Elliptical symmetry; Local asymptotic normality; Maximin tests; Multivariate skewness; Semiparametric inference; Skew-elliptical densities; Statistics and Probability
Abstract :
[en] Although the assumption of elliptical symmetry is quite common in multivariate analysis and widespread in a number of applications, the problem of testing the null hypothesis of ellipticity so far has not been addressed in a fully satisfactory way. Most papers in the literature indeed are dealing with the null hypothesis of elliptical symmetry with specified location and actually address location rather than non-elliptical alternatives. In this paper, we are proposing new classes of testing procedures, both for specified and unspecified location. The backbone of our construction is Le Cam’s asymptotic theory of statistical experiments, and optimality is to be understood locally and asymptotically within the family of generalized skew-elliptical distributions. The tests we are proposing are enjoying all the desirable properties of a “good” test of elliptical symmetry: they have simple asymptotic distributions under the entire null hypothesis of elliptical symmetry with unspecified radial density and shape parameter; they are affine-invariant, computationally fast, intuitively understandable, and not too demanding in terms of moments. While achieving optimality against generalized skew-elliptical alternatives, they remain quite powerful under a much broader class of non-elliptical distributions and significantly outperform the available competitors.
Disciplines :
Mathematics
Author, co-author :
Babić, Slaðana; Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Gent, Belgium ; Vlerick Business School, Gent, Belgium
Gelbgras, Laetitia; Département de Mathématique, Université libre de Bruxelles, Bruxelles, Belgium
Hallin, Marc; ECARES, Département de Mathématique, Université libre de Bruxelles, Bruxelles, Belgium
LEY, Christophe ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Mathematics (DMATH) ; Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Gent, Belgium
External co-authors :
yes
Language :
English
Title :
Optimal tests for elliptical symmetry: Specified and unspecified location
Publication date :
November 2021
Journal title :
Bernoulli
ISSN :
1350-7265
Publisher :
International Statistical Institute
Volume :
27
Issue :
4
Pages :
2189 - 2216
Peer reviewed :
Peer reviewed
Funding text :
Slad¯ana Babić was supported by the PhD Fellow grant 165880 of the Research Foundation-Flanders (FWO).
Azzalini, A. (1985). A class of distributions which includes the normal ones. Scand. J. Stat. 12 171–178. MR0808153
Azzalini, A. and Capitanio, A. (1999). Statistical applications of the multivariate skew normal distribution. J. R. Stat. Soc. Ser. B. Stat. Methodol. 61 579–602. MR1707862 https://doi.org/10.1111/1467-9868.00194
Azzalini, A. and Capitanio, A. (2003). Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t-distribution. J. R. Stat. Soc. Ser. B. Stat. Methodol. 65 367–389. MR1983753 https://doi.org/10.1111/1467-9868.00391
Azzalini, A. and Dalla Valle, A. (1996). The multivariate skew-normal distribution. Biometrika 83 715–726. MR1440039 https://doi.org/10.1093/biomet/83.4.715
Babić, S., Gelbgras, L., Hallin, M. and Ley, C. (2021). Supplement to “Optimal tests for elliptical symmetry: Specified and unspecified location.” https://doi.org/10.3150/20-BEJ1305SUPP
Baringhaus, L. (1991). Testing for spherical symmetry of a multivariate distribution. Ann. Statist. 19 899–917. MR1105851 https://doi.org/10.1214/aos/1176348127
Beran, R. (1979). Testing for ellipsoidal symmetry of a multivariate density. Ann. Statist. 7 150–162. MR0515690
Branco, M.D. and Dey, D.K. (2001). A general class of multivariate skew-elliptical distributions. J. Multivariate Anal. 79 99–113. MR1867257 https://doi.org/10.1006/jmva.2000.1960
Cassart, D. (2007). Optimal tests for symmetry. Ph.D. thesis, Univ. libre de Bruxelles, Brussels.
