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Abstract: Although the assumption of elliptical symmetry is quite com-
mon in multivariate analysis and widespread in a number of applications,
the problem of testing the null hypothesis of ellipticity so far has not been
addressed in a fully satisfactory way. Most of the literature in the area
indeed addresses the null hypothesis of elliptical symmetry with specified
location and actually addresses location rather than non-elliptical alterna-
tives. In this paper, we are proposing new classes of testing procedures, both
for specified and unspecified location. The backbone of our construction is
Le Cam’s asymptotic theory of statistical experiments, and optimality is
to be understood locally and asymptotically within the family of general-
ized skew-elliptical distributions. The tests we are proposing are meeting
all the desired properties of a“good” test of elliptical symmetry: they have a
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simple asymptotic distribution under the entire null hypothesis of elliptical
symmetry with unspecified radial density and shape parameter; they are
affine-invariant, computationally fast, intuitively understandable, and not

too demanding in terms of moments. While achieving optimality against
generalized skew-elliptical alternatives, they remain quite powerful under a
much broader class of non-elliptical distributions and significantly outper-
form the available competitors.

MSC 2010 subject classifications: Primary 62H15, 62H10.
Keywords and phrases: Elliptical symmetry, Local asymptotic normal-
ity, Maximin tests, Multivariate skewness, Semiparametric inference, Skew-
elliptical densities..

1. Introduction

1.1. The ubiquitous assumption of elliptical symmetry

Elliptical symmetry is a fundamental structural assumption in multivariate
analysis and econometrics. It has been popularized in the 1970’s as a natu-
ral extension of the (overly restrictive) multinormal assumption. Since then,
most multivariate analysis procedures have been extended under elliptical sym-
metry with unspecified and sometimes possibly heavy-tailed radial density
(see below for a definition): one- and K-sample location and shape problems
([50, 19, 24, 18, 25, 26]), serial dependence and time series ([20, 21, 22]), lin-
ear models with VARMA errors ([23]), one- and K-sample principal component
problems ([27, 28, 29, 30]), to cite but a few. Most tests proposed in those ref-
erences are either pseudo-Gaussian or based on variations of Mahalanobis ranks
and signs, interdirections, etc. Elliptical densities also are considered in capi-
tal asset pricing models [31], semiparametric density estimation [38], graphical
models [51], multivariate tail estimation [11], and many other areas.

Let X1, . . . ,Xn denote a sample of n i.i.d. d-dimensional observations. A d-
dimensional random vector X is said to be elliptically symmetric about some
location parameter θθθ ∈ R

d if its density f is of the form

x 7→ f(x;θθθ,ΣΣΣ, f) = cd,f |ΣΣΣ|−1/2f
(

‖ΣΣΣ−1/2(x − θθθ)‖
)
, x ∈ R

d, (1.1)

where ΣΣΣ ∈ Sd (the class of symmetric positive definite real d × d matrices) is
a scatter parameter, f : R

+
0 → R

+ is an a.e. strictly positive function called
radial density, and cd,f is a normalizing constant depending on f and the di-
mension d. Well-known instances are the multivariate normal, Student t and
power-exponential distributions. The family of elliptical distributions has sev-
eral appealing properties. For instance, it is closed under affine transformations,
and its marginal and conditional distributions are also elliptically symmetric:
see [42] for details. A salient feature is the stochastic representation of elliptical
variables: an elliptically symmetric random vector X is conveniently represented
as

X =d θθθ + ρΛΛΛU(r), (1.2)
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where =d stands for equality in distribution, ΛΛΛ ∈ R
d×r has rank r ≤ d and is such

that ΛΛΛΛΛΛ′ = ΣΣΣ, U(r) is an r-dimensional random vector uniformly distributed
over the unit hypersphere, and ρ is a nonnegative random variable independent
of U(r). Letting µℓ,f :=

∫∞

0 rℓf(r)dr, the density of ρ is

r 7→ f̃d(r) := µ−1
d−1,fr

d−1f(r), r > 0. (1.3)

The existence of this density thus requires µd−1,f to be finite, and X admits finite
moments of order α > 0 if and only if µd+α−1,f < ∞. Inference in elliptically
symmetric distributions has been abundantly studied: see [42] for a survey.

1.2. Testing for elliptical symmetry

Considering the omnipresence of the assumption of elliptical symmetry, it is of
primary importance to be able to test whether that assumption actually holds
true, and various tests have been proposed in the literature for this problem. We
briefly mention the most popular of them, along with their respective pitfalls;
later on, we will focus more closely on those used in our comparative Monte
Carlo study (Section 5). We also mention tests for spherical symmetry, a special
case of elliptical symmetry corresponding to µµµ = 0 and ΣΣΣ = Id, the d×d identity
matrix. These tests in principle can be turned into elliptical symmetry tests by
standardizing the data via Σ̂ΣΣ−1/2(Xi −θ̂θθ) where θ̂θθ and Σ̂ΣΣ are location and scatter
estimators.

(i) Beran [6] introduces a test based on marginal signs and ranks. That test is
neither distribution-free nor affine-invariant; moreover, there are no prac-
tical guidelines to the choice of the basis functions involved in the test
statistic.

(ii) Baringhaus [5] proposes a Cramér-von Mises type test for spherical sym-
metry based on the independence between norm and direction. It assumes
the location parameter to be known and its asymptotic distribution is not
simple to use. Dyckerhoff et al. [12] have shown by simulations that this
test can be used as a test for elliptical symmetry in dimension 2.

(iii) Koltchinskii and Sakhanenko [34] consider bootstrap-type tests based on
a class of functions closed under orthogonal transformations. Their tests
have no known asymptotic distribution, which is why a bootstrap proce-
dure is required to get the critical values.

(iv) Manzotti et al. [40] develop a test based on spherical harmonics to test

whether the standardized vectors Σ̂ΣΣ−1/2(Xi − θ̂θθ)/||Σ̂ΣΣ−1/2(Xi − θ̂θθ)|| are
uniformly distributed on the unit sphere. The test is computationally de-
manding and requires moments of order 4.

(v) Schott [46] builds a Wald-type test to compare the sample fourth-order
moments with the expected theoretical ones under elliptical symmetry.
Being based on fourth-order moments, the test is very simple to use but
requires moments of order 8. Moreover, it has very low power against
several alternatives.
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(vi) Huffer and Park [32] propose a Pearson chi-square type test with multi-
dimensional cells. Its asymptotic distribution exists only in case of nor-
mality, otherwise bootstrap techniques are required.

(vii) Cassart [8] and Cassart et al. [9] construct a pseudo-Gaussian test that is
most efficient against a multivariate form of Fechner-type asymmetry. The
test requires finite moments of order 4.

Tests based on Monte Carlo simulations can be found in Diks and Tong [10] and
Zhu and Neuhaus [54]; Li, Fang and Zhu [37] recur to graphical methods and
Zhu and Neuhaus [55] build conditional tests. We refer the reader to Serfling
[47] and Sakhanenko [45] for extensive reviews and performance comparisons.

1.3. Goal and organization of the paper

Despite the practical importance of the problem and the many proposals made
in the literature, all tests for elliptical symmetry are suffering from some serious
drawbacks. None of them, except for Cassart [8], is based on efficiency argu-
ments; and, to the best of our knowledge, none of them has been implemented
in R.

This paper is filling this gap by building tests for elliptical symmetry that
are optimal against the very popular class of generalized skew-elliptical distribu-
tions which we define more precisely in Section 2.1. It should be clear, however,
that we never require the actual density of the observations to belong to that
class, the choice of which is made because it encompasses many proposed skew
distributions from the literature (see, e.g., Genton [14]). The R-code is available
on request and an R-package under preparation.

The tests we are proposing are meeting all the desired properties of a “good”
test of elliptical symmetry: they have simple asymptotic distributions under
the entire null hypothesis of elliptical symmetry with unspecified radial density
and shape parameter; they are affine-invariant, computationally fast, intuitively
understandable, and not too demanding in terms of moments. The latter prop-
erty is particularly important when dealing with possibly heavy-tailed data as
is often the case in a financial context. All our tests are devised for specified
and, most importantly, unspecified location parameter. The latter indeed is the
“genuine” problem here, as specified-location tests for ellipticity typically run
into major problems—see Section 5.5 and the empirical illustration in Section 6.

The approach we are adopting thus combines optimality and robustness con-
cerns (distribution-freeness with respect to radial densities and minimal moment
assumptions). The backbone of our construction is Le Cam’s asymptotic theory
of statistical experiments, and optimality is to be understood in the local asymp-
totic sense (against local generalized skew-elliptical deviations from ellipticity).
Under each scenario (specified and unspecified location), we first build optimal
parametric tests by assuming a given elliptical distribution. Then we make these
tests valid under the entire semiparametric family of elliptically symmetric dis-
tributions, while preserving their (parametric) optimality. As we shall see, under
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specified location, the optimal parametric test statistics do not involve the ra-
dial density, hence have all the same expression which consequently is uniformly
optimal across radial densities—a rather rare phenomenon, which does not hold
in other problems involving elliptical densities. When the location is unspecified,
this uniform optimality property gets lost, but we still obtain very simple and
fast-to-compute test statistics that significantly outperform their competitors
and do not require estimating the actual density, as is often the case. A detailed
comparative study of the finite-sample performances of our tests is conducted
in Section 5 and demonstrates the power of our procedures.

The rest of the paper is organized as follows. In Section 2, we describe the
family of generalized skew-elliptical distributions and state some mild conditions
on the radial density f which are required in order to establish uniform local
asymptotic normality (ULAN) under given f . In Section 3, we derive, for given
f , the locally and asymptotically optimal tests for symmetry about a specified
location θθθ. These tests are parametric, and valid under the known radial den-
sity f only. We turn them into semiparametric tests that remain valid under a
broad class of radial densities and, as already mentioned, also are uniformly op-
timal against alternatives involving the same class of densities. Section 4 deals
with the unspecified location case, for which again we derive parametrically
locally and asymptotically optimal tests, which we turn into semiparametric
ones, the properties of which we provide under the null and contiguous al-
ternatives. Asymptotic relative efficiencies with respect to the aforementioned
pseudo-Gaussian test of Cassart [8] are calculated in Section 4.3. In Section 5,
we conduct a Monte Carlo simulation study of the finite-sample performances
of the proposed tests and their main competitors. Section 5.5 stresses the all
too often overlooked pitfalls of specified-location methods. A real-data analysis
is carried out in Section 6 and conclusions are provided in Section 7. Technical
proofs are concentrated in the Appendix.

