magnétisme et théorie des électrons. Ann. Chim. Phys., 5, 70–127.
Ley, C., Swan, Y., Thiam, B. and Verdebout, T. (2013). Optimal R-estimation of a spherical location. Stat. Sinica, 23, to appear.
Mardia, K.V. (1972). Statistics of directional data. Academic Press, London.
Mardia, K.V. (1975a). Statistics of directional data. J. R. Stat. Soc. Ser. B, 37, 349–393.
Mardia, K.V. (1975b). Characterization of directional distributions. In Statistical Distributions for Scientific Work, vol. 3, (G.P. Patil, S. Kotz and J.K. Ord, eds.). Reidel, Dordrecht and Boston, pp. 365–385.
Mardia, K.V. and Jupp, P.E. (2000). Directional statistics. Wiley, Chichester.
Purkayastha, S. (1991). A rotationally symmetric directional distribution: obtained through maximum likelihood characterization. Sankhyā Ser. A, 53, 70–83.
Saw, J.G. (1978). A family of distributions on the m-sphere and some hypothesis tests. Biometrika, 65, 69–73.
Von Mises, R. (1918). Uber die ‘Ganzzahligkeit’ der Atomgewichte und verwandte Fragen. Phys. Z., 19, 490–500.
Watson, G.S. (1982). Distributions on the circle and sphere. J. Appl. Probab., 19, 265–280.
Watson, G.S. (1983). Statistics on spheres. Wiley, New York.
Whittaker, E.T. and Watson, G.N. (1990). A Course in Modern Analysis, 4th edn. Cambridge University Press.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.