Cassart, D., Hallin, M. and Paindaveine, D. (2008). Optimal detection of Fechner-asymmetry. J. Statist. Plann. Inference 138 2499–2525. MR2414260 https://doi.org/10.1016/j.jspi.2007.10.011
Diks, C. and Tong, H. (1999). A test for symmetries of multivariate probability distributions. Biometrika 86 605–614. MR1723781 https://doi.org/10.1093/biomet/86.3.605
Dominicy, Y., Ilmonen, P. and Veredas, D. (2017). Multivariate Hill estimators. Int. Stat. Rev. 85 108–142. MR3637738 https://doi.org/10.1111/insr.12120
Dyckerhoff, R., Ley, C. and Paindaveine, D. (2015). Depth-based runs tests for bivariate central symmetry. Ann. Inst. Statist. Math. 67 917–941. MR3390173 https://doi.org/10.1007/s10463-014-0480-y
Genton, M.G., ed. (2004). Skew-Elliptical Distributions and Their Applications: A Journey Beyond Normality. Boca Raton, FL: CRC Press/CRC. MR2156754 https://doi.org/10.1201/9780203492000
Genton, M.G. and Loperfido, N.M.R. (2005). Generalized skew-elliptical distributions and their quadratic forms. Ann. Inst. Statist. Math. 57 389–401. MR2160656 https://doi.org/10.1007/BF02507031
Hallin, M. and Ley, C. (2012). Skew-symmetric distributions and Fisher information – a tale of two densities. Bernoulli 18 747–763. MR2948899 https://doi.org/10.3150/12-BEJ346
Hallin, M. and Ley, C. (2014). Skew-symmetric distributions and Fisher information: The double sin of the skew-normal. Bernoulli 20 1432–1453. MR3217449 https://doi.org/10.3150/13-BEJ528
Hallin, M., Oja, H. and Paindaveine, D. (2006). Semiparametrically efficient rank-based inference for shape. II. Optimal R-estimation of shape. Ann. Statist. 34 2757–2789. MR2329466 https://doi.org/10.1214/ 009053606000000948
Hallin, M. and Paindaveine, D. (2002). Optimal tests for multivariate location based on interdirections and pseudo-Mahalanobis ranks. Ann. Statist. 30 1103–1133. MR1926170 https://doi.org/10.1214/aos/ 1031689019
Hallin, M. and Paindaveine, D. (2002). Optimal procedures based on interdirections and pseudo-Mahalanobis ranks for testing multivariate elliptic white noise against ARMA dependence. Bernoulli 8 787–815. MR1963662
Hallin, M. and Paindaveine, D. (2004). Rank-based optimal tests of the adequacy of an elliptic VARMA model. Ann. Statist. 32 2642–2678. MR2153998 https://doi.org/10.1214/009053604000000724
Hallin, M. and Paindaveine, D. (2004). Multivariate signed-rank tests in vector autoregressive order identification. Statist. Sci. 19 697–711. MR2185591 https://doi.org/10.1214/088342304000000602
Hallin, M. and Paindaveine, D. (2005). Affine-invariant aligned rank tests for the multivariate general linear model with VARMA errors. J. Multivariate Anal. 93 122–163. MR2119768 https://doi.org/10.1016/j.jmva.2004.01.005
Hallin, M. and Paindaveine, D. (2006). Semiparametrically efficient rank-based inference for shape. I. Optimal rank-based tests for sphericity. Ann. Statist. 34 2707–2756. MR2329465 https://doi.org/10.1214/ 009053606000000731
Hallin, M. and Paindaveine, D. (2008). Optimal rank-based tests for homogeneity of scatter. Ann. Statist. 36 1261–1298. MR2418657 https://doi.org/10.1214/07-AOS508
Hallin, M. and Paindaveine, D. (2009). Optimal tests for homogeneity of covariance, scale, and shape. J. Multivariate Anal. 100 422–444. MR2483429 https://doi.org/10.1016/j.jmva.2008.05.010
Hallin, M., Paindaveine, D. and Verdebout, T. (2010). Optimal rank-based testing for principal components. Ann. Statist. 38 3245–3299. MR2766852 https://doi.org/10.1214/10-AOS810
Hallin, M., Paindaveine, D. and Verdebout, T. (2010). Testing for common principal components under heterokurticity. J. Nonparametr. Stat. 22 879–895. MR2738873 https://doi.org/10.1080/10485250903548737
Hallin, M., Paindaveine, D. and Verdebout, T. (2013). Optimal rank-based tests for common principal components. Bernoulli 19 2524–2556. MR3160563 https://doi.org/10.3150/12-BEJ461
Hallin, M., Paindaveine, D. and Verdebout, T. (2014). Efficient R-estimation of principal and common principal components. J. Amer. Statist. Assoc. 109 1071–1083. MR3265681 https://doi.org/10.1080/01621459.2014.880057
Hodgson, D.J., Linton, O. and Vorkink, K. (2002). Testing the capital asset pricing model efficiently under elliptical symmetry: A semiparametric approach. J. Appl. Econometrics 17 617–639.