2. Generalized skew-elliptical families and Uniform Local
Asymptotic Normality (ULAN)

2.1. Generalized skew-elliptical distributions

As mentioned in the Introduction, our goal is to propose efficient tests against
a family of densities representative of a broad class of skewed densities. The
family of generalized skew-elliptical distributions ([15]) is an ideal candidate for
this role.

Let us assume that the radial density f in (1.1) belongs to

F :=

{
f : R+

0 → R
+ : f(r) > 0 a.e. and µd−1;f :=

∫ ∞

0

rd−1f(r)dr < ∞
}
.

It is clear from (1.2) that ρ and ΣΣΣ are not separately identifiable, and we therefore
impose a further identification constraint:

f ∈ F1 :=

{
f ∈ F : µ−1

d−1;f

∫

R+

rd+1f(r)dr = d

}
; (2.1)
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Under this constraint, ρ has finite variance and Cov[X] = ΣΣΣ, which fully iden-
tifies the scatter matrix ΣΣΣ. While imposing the existence of finite second-order
moments, (2.1) does not imply any loss of generality, as second-order moments
are needed anyway (see Section 2.3) to have finite Fisher information for skew-
ness. It will be required in all statements involving ULAN (optimality, local
powers, etc.), but is not necessary for statements made under the null hypothe-
sis of ellipticity (mainly, the asymptotic size of a test and its validity). Gaussian
densities clearly satisfy (2.1), but the Student ones do not, and need to be
rescaled.

The generalized skew-elliptical alternatives we are interested in belong to the
class of Azzalini-type distributions. That class contains all generalizations of the
famous scalar skew-normal distribution introduced by Azzalini [1] with density
function x 7→ 2φ(x)Φ(λx), x ∈ R, where φ and Φ stand for the standard nor-
mal density and distribution functions, respectively, and λ ∈ R is a skewness
parameter. The idea underpinning the definition of the skew-normal consists in
perturbating or modulating a symmetric kernel, here the normal, by multiply-
ing it with a skewing function, here Φ(λx). Its multivariate generalization was
introduced in Azzalini and Dalla Valle [4] by replacing the scalar normal density
with the d-variate normal. Azzalini and Capitanio [2] and Branco and Dey [7]
in turn extended the multivariate skew-normal into skew-elliptical distributions
based on elliptically symmetric kernels. Azzalini and Capitanio [3] established a
link between the distinct constructions of skew-elliptical distributions, extending
them into a broader class of skewed distributions very similar to the generalized
skew-elliptical distributions defined by Genton and Loperfido [15], with pdfs of
the form

x 7→ f(x;θθθ,ΣΣΣ,λλλ, f) (2.2)

:= 2 cd,f |ΣΣΣ|−1/2f(‖ΣΣΣ−1/2(x − θθθ)‖)Π(λλλ′ΣΣΣ−1/2(x − θθθ)), x ∈ R
d,

where θθθ, ΣΣΣ, cd,f , and f are defined as in (1.1); the skewing function Π
has values in [0, 1] and satisfies Π(−r) = 1 − Π(r) for r ∈ R; λλλ ∈ R

d

plays the role of a skewness parameter. The density (2.2) thus re-
sults from perturbing the elliptically symmetric kernel f(x;θθθ,ΣΣΣ, f)

into 2f(x;θθθ,ΣΣΣ, f)Π(λλλ′ΣΣΣ−1/2(x − θθθ)) by multiplying it with a general skewing
function Π(·); clearly, the original symmetric version is retrieved for λλλ = 0.
Typical choices for Π are univariate distribution functions with symmetric den-
sities, such as the normal or Student ones; see the monograph by Genton [14].
We opted for this class of skew alternatives because of its popularity and its
ability to closely approximate a large variety of skewed distributions.

2.2. Notation and some definitions

Let X1, . . . ,Xn be i.i.d. with density (2.2). Denote by P
(n)
θθθ, ΣΣΣ, λλλ;f,Π the joint dis-

tribution of (X1, . . . ,Xn) which, in case λλλ = 0, we simply write as P
(n)
θθθ, ΣΣΣ, 0;f .
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Any couple (f,Π) then induces a parametric location-scatter-skewness model

P
(n)
f,Π :=

{
P

(n)
θθθ, ΣΣΣ, λλλ;f,Π : θθθ ∈ R

d,ΣΣΣ ∈ Sd,λλλ ∈ R
d
}
.

We are interested in testing H0 : λλλ = 000 against H1 : λλλ 6= 000 in (2.2), in the
presence of a variety of unspecified nuisances: Π and/or θθθ and/or ΣΣΣ and/or f
... Depending on the case, the problem is either parametric or semiparametric.
The four types of testing problems we are considering are

(a) (specified f and specified θθθ)

H
(n)
0;f,θθθ :=

⋃
ΣΣΣ∈Sd

P
(n)
θθθ, ΣΣΣ, 0;f versus H

(n)
1;f,Π,θθθ :=

⋃
ΣΣΣ∈Sd, λλλ6=0

P
(n)
θθθ, ΣΣΣ, λλλ;f ,Π,

(b) (specified f and unspecified θθθ)

H
(n)
0;f :=

⋃
θθθ∈Rd, ΣΣΣ∈Sd

P
(n)
θθθ, ΣΣΣ, 0;f versus H

(n)
1;f,Π =

⋃
θθθ∈Rd, ΣΣΣ∈Sd, λλλ6=0

P
(n)
θθθ, ΣΣΣ, λλλ;f,Π,

(c) (unspecified f and specified θθθ)

H
(n)
0;θθθ :=

⋃
f∈F1, ΣΣΣ∈Sd

P
(n)
θθθ, ΣΣΣ, 0;f versus H

(n)
1;Π,θθθ :=

⋃
f∈F1, ΣΣΣ∈Sd, λλλ6=0

P
(n)
θθθ, ΣΣΣ, λλλ;f,Π, and

(d) (unspecified f and unspecified θθθ)

H
(n)
0 :=

⋃
f∈F1, θθθ∈Rd, ΣΣΣ∈Sd

P
(n)
θθθ, ΣΣΣ, 0;fversus H

(n)
1;Π :=

⋃
f∈F1, θθθ∈Rd, ΣΣΣ∈Sd,λλλ6=0

P
(n)
θθθ, ΣΣΣ, λλλ;f,Π;

the skewing function Π and the scatter ΣΣΣ throughout remain unspecified.
For all i = 1, . . . , n, denote by di(θθθ,ΣΣΣ) := ‖ΣΣΣ−1/2(Xi − θθθ)‖ the Mahalanobis

distance of Xi to θθθ and by Ui(θθθ,ΣΣΣ) := ΣΣΣ−1/2(Xi − θθθ)/di(θθθ,ΣΣΣ) its multivariate
sign in the metric ΣΣΣ. Under elliptical symmetry, those signs are uniformly dis-
tributed on the unit hypersphere of R

d whereas the radial quantities di(θθθ,ΣΣΣ)
have common density f̃d, see (1.3). Any square root of ΣΣΣ can be used in the
previous definitions, but we throughout denote by ΣΣΣ1/2 the unique symmetric
positive definite one.

Let S be a d × d symmetric matrix. We throughout use the classical vecS
notation for the d2-vector obtained by stacking the columns of S on top of each
other and write vechS for the d(d+ 1)/2-dimensional vector stacking its upper-
triangular elements. We then denote by Pd the (d(d + 1)/2) × d2 matrix such
that P′

d(vechS) = vecS. Write S⊗2 for the Kronecker product S ⊗ S. Finally,
denoting by ei the ith vector of the canonical basis of R

d, define the d2 × d2

commutation matrix Kd :=
∑d

i,j=1(eie
′
j) ⊗ (eje′

i) and the d2 × d2 projection

matrix Jd :=
∑d

i,j=1(eie
′
j) ⊗ (eie

′
j) = (vecId)(vecId)′.

2.3. Uniform Local Asymptotic Normality (ULAN)

The backbone of our construction of efficient tests in the subsequent sections

is the ULAN property, at λλλ = 0, of the parametric model P
(n)
f,Π. This ULAN

property requires some further regularity conditions on f . Let (Ω,Bd
Ω, λ) be a

measure space, where λ is a measure on the open subset Ω ⊆ R
d equipped

with its Borel σ-field Bd
Ω. Denote by L2(Ω, λ) the space of measurable func-

tions h : Ω → R such that
∫

Ω[h(x)]2dλ(x) < ∞, by L2(R+
0 , µj) the space of
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square-integrable functions with respect to the Lebesgue measure with weight rj

over R+
0 , and by L2(R, νj) the space of square-integrable functions with respect

to the Lebesgue measure with weight erj over R. We say that g ∈ L2(Ω, λ)
admits a weak partial derivative Ti with respect to the ith variable iff

∫

Ω

g(x)∂iϕ(x)dx = −
∫

Ω

Ti(x)ϕ(x)dx

for any function ϕ ∈ C∞
0 (Ω), i.e. for any infinitely differentiable (in the classical

sense) compactly supported function ϕ on Ω. If Ti exists for all i, the gradient
T := (T1, . . . , Td) is also called the derivative of g in the sense of distributions in
L2(Ω, λ). If, in addition, T ∈ L2(Ω, λ), then g belongs to W 1,2(Ω, λ), the Sobolev
space of order 1 on L2(Ω, λ). This space is a Banach space when equipped with
the norm

‖g‖W 1,2(Ω,λ) := (‖g‖2
L2(Ω,λ) +

d∑

i=1

‖Ti‖2
L2(Ω,λ))

1/2.

In particular, we will denote by L2(Ω) and W 1,2(Ω) the case where λ is the
Lebesgue measure on Ω.

With this in hand, let us state the regularity assumptions we need for ULAN.
Assumption (A1) The mapping r 7→ f1/2(r) belongs to W 1,2(R0, µd−1).

Define ϕf (r) := −2(f1/2)′(r)/f1/2(r), where (f1/2)′ stands for the weak deriva-
tive of f1/2 in L2(R0, µd−1). Assumption (A1) ensures finiteness of the Fisher
information for location

Id,f := cd,f

∫

Rd

ϕ2
f (‖x‖)f(‖x‖)dx.

Assumption (A2) The mapping r 7→ f
1/2
exp (r) := f1/2(er) belongs

to W 1,2(R0, νd).

Letting ψf (r) := −2r−1
(
f

1/2
exp

)′

(log r)/f1/2(r), where (f
1/2
exp )′ stands for the

weak derivative of f
1/2
exp in L2(R0, νd), Assumption (A2) ensures finiteness of the

Fisher information for scatter

Jd,f := cd,f

∫

Rd

‖x‖2ψ2
f (‖x‖)f(‖x‖)dx.

Now, if we assume the radial density f to be continuously differentiable, then ϕf

and ψf both coincide with −ḟ /f where ḟ is the classical (strong) derivative of
f .

Note that (2.1) is sufficient for the finiteness of the Fisher information for
skewness (see Theorem 2.1 below), which only requires finite moments of order
2.

Finally, let ϑϑϑ := (θθθ′, (vechΣΣΣ)′,λλλ′)′ and ϑϑϑ000 := (θθθ′, (vechΣΣΣ)′,000′)′. We are now

ready to state the ULAN property of the family P
(n)
f,Π in the vicinity of symmetry.
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Theorem 2.1. Let f ∈ F1. Suppose that Assumptions (A1) and (A2) hold, and
that the skewing function Π is continuously differentiable at 0, with derivative

Π̇(0) 6= 0. Then, the family P
(n)
f,Π is ULAN at ϑϑϑ0 with respect to θθθ, ΣΣΣ and λλλ, with

central sequence

∆∆∆f (ϑϑϑ000) =




∆∆∆f ;1(ϑϑϑ000)

∆∆∆f ;2(ϑϑϑ000)

∆∆∆3(ϑϑϑ000)




:=




n−1/2
n∑

i=1

ϕf (di(θθθ,ΣΣΣ))ΣΣΣ−1/2Ui(θθθ,ΣΣΣ)

1

2
n−1/2Pd(ΣΣΣ⊗2)−1/2

n∑

i=1

vec
(
ψf (di(θθθ,ΣΣΣ))di(θθθ,ΣΣΣ)Ui(θθθ,ΣΣΣ)U

′

i(θθθ,ΣΣΣ) − Id

)

2n−1/2Π̇(0)

n∑

i=1

di(θθθ,ΣΣΣ)Ui(θθθ,ΣΣΣ)




and Fisher information matrix

ΓΓΓf (ϑϑϑ000) :=




ΓΓΓf ;11(ϑϑϑ000) 000 ΓΓΓf ;13(ϑϑϑ000)
000 ΓΓΓf ;22(ϑϑϑ000) 000

ΓΓΓf ;13(ϑϑϑ000) 000 ΓΓΓf ;33(ϑϑϑ000)


 , (2.3)

where ΓΓΓf ;11(ϑϑϑ000) :=
1

d
Id,fΣΣΣ−1, ΓΓΓf ;13(ϑϑϑ000) := 2Π̇(0)ΣΣΣ−1/2, ΓΓΓf ;33(ϑϑϑ000) := 4(Π̇(0))2Id,

and ΓΓΓf ;22(ϑϑϑ000) :=
1

4
Pd(ΣΣΣ⊗2)−1/2

[
Jd,f

d(d+ 2)
(Id2 + Kd + Jd) − Jd

]
(ΣΣΣ⊗2)−1/2P′

d.

More precisely, for any sequence ϑϑϑ000,n = (θθθ
′

n, (vechΣΣΣn)′,000′)′, where θθθn − θθθ
and ΣΣΣn − ΣΣΣ are O(n−1/2), and for any bounded sequence τττ (n) of the

form ((t(n))′, (vechH(n))′, (ℓ(n))′)′ = ((τττ
(n)
1 )′, (τττ

(n)
2 )′, (τττ

(n)
3 )′)′ ∈ R

2d+d(d+1)/2,

L
(n)

ϑϑϑ000,n+n−1/2τττ (n)/ϑϑϑ000,n;f
:= log



dP

(n)

ϑϑϑ000,n+n−1/2τττ(n);f,Π

dP
(n)
ϑϑϑ000,n;f




= (τττ (n))′∆∆∆f (ϑϑϑ000,n) − 1

2
(τττ (n))′ΓΓΓf (ϑϑϑ000)τττ (n) + oP(1)

and
∆∆∆f (ϑϑϑ000,n)

D−→ N2d+d(d+1)/2(000,ΓΓΓf (ϑϑϑ000))

under P
(n)
ϑϑϑ000,n;f as n → ∞.

See Appendix A for the proof.

Note that the central sequence for skewness ∆∆∆3(ϑϑϑ000) does not depend on f ;
this, as we shall see, has strong implications on optimality properties.
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An immediate consequence of the ULAN property is the asymptotic linearity,

as n → ∞, of the central sequence ∆∆∆f under P
(n)
ϑϑϑ0;f :

∆∆∆f (ϑϑϑ0 + n−1/2τττ (n)) − ∆∆∆f (ϑϑϑ0) = −ΓΓΓf (ϑϑϑ000)τττ (n) + oP(1). (2.4)

This property classically plays a key role in the handling of nuisance parame-
ters. Denote by θ̂θθ(n) and Σ̂ΣΣ(n) sequences of estimators of θθθ and ΣΣΣ, respectively,
satisfying the following conditions.

Assumption (B) For any f ∈ F1 and ϑϑϑ0, under P
(n)
ϑϑϑ0;f , as n → ∞, θ̂θθ(n)

and Σ̂ΣΣ(n) (i) are root-n consistent: n1/2(θ̂θθ(n) −θθθ) and n1/2(Σ̂ΣΣ(n) −ΣΣΣ) are OP(1),

and (ii) are locally asymptotically discrete: the number of possible values of θ̂θθ(n)

and vechΣ̂ΣΣ(n) in any sequence of O(n−1/2) balls centered around θθθ and vechΣΣΣ,
respectively, is uniformly bounded as n → ∞.

This assumption, in combination with Lemma 4.4 of Kreiss [35], entails

∆∆∆f (θ̂θθ(n), Σ̂ΣΣ(n),0) − ∆∆∆f (θθθ,ΣΣΣ,0)

= −ΓΓΓf

(
ϑϑϑ000)n1/2((θ̂θθ(n)′, (vechΣ̂ΣΣ(n))′,0′

)′ −ϑϑϑ0) + oP(1)(2.5)

under P
(n)
ϑϑϑ0;f as n → ∞. It should be noted that Assumption B(ii) is a purely

technical requirement, with little practical implications (for fixed sample size,
any estimator indeed can be considered part of a locally asymptotically discrete
sequence: see Yang and Le Cam [53]).

In practice, it is desirable to restrict to affine-equivariant estimators: we will
assume that θ̂θθ(n) and Σ̂ΣΣ(n) also satisfy

θ̂θθ(n)(AX1 + b, . . . ,AXn + b) = Aθ̂θθ(n)(X1, . . . ,Xn) + b

and
Σ̂ΣΣ(n)(AX1 + b, . . . ,AXn + b) = AΣ̂ΣΣ(n)(X1, . . . ,Xn)A′

for any d×d matrix A and any d-vector b. Under this natural requirement, our
test statistics will enjoy affine-invariance. In the sequel, the lighter notation θ̂θθ,
Σ̂ΣΣ will be adopted.

We conclude this section on ULAN by noting the block-diagonal structure
of the Fisher information matrix, implying that the ΣΣΣ- and (θθθ,λλλ)-parts of the
central sequence are asymptotically independent.

3. Optimal parametric and semiparametric tests: specified θθθ

Fix θθθ ∈ R
d. ULAN and the convergence of local sequences of experiments to a

Gaussian shift experiment imply that a locally asymptotically optimal paramet-
ric test for H0;f,θθθ against H1;f,Π,θθθ can be based on a quadratic form involving
the λλλ-part ∆∆∆3(ϑϑϑ000) of the central sequence. Of course, the nuisance scatter pa-
rameter ΣΣΣ needs to be estimated. The block-diagonal structure of the Fisher
information matrix, combined with (2.5) allows for substituting, without any
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loss of power, any Σ̂ΣΣ satisfying Assumption (B) for the unknown ΣΣΣ. Thus, un-

like Rao score/Lagrange multiplier tests or likelihood ratio tests, where Σ̂ΣΣ has
to be the MLE, we can accommodate various estimators and privilege compu-
tational convenience or robustness, or avoid higher-order moment assumptions.
In the sequel, we are opting for Tyler [49]’s estimator of scatter (shape). Denote
by T the unique (for n > d(d− 1)) d× d upper-triangular matrix with positive
diagonal elements and determinant equal to one satisfying

1

n

n∑

i=1

(
T(Xi − θθθ)

‖T(Xi − θθθ)‖

)(
T(Xi − θθθ)

‖T(Xi − θθθ)‖

)′

=
1

d
Id.

This matrix T is such that the covariance structure of
(

T(X1 − θθθ)

‖T(X1 − θθθ)‖ , . . . ,
T(Xn − θθθ)

‖T(Xn − θθθ)‖

)

is that of an i.i.d. sample with uniform distribution over the unit sphere in R
d.

Tyler’s estimator of shape is then (TT′)−1 which we turn into a scatter estimator
in accordance with the integration condition in the definition of F1.

Another potential estimator of ΣΣΣ is the minimum covariance determinant
(MCD) estimator ([43],[44]). Both Tyler’s and the MCD estimator are affine-
invariant.

Letting ϑ̂ϑϑ0 := (θθθ′, (vechΣ̂ΣΣ)′,000′)′ for some estimator Σ̂ΣΣ satisfying Assump-

tion (B), denote by φ
(n)
θθθ;f the test rejecting the null hypothesis H0;f,θθθ whenever

Q
(n)
θθθ;f := (∆∆∆3(ϑ̂ϑϑ0))′(ΓΓΓf ;33(ϑϑϑ0))−1∆∆∆3(ϑ̂ϑϑ0)

exceeds the α-upper quantile χ2
d;1−α of the chi-squared distribution with d

degrees of freedom. This asymptotic null distribution easily follows from the
asymptotic normality of ∆∆∆3(ϑϑϑ0) and the fact that ∆∆∆3(ϑ̂ϑϑ0) − ∆∆∆3(ϑϑϑ0) is oP(1)

under H0;f,θθθ as n → ∞. The test φ
(n)
θθθ;f is locally and asymptotically optimal for

H0;f,θθθ against H1;f,Π,θθθ (see Theorem 3.1 for its precise optimality properties).
Elementary algebra yields

Q
(n)
θθθ;f = n(X̄ − θθθ0)′Σ̂ΣΣ−1(X̄ − θθθ0) =: Q

(n)
θθθ .

This expression is particularly striking, as it does not depend on the underly-
ing radial density f . In other words, every parametric specified-f experiment

leads to the same optimal test statistic Q
(n)
θθθ , so that φ

(n)
θθθ := φ

(n)
θθθ;f is uniformly

(in f) optimal in the semiparametric unspecified-f experiment. This is an ex-
tremely rare feature. Another remarkable fact is that the skewing function Π

plays no role in Q
(n)
θθθ , which means that optimality holds uniformly against all

skew-elliptical alternatives. Finally, the alert reader has noticed the familiar

form of Q
(n)
θθθ , which is nothing else but the classical Hotelling test statistic for

location. Optimal testing for ellipticity with specified location thus, somewhat
disappointingly, mostly boils down to testing for location.