Huffer, F.W. and Park, C. (2007). A test for elliptical symmetry. J. Multivariate Anal. 98 256–281. MR2301752 https://doi.org/10.1016/j.jmva.2005.09.011
Jones, M.C. and Pewsey, A. (2009). Sinh-arcsinh distributions. Biometrika 96 761–780. MR2564489 https://doi.org/10.1093/biomet/asp053
Koltchinskii, V. and Sakhanenko, L. (2000). Testing for ellipsoidal symmetry of a multivariate distribution. In High Dimensional Probability, II (Seattle, WA, 1999). Progress in Probability 47 493–510. Boston, MA: Birkhäuser. MR1857342
Kreiss, J.-P. (1987). On adaptive estimation in stationary ARMA processes. Ann. Statist. 15 112–133. MR0885727 https://doi.org/10.1214/aos/1176350256
Le Cam, L. and Yang, G.L. (2000). Asymptotics in Statistics: Some Basic Concepts. New York, USA: Springer.
Lehmann, E.L. and Romano, J.P. (2005). Testing Statistical Hypotheses, 3rd ed. Springer Texts in Statistics. New York: Springer. MR2135927
Ley, C. (2020). When the score function is the identity function – a tale of characterizations of the normal distribution. Econom. Stat. To appear.
Ley, C. and Paindaveine, D. (2010). On the singularity of multivariate skew-symmetric models. J. Multivariate Anal. 101 1434–1444. MR2609504 https://doi.org/10.1016/j.jmva.2009.10.008
Li, R.-Z., Fang, K.-T. and Zhu, L.-X. (1997). Some QQ probability plots to test spherical and elliptical symmetry. J. Comput. Graph. Statist. 6 435–450.
Liebscher, E. (2005). A semiparametric density estimator based on elliptical distributions. J. Multivariate Anal. 92 205–225. MR2102252 https://doi.org/10.1016/j.jmva.2003.09.007
Lombardi, M.J. and Veredas, D. (2009). Indirect estimation of elliptical stable distributions. Comput. Statist. Data Anal. 53 2309–2324. MR2665830 https://doi.org/10.1016/j.csda.2008.04.035
Manzotti, A., Pérez, F.J. and Quiroz, A.J. (2002). A statistic for testing the null hypothesis of elliptical symmetry. J. Multivariate Anal. 81 274–285. MR1906381 https://doi.org/10.1006/jmva.2001.2007
Möttönen, J. and Oja, H. (1995). Multivariate spatial sign and rank methods. J. Nonparametr. Stat. 5 201–213. MR1346895 https://doi.org/10.1080/10485259508832643
Paindaveine, D. (2014). Elliptical symmetry. In Encyclopedia of Environmetrics, 2nd ed. (A.H. El-Shaarawi and W. Piegorsch, eds.) 802–807. Chichester, UK: John Wiley & Sons.
Rousseeuw, P.J. (1984). Least median of squares regression. J. Amer. Statist. Assoc. 79 871–880. MR0770281
Rousseeuw, P.J. and Driessen, K.V. (1999). A fast algorithm for the minimum covariance determinant estimator. Technometrics 41 212–223.
Sakhanenko, L. (2008). Testing for ellipsoidal symmetry: A comparison study. Comput. Statist. Data Anal. 53 565–581. MR2649110 https://doi.org/10.1016/j.csda.2008.08.029
Schott, J.R. (2002). Testing for elliptical symmetry in covariance-matrix-based analyses. Statist. Probab. Lett. 60 395–404. MR1947179 https://doi.org/10.1016/S0167-7152(02)00306-1
Serfling, R.J. (2006). Multivariate symmetry and asymmetry. In Encyclopedia of Statistical Sciences, 2nd ed. (S. Kotz, N. Balakrishnan, C.B. Read and B. Vidakovic, eds.) 8 5338–5345. Wiley Online Library.
Tyler, D.E. (1987). A distribution-free M-estimator of multivariate scatter. Ann. Statist. 15 234–251. MR0885734 https://doi.org/10.1214/aos/1176350263
Um, Y. and Randles, R.H. (1998). Nonparametric tests for the multivariate multi-sample location problem. Statist. Sinica 8 801–812. MR1651509
Vogel, D. and Fried, R. (2011). Elliptical graphical modelling. Biometrika 98 935–951. MR2860334 https://doi.org/10.1093/biomet/asr037
Wraith, D. and Forbes, F. (2015). Location and scale mixtures of Gaussians with flexible tail behaviour: Properties, inference and application to multivariate clustering. Comput. Statist. Data Anal. 90 61–73. MR3354829 https://doi.org/10.1016/j.csda.2015.04.008
Zhu, L.-X. and Neuhaus, G. (2000). Nonparametric Monte Carlo tests for multivariate distributions. Biometrika 87 919–928. MR1813984 https://doi.org/10.1093/biomet/87.4.919
Zhu, L.-X. and Neuhaus, G. (2003). Conditional tests for elliptical symmetry. J. Multivariate Anal. 84 284–298. MR1965223 https://doi.org/10.1016/S0047-259X(02)00036-2