The following theorem summarizes the properties of φ
(n)
θθθ .
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Theorem 3.1. Let f ∈ F1 and suppose that Assumptions (A1), (A2), and (B)
hold, and that the skewing function Π is continuously differentiable at 0,
with Π̇(0) 6= 0. Then,

(i) under H0;θθθ, Q
(n)
θθθ

D→ χ2
d as n → ∞, so that φ

(n)
θθθ has asymptotic level α;

(ii) under
⋃

ΣΣΣ∈Sd
P

(n)

θθθ,ΣΣΣ,n−1/2τττ
(n)
3 ;g,Π

with g ∈ F1, Q
(n)
θθθ is asymptotically

non-central chi-square with d degrees of freedom and non-centrality parame-

ter 4(Π̇(0))2τττ ′
3τττ3, where τττ3 = limn→∞ τττ

(n)
3

1;

(iii) the test φ
(n)
θθθ is locally and asymptotically maximin, at asymptotic level α,

for testing H0;θθθ against H1;Π,θθθ =
⋃

f∈F1, ΣΣΣ∈Sd, λλλ∈Rd\{0} P
(n)
θθθ, ΣΣΣ, λλλ;f,Π. The test is

thus uniformly (in f) optimal against any type of generalized skew-elliptical
alternative as defined in (2.2).

The proof is provided in Appendix B. The explicit expression

1 − Fχ
′2
d

(χ2
d;1−α, 4(Π̇(0))2τττ ′

3τττ3) = Qd/2

(
2|Π̇(0)|(τττ ′

3τττ3)1/2, (χ2
d;1−α)1/2

)

of the asymptotic power of φ
(n)
θθθ against local alternatives of the

form
⋃

ΣΣΣ∈Sd
P

(n)

θθθ,ΣΣΣ,n−1/2τττ
(n)
3 ;g,Π

readily follows from part (ii) of the theorem (Fχ
′2
d

stands for the distribution function of the non-central chi-square distribution
with d degrees of freedom, QM (·, ·) for the Marcum Q-function).

4. Optimal parametric and semiparametric tests: unspecified θθθ

In some applications, maintaining a specified value of θθθ (often, θθθ = 0) under the
alternative does make sense. The test described in Theorem 3.1 then is a genuine
test of ellipticity. In most cases, however, that assumption of a specified center is
impossible or unrealistic—or just unclear: what is the “center” of an asymmetric
distribution? The same test then no longer qualifies as a test of ellipticity. More-
over, as shown in Section 5, the impacts of location shift and non-ellipticity may
cancel each other, with the consequence that obviously non-elliptical shifted dis-
tributions remain completely undetected (see Sections 5.5 and 6 for numerical
evidence). Therefore, let us consider the case of an unspecified θθθ.

Instances of estimators of θθθ that satisfy Assumption (B) and turn out to be
useful in this section are the spatial median of Möttönen and Oja [41] or the
(fast) MCD-based location estimator (Rousseeuw and Driessen [44]). Again, we
shall first construct Le Cam efficient parametric tests (Section 4.1) and then
turn them into semiparametrically efficient tests (Section 4.2).

Inspection of the Fisher information matrix (2.3) reveals that the scores for
location and skewness are not asymptotically independent. Estimating the un-
known location thus has a cost in terms of power against ellipticity. The family

1Here and in the sequel, several asymptotic results are established for sequences of pertur-

bations of the form n−1/2τττ
(n)
3 such that τττ

(n)
3 converges to τττ3. Clearly, since τττ

(n)
3 is bounded,

converging subsequences always exist; the asymptotic statement then holds along any such
subsequence. This is tacitly assumed below whenever defining τττ3 as the limit of a sequence

τττ
(n)
3 .
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of generalized skew-elliptical distributions, moreover, is infamous for yielding
singular Fisher information matrices in the vicinity of symmetry, which is pre-
cisely the situation we are interested in. In presence of such a singularity, the
scores for skewness and location are perfectly colinear, with the consequence that
the corresponding α-level optimal test for symmetry is the trivial test φ = α.
Fortunately, this extreme situation only occurs at the multinormal distribution
([36], [16], [17]). Testing for multinormality against generalized skew-normality
thus requires a special treatment (reparametrization and ULAN with slower
contiguity rates), which is beyond the scope of this paper.

4.1. Optimal parametric tests: unspecified θθθ

Fix a radial density f ∈ F1 that is not Gaussian. The impact on the central
sequence for skewness ∆∆∆3(ϑϑϑ0) of a root-n perturbation of θθθ is classically neu-
tralized by projecting ∆∆∆3(ϑϑϑ0) onto the subspace orthogonal to ∆∆∆f ;1(ϑϑϑ0) in the
metric of the information matrix, yielding the f -efficient central sequence for
skewness

∆∆∆†
f ;3(ϑϑϑ0) := ∆∆∆3(ϑϑϑ0) − ΓΓΓf ;13(ϑϑϑ0)ΓΓΓ−1

f ;11(ϑϑϑ0)∆∆∆f ;1(ϑϑϑ0).

Clearly, this new central sequence remains orthogonal to ∆∆∆f ;2(ϑϑϑ0). This or-
thogonality to ∆∆∆f ;1 and ∆∆∆f ;2, combined with (2.5), allows us to replace the

unknown parameters ΣΣΣ and θθθ with any consistent estimators Σ̂ΣΣ and θ̂θθ satisfying
Assumption (B) without altering the asymptotic behavior of ∆∆∆†

f ;3 under the

null and under local alternatives. Under H0;f , ∆∆∆†
f ;3(ϑϑϑ0), hence also ∆∆∆†

f ;3(ϑ̂ϑϑ0),
is asymptotically normal with mean zero and covariance (the f -efficient Fisher
information for skewness)

ΓΓΓ†
f ;33(ϑϑϑ0) := ΓΓΓf ;33(ϑϑϑ0) − ΓΓΓf ;13(ϑϑϑ0)ΓΓΓ−1

f ;11(ϑϑϑ0)ΓΓΓf ;13(ϑϑϑ0).

Note that this matrix would be the zero matrix if f were Gaussian. The resulting
optimal f -parametric test statistic then is of the form

Q
(n)
f := (∆∆∆

†
f ;3(ϑ̂ϑϑ0))′

(
ΓΓΓ†

f ;33(ϑ̂ϑϑ0)
)−1

∆∆∆†
f ;3(ϑ̂ϑϑ0)

=
Id,f

(Id,f − d)

1

n

n∑

i,j=1

[
di(θ̂θθ, Σ̂ΣΣ) − d

Id,f
ϕf (di(θ̂θθ, Σ̂ΣΣ))

]

×
[
dj(θ̂θθ, Σ̂ΣΣ) − d

Id,f
ϕf (dj(θ̂θθ, Σ̂ΣΣ))

]
Ui(θ̂θθ, Σ̂ΣΣ))′Uj(θ̂θθ, Σ̂ΣΣ),

and the corresponding test φ
(n)
f rejects H0;f at asymptotic level α whenever Q

(n)
f

exceeds the chi-square quantile χ2
d;1−α. The next theorem, the proof of which

we give in Appendix C, summarizes the asymptotic properties of this test.

Theorem 4.1. Let f ∈ F1 and suppose that Assumptions (A1), (A2), and (B)
hold, and that the skewing function Π is continuously differentiable at 0, with
derivative Π̇(0) 6= 0. Then,
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(i) under H0;f , Q
(n)
f

D→ χ2
d as n → ∞, so that φ

(n)
f has asymptotic level α;

(ii) under
⋃

θθθ∈Rd

⋃
ΣΣΣ∈Sd

P
(n)

θθθ,ΣΣΣ,n−1/2τττ
(n)
3 ;f,Π

, Q
(n)
f is asymptotically non-cen-

tral chi-square with d degrees of freedom and non-centrality parame-

ter 4(Π̇(0))2
(
(Id,f − d)/Id,f

)
τττ ′

3τττ3, where τττ3 = limn→∞ τττ
(n)
3

(iii) the test φ
(n)
f is locally and asymptotically maximin, at asymptotic level α,

for H0;f against H1;f,Π =
⋃

θθθ∈Rd,ΣΣΣ∈Sd,λλλ∈Rd\{0} P
(n)
θθθ, ΣΣΣ, λλλ;f,Π. The test is thus op-

timal against any type of generalized skew-f alternative.

Summing up, the test φ
(n)
f is (parametrically) optimal against any type of

generalized skew-f alternative (f specified).

4.2. Optimal semiparametric tests: unspecified θθθ

Consider now the general null hypothesis H0 of elliptical symmetry with unspec-
ified center θθθ. Since the central sequence for skewness ∆∆∆3(ϑϑϑ0) does not depend
on the actual radial density, the ideal test for the case of unspecified f and θθθ
should be based on ∆∆∆3(ϑϑϑ0). But ∆∆∆3(ϑϑϑ0) also depends on θθθ and ΣΣΣ, which there-

fore have to be replaced with estimators θ̂θθ and Σ̂ΣΣ and, unfortunately, the impact
of that substitution does depend on the actual radial density (denote it as g).

Let θ̂θθ and Σ̂ΣΣ satisfy Assumption (B). The asymptotic linearity property (note

that (2.5) applies under any P
(n)
θθθ, ΣΣΣ, 0;g thanks to the fact that ∆∆∆3(ϑϑϑ0) does not

depend on g) yields, under P
(n)
θθθ, ΣΣΣ, 0;g as n → ∞,

∆∆∆3(θ̂θθ, Σ̂ΣΣ,0) − ∆∆∆3(θθθ,ΣΣΣ,0) = −Covg [∆∆∆3(ϑϑϑ0),∆∆∆g;1(ϑϑϑ0)]n1/2(θ̂θθ − θθθ) + oP(1)

where Covg [∆∆∆3(ϑϑϑ0),∆∆∆g;1(ϑϑϑ0)] = 2Π̇(0)ΣΣΣ−1/2. This is a non-zero quantity the
projection of the previous section cannot cancel out for all g. Therefore, a
“deeper projection” is required to obtain an f -efficient central sequence that

is orthogonal, under P
(n)
θθθ, ΣΣΣ, 0;g, to the g-based central sequence ∆∆∆g;1(ϑϑϑ0), for any

g. This deeper projection is taken care of by

∆∆∆‡
fg;3(ϑϑϑ0) := ∆∆∆3(ϑϑϑ0) − 2Π̇(0)ΣΣΣ−1/2 [Covg [∆∆∆f ;1(ϑϑϑ0),∆∆∆g;1(ϑϑϑ0)]]

−1
∆∆∆f ;1(ϑϑϑ0)

which, unfortunately, depends on the unspecified g again. Simple algebra yields
Covg [∆∆∆f ;1(ϑϑϑ0),∆∆∆g;1(ϑϑϑ0)] = 1

dKd,f,gΣΣΣ−1, with

Kd,f,g :=

∫ ∞

0

(
ϕ′

f (r) +
d− 1

r
ϕf (r)

)
1

µd−1;g
rd−1g(r)dr

where we denote by ϕ′
f the weak derivative of r 7→ ϕf (r) coinciding, in case ϕf

is differentiable, with the usual derivative of r 7→ ϕf (r).
The existence of this latter quantity, however, requires a slight reinforcement

of the assumptions on the reference radial densities f and the actual radial
density g.
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Assumption (A3) The mapping r 7→ f1/2(r) belongs to W 2,2(R0, µd−1), 0 6=∣∣∣∣
∫ ∞

0

(
ϕ′

f (r) +
d− 1

r
ϕf (r)

)
rd−1f(r)dr

∣∣∣∣ < ∞, and

∫ ∞

0

(ϕ(r))2+ǫrd−1f(r)dr <

∞ for some ǫ > 0.

It follows from the definition that, for any f ∈ F1 satisfying Assumptions
(A1-A3), there exists a class of densities

F1;f :=

{
g ∈ F1 : 0 6=

∣∣∣∣
∫ ∞

0

(
ϕ′

f (r) +
d− 1

r
ϕf (r)

)
rd−1g(r)dr

∣∣∣∣ < ∞

and

∫ ∞

0

(ϕf (r))2+ǫgrd−1g(r)dr < ∞ for some ǫg > 0

}

such that, for g ∈ F1;f , Kd,f,g, hence ∆∆∆‡
fg;3, are well defined. Clearly, under

Assumptions (A1) and (A3), f itself belongs to F1;f . The resulting projected
central sequence is

∆∆∆‡
fg;3(ϑϑϑ0) = 2n−1/2Π̇(0)

n∑

i=1

[
di(θθθ,ΣΣΣ) − d

Kd,f,g
ϕf (di(θθθ,ΣΣΣ))

]
Ui(θθθ,ΣΣΣ).

This, through Kd,f,g, still depends on the unknown g. But Kd,f,g can be esti-
mated via

K̂d,f (θθθ,ΣΣΣ) :=
1

n

n∑

i=1

[
ϕ′

f (di(θθθ,ΣΣΣ)) +
d− 1

di(θθθ,ΣΣΣ)
ϕf (di(θθθ,ΣΣΣ))

]
,

hence, in fine, just as for the entire test statistic, by K̂d,f(θ̂θθ, Σ̂ΣΣ) with θ̂θθ and Σ̂ΣΣ
satisfying Assumption (B). The following lemma establishes the consistency of

K̂d,f(θ̂θθ, Σ̂ΣΣ) as an estimator of Kd,f,g.

Lemma 4.1. Let f ∈ F1 and suppose that Assumptions (A1-A3) and (B) hold.

Then, for any g ∈ F1;f , K̂d,f (θ̂θθ, Σ̂ΣΣ) − Kd,f,g = oP(1) as n → ∞ under P
(n)
θθθ, ΣΣΣ, 0;g.

The proof is provided in Appendix C.
With this estimator of Kd,f,g, the efficient central sequence for skewness takes

the final form

∆∆∆‡
f ;3(ϑ̂ϑϑ0) = 2n−1/2Π̇(0)

n∑

i=1

[
di(θ̂θθ, Σ̂) − d

K̂d,f(θ̂θθ, Σ̂ΣΣ)
ϕf (di(θ̂θθ, Σ̂ΣΣ))

]
Ui(θ̂θθ, Σ̂ΣΣ).

The corresponding test φ
‡(n)
f rejects H0 at asymptotic level α whenever the test

statistic Q
‡(n)
f := (∆∆∆‡

f ;3(ϑ̂ϑϑ0))′(Γ̂ΓΓ
‡

f (ϑ̂ϑϑ0))−1∆∆∆‡
f ;3(ϑ̂ϑϑ0), with

Γ̂ΓΓ
‡

f (ϑ̂ϑϑ0) :=
4(Π̇(0))2

nd

n∑

i=1

[
di(θ̂θθ, Σ̂ΣΣ) − d

K̂d,f (θ̂θθ, Σ̂ΣΣ)
ϕf (di(θ̂θθ, Σ̂ΣΣ))

]2

Id
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exceeds the chi-square quantile χ2
d;1−α. The asymptotic distribution of Q

‡(n)
f

under P
(n)
θθθ, ΣΣΣ, 0;g for any g ∈ F1;f and its optimality properties are formally estab-

lished in Theorem 4.2. For the sake of exposition, we first establish the following
lemma (see Appendix C for a proof).

Lemma 4.2. Let f ∈ F1 and suppose that Assumptions (A1-A3) and (B) hold.
Then,

(i) ∆∆∆
‡
f ;3(ϑ̂ϑϑ0) − ∆∆∆

‡
fg;3(ϑϑϑ0) = oP(1) and

(ii) Γ̂ΓΓ
‡

f (ϑ̂ϑϑ0) − ΓΓΓ‡
f (ϑϑϑ0) = oP(1)

as n → ∞ under P
(n)
θθθ, ΣΣΣ, 0;g for any g ∈ F1;f , where

ΓΓΓ‡
f (ϑϑϑ0) :=

4(Π̇(0))2

nd

n∑

i=1

[
di(θθθ,ΣΣΣ) − d

Kd,f,g
ϕf (di(θθθ,ΣΣΣ))

]2

Id.

With this result in hand, we finally can state the announced asymptotic

results about φ
‡(n)
f and Q

‡(n)
f .

Theorem 4.2. Let f ∈ F1 and suppose that Assumptions (A1-A3) and (B)
hold, and that the skewing function Π is continuously differentiable at 0, with
Π̇(0) 6= 0. Then,

(i) under
⋃

g∈F1;f , θθθ∈Rd, ΣΣΣ∈Sd
P

(n)
θθθ, ΣΣΣ, 0;g, the test statistic Q

‡(n)
f is asymptoti-

cally χ2
d as n → ∞, so that the test φ

‡(n)
f has asymptotic level α;

(ii) under
⋃

θθθ∈Rd

⋃
ΣΣΣ∈Sd

P
(n)

θθθ,ΣΣΣ,n−1/2τττ
(n)
3 ;g,Π

with g ∈ F1;f , Q
‡(n)
f is asymptotical-

ly non-central chi-square with d degrees of freedom and non-centrality parame-

ter 4(Π̇(0))2dγ−1
d,f,g(1 − αd,f,g/Kd,f,g)2τττ ′

3τττ3, where τττ3 = limn→∞ τττ
(n)
3 , αd,f,g :=

1
µd−1;g

∫∞

0 rϕf (r)rd−1g(r)dr, and

γd,f,g :=
1

µd−1;g

∫ ∞

0

[
r − d

Kd,f,g
ϕf (r)

]2

rd−1g(r)dr.

(iii) the test φ
‡(n)
f is locally and asymptotically maximin, at asymptotic

level α, when testing
⋃

g∈F1;f ,θθθ∈Rd,ΣΣΣ∈Sd
P

(n)
θθθ, ΣΣΣ, 0;g against alternatives of the

form H1;f,Π =
⋃

θθθ∈Rd, ΣΣΣ∈Sd, λλλ∈Rd\{0} P
(n)
θθθ, ΣΣΣ, λλλ;f,Π, irrespective of Π.

Part (i) of this Theorem easily follows from Lemma 4.2. The rest of the proof
follows along the same lines as the proofs of Theorems 3.1 and 4.1; details are
left to the reader. Note that the finiteness of γd,f,g follows from our assumptions
on g.

The test φ
‡(n)
f thus is valid under any g ∈ F1;f —the entire nonparametric

hypothesis of elliptical symmetry with unspecified center—and uniformly opti-
mal against any type of generalized skew-f alternative. For each radial density

f satisfying Assumptions (A1-A3), we thus get such a test φ
‡(n)
f . These tests are

the main contribution of this paper, and achieve all our objectives: they have a
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simple asymptotic chi-squared distribution under the null hypothesis of elliptic-
ity, they are affine-invariant (this follows directly from the affine-invariance of

di(θ̂θθ, Σ̂ΣΣ) and Ui(θ̂θθ, Σ̂ΣΣ)), computationally fast, have a simple and intuitive form,
only require finite moments of order 2, and offer much flexibility in the choice
of the radial density f at which optimality is achieved (recall that a Gaussian
f is excluded, though).

The choice of f can be guided by asymptotic relative efficiency profiles, which
we now provide for various choices of f .

4.3. Asymptotic Relative Efficiencies

In this section, we compute Asymptotic Relative Efficiencies (AREs) for φ
‡(n)
f

with respect to the pseudo-Gaussian test of [8] as a common benchmark.

Define m
(n)
k (θθθ,ΣΣΣ) := n−1

∑n
i=1(di(θθθ,ΣΣΣ))k and

SU

i (θθθ,ΣΣΣ) := ((Ui1(θθθ,ΣΣΣ))2sign(Ui1(θθθ,ΣΣΣ)), . . .

. . ., (Uid(θθθ,ΣΣΣ))2sign(Uid(θθθ,ΣΣΣ)))′. (4.1)

When the location θθθ is unspecified, the Gaussian efficient central sequence for
Cassart’s Fechner-asymmetry model is

∆∆∆G(ϑϑϑ0) = n−1/2
n∑

i=1

di(θθθ,ΣΣΣ)(cd(d+ 1)m
(n)
1 (θθθ,ΣΣΣ)Ui(θθθ,ΣΣΣ) − di(θθθ,ΣΣΣ)SU

i (θθθ,ΣΣΣ))

where cd = 4Γ(d/2)/((d2 − 1)
√
πΓ(d−1

2 ), with Fisher information matrix under

radial density g (note that m
(n)
k (θθθ,ΣΣΣ) converges to

µd+k−1;g

µd−1;g
under g)

ΓΓΓG(ϑϑϑ0) :=

(
3

d(d + 2)

µd+3;g

µd−1;g
− 2c2

d(d+ 1)
µd;gµd+2;g

(µd−1;g)2
+ c2

d

(d+ 1)2

d

µ2
d;gµd+1;g

(µd−1;g)3

)
Id.

The expectation of ∆∆∆G(ϑϑϑ0) remains 0, and the asymptotic normality with
covariance ΓΓΓG(ϑϑϑ0) holds, under any g with finite fourth-order moment, that is,
under g ∈ FpG :=

{
f ∈ F1 : µd+3;f =

∫
R+ r

d+3f(r)dr < ∞
}
.

The Gaussian test based on ∆∆∆G(ϑϑϑ0) thus can be used as a pseudo-

Gaussian test: denote it as φ
(n)
pG . That test rejects the null hypothe-

sis
⋃

g∈FpG, θθθ∈Rd, ΣΣΣ∈Sd
P

(n)
θθθ, ΣΣΣ, 0;g of elliptical symmetry with unspecified g and θθθ

at asymptotic level α whenever the test statistic (with θ̂θθ and Σ̂ΣΣ satisfying As-

sumption (B)) Q
(n)
pG := (∆∆∆G(ϑ̂ϑϑ0))′(ΓΓΓG(ϑ̂ϑϑ0))−1∆∆∆G(ϑ̂ϑϑ0) exceeds χ2

d;1−α. We refer to
Chapter 3 of [8] for formal details.

In order to compute AREs with respect to φ
(n)
pG , we need its asymptotic

distribution under the local skew-elliptical alternatives considered in this paper.
This is the purpose of the following result, the proof of which is similar to those
of Theorems 3.1 and 4.1 and is left to the reader.
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Theorem 4.3. Suppose that Assumptions (A1), (A2), and (B) hold, and that
the skewing function Π is continuously differentiable at 0 with Π̇(0) 6= 0. Then,

(i) under
⋃

g∈FpG, θθθ∈Rd, ΣΣΣ∈Sd
P

(n)
θθθ, ΣΣΣ, 0;g, Q

(n)
pG is asymptotically χ2

d as n → ∞, so

that φ
(n)
pG has asymptotic level α;

(ii) under
⋃

θθθ∈Rd ∪ΣΣΣ∈Sd
P

(n)

θθθ,ΣΣΣ,n−1/2τττ
(n)
3 ;g,Π

with g ∈ FpG, Q
(n)
pG is asymptotically

non-central chi-square with non-centrality parameter

64(Π̇(0))2(Γ(d/2)((d+ 1)
µd;gµd+1;g

(µd−1;g)2 − d
µd+2;g

µd−1;g
))2

π((d2 − 1)Γ((d− 1)/2))2d2γG
τττ ′

3τττ3,

where τττ3 = limn→∞ τττ
(n)
3 and

γG :=
3

d(d+ 2)

µd+3;g

µd−1;g
− 2c2

d(d+ 1)
µd;gµd+2;g

(µd−1;g)2
+ c2

d

(d+ 1)2

d

µ2
d;gµd+1;g

(µd−1;g)3
.

Theorems 4.2 and 4.3 allow for computing the desired ARE values as squared
ratios of local shifts.

Theorem 4.4. Let f ∈ F1; suppose that Assumptions (A1-A3) and (B) hold,
and that the skewing function Π is continuously differentiable at 0 with Π̇(0) 6= 0.

Then, the ARE of φ
‡(n)
f with respect to φ

(n)
pG under local alternatives of the form

P
(n)

θθθ,ΣΣΣ,n−1/2τττ
(n)
3 ;g,Π

with g ∈ F1;f ∩ FpG is

AREg(φ
‡(n)
f /φ

(n)
pG ) =

d3π (1 − αd,f,g/Kd,f,g)
2 (

(d2 − 1)Γ((d− 1)/2)
)2
γG

16
(

Γ(d/2)((d+ 1)
µd;gµd+1;g

(µd−1;g)2 − d
µd+2;g

µd−1;g
)
)2

γd,f,g

.
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Table 4.1
AREs, with respect to φ

(n)
pG

and under several skew-t alternatives, of our tests φ
‡(n)
tν

for

various values of ν and the dimension d.

Degrees of freedom of the underlying t density

d test 4.1 5 7 10 20

2 φ
‡(n)
t4

10.968 1.964 1.305 1.156 1.085

φ
‡(n)
t5

10.912 1.978 1.342 1.208 1.155

φ
‡(n)
t7

10.630 1.955 1.358 1.249 1.223

φ
‡(n)
t10

10.172 1.892 1.345 1.261 1.264

φ
‡(n)
t20

8.997 1.705 1.262 1.231 1.287

3 φ
‡(n)
t4

11.780 2.149 1.473 1.341 1.300

φ
‡(n)
t5

11.725 2.164 1.511 1.397 1.383

φ
‡(n)
t7

11.449 2.140 1.528 1.442 1.462

φ
‡(n)
t10

10.993 2.076 1.513 1.455 1.510

φ
‡(n)
t20

9.804 1.882 1.424 1.420 1.539

5 φ
‡(n)
t4

12.867 2.410 1.729 1.646 1.706

φ
‡(n)
t5

12.818 2.423 1.765 1.703 1.794

φ
‡(n)
t7

12.564 2.401 1.783 1.751 1.886

φ
‡(n)
t10

12.132 2.338 1.767 1.766 1.945

φ
‡(n)
t20

10.964 2.141 1.670 1.724 1.983

10 φ
‡(n)
t4

7.486 2.759 2.117 2.170 2.548

φ
‡(n)
t5

14.202 2.770 2.143 2.215 2.626

φ
‡(n)
t7

14.008 2.752 2.158 2.256 2.719

φ
‡(n)
t10

13.654 2.699 2.143 2.270 2.786

φ
‡(n)
t20

12.618 2.519 2.047 2.224 2.832

Table 4.1 provides numerical values of the AREs for various skew-t alterna-
tives. All ARE values are larger than one, sometimes quite significantly; as a
rule, they decrease with the degrees of freedom of the underlying Student, and
increase with the dimension. The test for which the reference f coincides with
the actual g yields the maximal value of AREg, as it should. Note that we de-

liberately opted for the test φ
‡(n)
t4

instead of φ
‡(n)
t4.1

: hence, the highest values of
AREt4.1 are not shown here.

5. Comparative finite-sample study

In this section we investigate, via Monte Carlo simulations, the finite-sample
properties of the tests we are proposing and some of their competitors—first for
specified location (Section 5.3) and then for unspecified location (Section 5.4).
We start with a brief description of the competing methods to be considered in
this study.



Babić, Gelbgras, Hallin, and Ley/Optimal tests for elliptical symmetry 20

5.1. Competing methods: specified location

Most tests proposed in the literature are dealing with the specified-location
problem We selected the following two, proposed by Baringhaus [5] and Cassart
[8], respectively.

(a) Baringhaus [5] proposes a class of tests φ
(n)
Bar,θθθ based on

B(n) :=
1

n2

n∑

i,j=1

h(Ui(θθθ, Σ̂ΣΣ)′Uj(θθθ, Σ̂ΣΣ))(n− max (Ri, Rj) + 1), (5.1)

where h is defined over [−1, 1] and satisfies some regularity conditions, Σ̂ΣΣ

is Tyler’s estimator of scatter, and Ri is the rank of ‖Σ̂ΣΣ−1/2(Xi −
θθθ)‖ among ‖Σ̂ΣΣ−1/2(X1 − θθθ)‖, . . . , ‖Σ̂ΣΣ−1/2(Xn − θθθ)‖. In our simulations we

chose h(t) =
(

2
17/8−t

)1/2 −1, t ∈ [−1, 1] because the asymptotic null distribution

of B(n) then coincides (up to a multiplicative constant) with that of the squared
Kolmogorov-Smirnov statistic for the problem under study (other choices of h
would require simulation-based approximations of limiting null distributions).

No moment assumptions are required. Baringhaus [5] actually introduced φ
(n)
Bar,θθθ

as a test for spherical symmetry (with Id instead of Σ̂ΣΣ in (5.1)). Empirical spheri-

cization via the Tyler estimator Σ̂ΣΣ turns it into a test for elliptical symmetry;
this has been proposed by [12] who establishes (via simulations) the validity of
the procedure in dimension d = 2.

(b) The pseudo-Gaussian tests φ
(n)
pG,θθθ described by [8] achieve Le Cam optimal-

ity against the Fechner-type multinormal alternatives defined there (Chapter 3).

When the location θθθ is known, the test φ
(n)
pG,θθθ rejects the hypothesis of elliptical

symmetry with location θθθ at asymptotic level α whenever

8

3nm
(n)
4

n∑

i,j=1

(di(θθθ, Σ̂ΣΣ))2(dj(θθθ, Σ̂ΣΣ))2S′
Ui(θθθ,Σ̂ΣΣ)

S
Uj(θθθ,Σ̂ΣΣ)

(S
Ui(θθθ,Σ̂ΣΣ) defined in (4.1)) exceeds the (1 − α) chi-quare quantile χ2

d;1−α. Finite

moments of order four are required. For Σ̂ΣΣ, we still use Tyler’s estimator.

5.2. Competing methods: unspecified location

The list of competitors is shorter in the unspecified-location case—despite the
importance of the problem. Below, we are considering the unspecified-location

pseudo-Gaussian tests φ
(n)
pG proposed by Cassart [8], the Schott test φ

(n)
Schott [46],

and the Koltchinskii–Sakhanenko test φ
(n)
K-S [34].

(c) Cassart’s location-unspecified test φ
(n)
pG is described in Section 4.3, where

we refer to for details; its validity requires finite moments of order four.

(d) Schott’s test φ
(n)
Schott [46] involves a test statistic based on fourth-order

moments; its validity requires finite eighth-order moments. The underlying idea
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is that the fourth-order moment structure of an elliptical distribution is a
scalar multiple of that of a normal distribution. Therefore, to test whether a
given population has an elliptical distribution, it is sufficient to test whether
its fourth-order moment structure matches that of a Gaussian population. A
closed-form of the test statistic involves a long list of notations which we are
skipping here—see [46] for details; its asymptotic distribution is chi-square
with d2 + d(d− 1)(d2 + 7d− 6)/24 − 1 degrees of freedom.

(e) The Koltchinskii–Sakhanenko [34] test statistics φ
(n)
K-S are obtained as

functionals of empirical processes indexed by special classes of functions. Let FB

be a class of Borel functions from R
d to R. Their test statistics are functionals

(for example, sup-norms) of the stochastic process

n−1/2
n∑

i=1

(
f(Σ̂ΣΣ−1/2(Xi − θ̂θθ)) −mf (di(θ̂θθ, Σ̂ΣΣ))

)
,

where f ∈ FB, mf (ρ) is the average value of f on the sphere with ra-

dius ρ > 0, and θ̂θθ and Σ̂ΣΣ denote the sample average and covariance ma-
trix, respectively. Several examples of classes FB and test statistics based on
the sup-norm of the above process are considered in [34]. Here we restrict

to FB :=
{
I0<||x||≤tψ

(
x

||x||

)
: ψ ∈ Gl, ||ψ||2 ≤ 1, t > 0

}
where IA stands for the

indicator function of A, Gl for the linear space of spherical harmonics of degree
less than or equal to l in R

d, and || · ||2 is the L2-norm on the unit sphere Sd−1

in R
d. Critical values are obtained via a bootstrap procedure.

5.3. Finite-sample performance: specified location (Table 5.1)

Without loss of generality, fix θθθ = 0. In order to compare the null and non-null

finite-sample behavior of our optimal semiparametric test φ
(n)
0

with that of the

Baringhaus and pseudo-Gaussian tests φ
(n)
Bar,θθθ and φ

(n)
pG,θθθ, we consider samples

of size n = 100 from various distributions in dimension d = 3, and calculate
their rejection frequencies on the basis of N = 3000 replications. Under the null
hypothesis, we consider the three-dimensional normal and Student t elliptical
distributions with ν =2.1, 4.1, and 8 degrees of freedom, all with scatter ΣΣΣ =


2 1 1
1 3 2
1 2 5


; the degrees of freedom 2.1 and 4.1 were selected as having finite

moments of orders 2 and 4, respectively.
Alternatives are of four different types: normal and Student skew-elliptical

(increasing λλλ values) in Table 5.1(a), sinh-arcsinh- (SAS-) transformed normal
and t4.1 (same ΣΣΣ matrix as above; skewness parameters as indicated; kurto-
sis parameters all fixed to 1), location-scale Gaussian mixtures (LSGM), and
mixtures of Gaussian distributions in Table 5.1(b).

The skew-elliptical alternatives are those against which φ
(n)
0

is optimal. The
sinh-arcsinh-transformed families are families of skewed distributions in dimen-
sion d (see [33]) indexed by a d-dimensional parameter λλλ with the same inter-
pretation as in skew-elliptical families.
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As proposed by [52], we are considering a particular case of multivariate
location-scale Gaussian mixtures (LSGM) yielding the so-called multiple scaled
generalized hyperbolic (MSGH) distributions. Those distributions are indexed by
parameters µµµ, D, A, βββ, λλλ, γγγ, and δδδ. More specifically, in Table 5.1(b), we chose
the three-dimensional MSGH with γγγ = (2, 2, 2)′, δδδ = (1, 1, 1)′, λλλ = (−1/2, 2, 1)′,

A = I3, and D =




√
2/2 −

√
2/2 0√

2/2
√

2/2 0
0 0 1


. Finally, the mixtures of Gaussian

distributions in Table 5.1(b) are of the form 1
2N3

(
µµµ1,ΣΣΣ1

)
+ 1

2N3

(
µµµ2,ΣΣΣ2

)
, with

various locations µµµ1 and µµµ2 and scatter matrices ΣΣΣ1 =

[
2 1 1
1 3 2
1 2 5

]
and ΣΣΣ2 =

[
1 0.5 0.5

0.5 1 0.5
0.5 0.5 1

]
, respectively. For each case, we considered increasingly skewed

alternatives.
Inspection of Table 5.1 indicates that φ

(n)
θθθ (here φ

(n)
0

) uniformly satisfies2

the 5% level constraint and yields excellent powers for almost all settings. It is
outperformed in two cases only:

(i) by Baringhaus’ φ
(n)
Bar,0 test under skew-elliptical t2.1; the same φ

(n)
Bar,0,

however, is much weaker under all other skew distributions; this might be due
to slow convergence, under heavy tails, to limit distributions;

(ii) by Cassart’s pseudo-Gaussian test φ
(n)
pG,0 under SAS-normal and LSGM

distributions—the latter case, however, is explained by severe over-rejection
(rejection frequency 21% at 5% nominal level!) under the null.

The results under Gaussian mixtures (bottom of Table 5.1) deserve some
further comments. Note that the corresponding first column does not address a
null hypothesis situation: although µµµ1 = 0 = µµµ2, the resulting mixture is not el-
liptical. A comparison between columns 3 (µµµ1 = (0, 0, 0)′, µµµ2 = (−1, 0, 0)′) and 4
(µµµ1 = (1, 0, 0)′, µµµ2 = (−1, 0, 0)′) is particularly intriguing. The distribution in
column 4 indeed is strictly “less elliptical” than in column 3; nevertheless, the

power of φ
(n)
0

, which is almost one in column 3, reduces to the nominal level in
column 4. This is an illustration of the fact that specified-location tests cannot
be considered as genuine ellipticity tests (see Section 5.5). Baringhaus appar-
ently is less sensitive to that phenomenon—at the price, however, of very low
powers under most values of µµµ1 6= µµµ2.

5.4. Finite-sample performance: unspecified location (Tables 5.2)
and A.1–A.2)

The tests considered here are our optimal tests φ
‡(n)
f (f elliptical Student with

ν = 2.1, 4, and 8 degrees of freedom), Schott’s test φ
(n)
Schott, Cassart’s pseudo-

2Within the confidence limits of the Monte Carlo experiment: with 3000 replications, a 5%
confidence interval centered at the rejection frequencies shown in all tables in this section has
approximate length 0.015.
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Table 5.1
Rejection frequencies (out of N = 3, 000 replications), under (a) various three-dimensional
elliptical (λλλ = (0, 0, 0)) and related skewed densities (increasing λλλ values) and (b) skewed
SAS-normal, SAS-t4.1, location-scale Gaussian mixtures (LSGM) and location Gaussian

mixtures (increasing λλλ) values), of our optimal specified-location(θθθ0 = 0) test φ
(n)
0

, the

Baringhaus test φ
(n)
Bar,0

, and Cassart’s pseudo-Gaussian test φ
(n)
pG,0

. The sample size

is n = 100, the nominal probability level 5%.

(a) λλλ′ (0, 0, 0) (0.1, −0.2, 0) (0.3, −0.6, 0) (0.1, 0.1, 0.1) (0.2, 0.2, 0.2) (0.3, 0.3, 0.3)

test Skew-normal

φ
(n)
0

0.055 0.193 0.934 0.293 0.847 0.992

φ
(n)
Bar,0

0.038 0.088 0.625 0.132 0.467 0.831

φ
(n)
pG,0

0.055 0.165 0.873 0.243 0.756 0.975

Skew-t2.1

φ
(n)
0

0.039 0.106 0.651 0.145 0.522 0.815

φ
(n)
Bar,0

0.035 0.092 0.675 0.147 0.521 0.874

φ
(n)
pG,0

0.012 0.036 0.157 0.040 0.126 0.235

Skew-t4.1

φ
(n)
0

0.040 0.142 0.864 0.239 0.753 0.964

φ
(n)
Bar,0

0.037 0.090 0.662 0.131 0.501 0.857

φ
(n)
pG,0

0.034 0.078 0.460 0.121 0.377 0.650

Skew-t8

φ
(n)
0

0.050 0.170 0.902 0.277 0.813 0.990

φ
(n)
Bar,0

0.034 0.081 0.638 0.131 0.475 0.862

φ
(n)
pG,0

0.042 0.119 0.688 0.186 0.587 0.879

(b) λλλ′ (0, 0, 0) (0.05, −0.1, 0.05) (0.15, −0.3, 0.15) (0.1, 0.1, 0.1) (0.2, 0.2, 0.2) (0.3, 0.3, 0.3)

test SAS-normal

φ
(n)
0

0.057 0.276 0.997 0.170 0.587 0.935

φ
(n)
Bar,0 0.034 0.065 0.553 0.038 0.0583 0.113

φ
(n)
pG,0

0.052 0.363 0.999 0.273 0.842 0.998

SAS-t4.1

φ
(n)
0

0.044 0.257 0.992 0.166 0.548 0.893

φ
(n)
Bar,0 0.029 0.133 0.874 0.058 0.119 0.290

φ
(n)
pG,0

0.038 0.159 0.834 0.117 0.441 0.752

LSGM

φ
(n)
0

0.048 0.098 0.539 0.176 0.601 0.926

φ
(n)
Bar,0

0.034 0.063 0.409 0.117 0.460 0.851

φ
(n)
pG,0

0.121 0.166 0.368 0.210 0.418 0.677

Gaussian Mixture

µµµ′
1 (0, 0, 0) (0, 0, 0) (0, 0, 0) (1, 0, 0) (1, 0, 0) (1, 0, 0)

µµµ′
2 (0, 0, 0) (−0.5, 0, 0) (−1, 0, 0) (−1, 0, 0) (−2, 0, 0) (−3, 0, 0)

φ
(n)
0

0.048 0.379 0.936 0.050 0.474 0.939

φ
(n)
Bar,0

0.034 0.080 0.264 0.710 0.395 0.340

φ
(n)
pG,0

0.052 0.272 0.836 0.063 0.417 0.893
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Gaussian test φ
(n)
pG , and Koltchinskii and Sakhanenko’s φ

(n)
K-S test. Table 5.2 is

dealing with dimension d = 2, Tables A.1 and A.2 (in Appendix D) with d = 3.
Because of its computational complexity, the Koltchinskii-Sakhanenko test is
considered for d = 2 only.

We still consider samples of size n = 100, from the same distributions3 as
in 5.3, and calculate the rejection frequencies on the basis of N = 3000 replica-

tions. Again, our tests φ
‡(n)
f outperform the other tests for almost all settings.

The pseudo-Gaussian test performs very well for the SAS-normal distribution.

In all other settings, the φ
‡(n)
tν

tests yield the best results. Quite remarkably,

φ
‡(n)
f under Gaussian mixtures does not suffer at all the problems its specified-

location counterpart was exhibiting in Table 5.1, and uniformly dominates all
its competitors.

5.5. The pitfalls of specified-location tests

We already stressed the fact that most tests available in the literature are dealing
with the null hypothesis of specified-location ellipticity. Those tests, as a rule,
are reasonably powerful at detecting either elliptical location alternatives (a
simple shift in the null distribution) or fixed-location violations of ellipticity.
Problems occur when both violations are present, with opposite impacts on the
test statistic: powers then completely collapse.

To showcase this, we ran our tests φ
(n)
0

and φ
‡;(n)
t4

against simulated (3000
replications) 10-dimensional4 Gaussian mixtures of the form

0.8N10(10 e1;10, I10) + 0.2N10(−10 e1;10, I10) − δδδi, i = 1, 2,

3For d = 2, we considered the MSGH distribution with parameter values γγγ = (2, 2)′,

δδδ = (1, 1)′, λλλ = (−1/2, 2)′, A = I2, and D =

[√
2 +

√

2/2 −

√
2 −

√

2/2√
2 −

√

2/2
√

2 +
√

2/2

]
.

4The higher the dimension, the more serious the problem.
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Table 5.2
Rejection frequencies (out of N = 3, 000 replications), under various bivariate elliptical (λλλ = (0, 0)) and related skewed densities (increasing λλλ

values), of our unspecified-location optimal tests φ
‡;(n)
f

(f the bivariate t distributions with 2.1, 4, and 8 degrees of freedom), Schott ’s test φ
(n)
Schott

,

Cassart’s pseudo-Gaussian test φ
(n)
pG

, and the Koltchinskii–Sakhanenko test φ
(n)
K-S

for the null hypothesis of ellipticity with unspecified location. The

sample size is n = 100, the nominal probability level 5%.

(b) λλλ′ (0, 0) (1, −1) (1, 1) (2, 2) (3, 3) (0, 0) (0.15, −0.2) (0.15, 0.15) (0.3, 0.3) (0.45, 0.45)

test Skew-normal SAS-normal

φ
‡(n)
t2.1

0.044 0.052 0.129 0.501 0.684 0.049 0.254 0.229 0.732 0.973

φ
‡(n)
t4

0.043 0.053 0.131 0.510 0.691 0.046 0.261 0.233 0.731 0.974

φ
‡(n)
t8

0.044 0.055 0.129 0.502 0.679 0.049 0.255 0.230 0.710 0.964

φ
(n)
Schott

0.034 0.040 0.035 0.036 0.042 0.040 0.035 0.034 0.028 0.034

φ
(n)
pG

0.045 0.040 0.064 0.139 0.192 0.051 0.420 0.284 0.808 0.985

φ
(n)
K-S

0.048 0.047 0.065 0.095 0.116 0.056 0.096 0.069 0.121 0.213
Skew-t2.1 SAS-t4.1

φ
‡(n)
t2.1

0.033 0.294 0.445 0.621 0.675 0.040 0.168 0.120 0.368 0.698

φ
‡(n)
t4

0.030 0.230 0.349 0.509 0.561 0.038 0.139 0.109 0.325 0.618

φ
‡(n)
t8

0.022 0.165 0.260 0.376 0.431 0.037 0.119 0.088 0.267 0.511

φ
(n)
Schott

0.265 0.285 0.309 0.340 0.324 0.060 0.061 0.059 0.061 0.067

φ
(n)
pG

0.020 0.101 0.152 0.221 0.265 0.037 0.171 0.096 0.308 0.578

φ
(n)
K-S 0.057 0.211 0.341 0.473 0.539 0.059 0.086 0.075 0.131 0.229

Skew-t4.1 LSGM

φ
‡(n)
t2.1

0.043 0.291 0.535 0.846 0.912 0.038 0.085 0.094 0.188 0.377

φ
‡(n)
t4

0.040 0.266 0.482 0.775 0.844 0.038 0.076 0.079 0.162 0.328

φ
‡(n)
t8

0.036 0.222 0.409 0.675 0.734 0.036 0.052 0.072 0.135 0.268

φ
(n)
Schott 0.058 0.064 0.067 0.085 0.093 0.285 0.288 0.289 0.278 0.290

φ
(n)
pG

0.035 0.153 0.244 0.369 0.386 0.033 0.058 0.053 0.108 0.209

φ
(n)
K-S

0.056 0.082 0.110 0.179 0.213 0.241 0.251 0.245 0.293 0.334
Gaussian Mixture

Skew-t8 µµµ′
1 (0, 0) (0, 0) (1, 0) (1, 0) (1, 0)

µµµ′
2 (0, 0) (−1, 0) (−1, 0) (−2, 0) (−3, 0)

φ
‡(n)
t2.1

0.046 0.170 0.374 0.767 0.871 0.044 0.199 0.475 0.575 0.552

φ
‡(n)
t4

0.046 0.167 0.357 0.734 0.845 0.043 0.199 0.452 0.520 0.482

φ
‡(n)
t8

0.045 0.158 0.326 0.674 0.790 0.046 0.192 0.407 0.444 0.391

φ
(n)
Schott

0.043 0.030 0.033 0.036 0.054 0.082 0.085 0.126 0.276 0.570

φ
(n)
pG

0.038 0.101 0.175 0.312 0.365 0.036 0.102 0.151 0.123 0.092

φ
(n)
K-S

0.052 0.053 0.080 0.117 0.146 0.049 0.077 0.110 0.162 0.306
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with e1;10 = (1, 0, 0, 0, 0, 0, 0, 0, 0, 0)′, δδδ1 = (−6, 0, 0, 0, 0, 0, 0, 0, 0, 0)′, and δδδ2 =
(6, 0, 0, 0, 0, 0, 0, 0, 0, 0)′, that is, we consider two distinct scenarios, (a) and (b),
say. Note that non-ellipticity is strictly the same under both scenarios: only
locations differ, with (b) remaining centered at 0. The rejection frequencies are

as follows: under (a), φ
(n)
0

reaches 0.042 and φ
‡;(n)
t4

0.681, while under (b), φ
(n)
0

reaches 1.000 and φ
‡;(n)
t4

0.685. It appears very clearly that the unspecified-
location test makes no distinction between (a) and (b), detecting asymmetry
under both, while the location-specified test fails to detect non-ellipticity under
(a). The reason is that non-ellipticity and location shift under (a) have opposite
effects on the test statistic, which cancel each other. On the contrary, under (b),
the specified-location test is stronger as it does not suffer from the loss of power
due to the estimation of θθθ.

The conclusion is that one should be extremely cautious before concluding
that ellipticity can or cannot be rejected on the basis of a specified-location
test, and rather check whether the unspecified-location procedure does not lead
to the opposite conclusion. This warning is all the more important in higher
dimensions, where a plot of the observations does not help much: Section 6
provides a real-life example of this in dimension d = 17.

6. An empirical analysis of financial returns data

Elliptical symmetry with respect to the origin is a common assumption in the
multivariate analysis of financial data. In this section, we are testing whether
such assumption is acceptable on a dataset consisting of 18 years of daily re-
turns from 17 major financial indexes from America (S&P500, NASDAQ, TSX,
Merval, Bovespa and IPC), Europe/Middle East (AEX, ATX, BEL, DAX and
CAC40), and East Asia/Oceania (HgSg, Nikkei, BSE, KOSPI , TSEC and Al-
lOrd). The sample consists of 4619 observations, from January 7, 2000 through
September 20, 2017. Those observations, of course, are serially dependent. In
order to neutralize conditional heteroskedasticity, following the suggestion of
[39] for elliptical and possibly heavy-tailed data, they were adjusted via AR(2)-
GARCH(1,1) filtering.

We shall test for elliptical symmetry both about the fixed location θθθ0 = 0 (a
natural choice) and without specifying the center of symmetry. We thus compare

our test φ
(n)
0

with our test φ
‡(n)
t4

based on the elliptical t distribution with 4

degrees of freedom. For the entire 17-dimensional data set, we obtain for φ
(n)
0

a p-value of 0.18, hence do not reject elliptical symmetry with respect to 0. If

the location is not specified, φ
‡(n)
t4

, with p-value virtually zero, very significantly
rejects ellipticity. Now, we investigate this in more details, using a rolling window
of three years. Table A.3 in Appendix D contains the p-values corresponding to
the resulting 16 three-year periods. We still observe quite opposite conclusions
of the two tests: the specified-location test essentially never rejects, while the
unspecified-location test consistently does. The only explanation for this, which
illustrates our warnings from Section 5.5, is that the actual location is not
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0. The unspecified-location test, in case φ
‡(n)
t4

and φ
(n)
0

yield strongly opposite
conclusions, is thus far more reliable than the specified-location one, from which
we can conclude that the assumption of ellipticity in this dataset is unlikely to
be satisfied.

7. Conclusion

Based on a family of generalized skew-elliptical distributions, we are proposing
tests for the null hypothesis of elliptical symmetry under specified and unspec-
ified location, respectively. Theoretical ARE values and finite-sample simula-
tions demonstrate their excellent performance, well beyond the context of skew-
elliptical alternatives. The inherent unreliability of specified-location methods
is stressed.
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Appendix A: Proof of Theorem 2.1

Our proof of Theorem 2.1 relies on Swensen [48], Lemma 1—more precisely, on
its extension by Garel and Hallin [13]. Checking most of the conditions from
Garel and Hallin [13] is a routine task, which we leave to the reader, and the
only difficulty consists in establishing the quadratic mean differentiability of
(θθθ,ΣΣΣ,λλλ) 7→ f1/2(x;θθθ,ΣΣΣ,λλλ, f,Π), which follows from the fillowing lemma.

Lemma A.1. Letting f ∈ F1, suppose that Assumptions (A1) and (A2) hold
and that the skewing function Π is continuously differentiable at 0, with Π̇(0) 6=
0. Let

Dθθθf
1/2(x;θθθ,ΣΣΣ,000, f,Π) :=

1

2
f1/2(x;θθθ,ΣΣΣ, f)ϕf (‖ΣΣΣ−1/2(x − θθθ)‖)ΣΣΣ−1/2U(θθθ,ΣΣΣ),

DΣΣΣf
1/2(x;θθθ,ΣΣΣ,000, f,Π) :=

1

4
f1/2(x;θθθ,ΣΣΣ, f)Pd(ΣΣΣ⊗2)−1/2

× vec
(
ψf (‖ΣΣΣ−1/2(x − θθθ)‖)‖ΣΣΣ−1/2(x − θθθ)‖U(θθθ,ΣΣΣ)U′(θθθ,ΣΣΣ) − Id

)
,

and

Dλλλf
1/2(x;θθθ,ΣΣΣ,λλλ, f,Π)

∣∣∣
λλλ=000

:= f1/2(x;θθθ,ΣΣΣ, f)Π̇(0)‖ΣΣΣ−1/2(x − θθθ)‖U(θθθ,ΣΣΣ),

where U(θθθ,ΣΣΣ) := ΣΣΣ−1/2(x − θθθ)/‖ΣΣΣ−1/2(x − θθθ)‖. Then,

(i)

∫

Rd

{
f

1/2(x;θθθ,ΣΣΣ, ℓ, f, Π) − f
1/2(x;θθθ,ΣΣΣ, f) − ℓ

′
Dλλλf

1/2(x;θθθ,ΣΣΣ,λλλ, f, Π)

∣∣∣
λλλ=000

}2

dx = o(‖ℓ‖2)

and

(ii)

∫

Rd





f1/2(x; θθθ + t, ΣΣΣ + H, ℓ, f, Π) − f1/2(x; θθθ, ΣΣΣ, f)

−

(
t

vechH

ℓ

)′




Dθθθf1/2(x; θθθ, ΣΣΣ, 000, f, Π)

DΣΣΣf1/2(x; θθθ, ΣΣΣ, 000, f, Π)

Dλλλf1/2(x; θθθ, ΣΣΣ, λλλ, f, Π)

∣∣∣
λλλ=000








2

dx = o

(∥∥∥∥∥

(
t

vechH

ℓ

)∥∥∥∥∥

2)
,

where t ∈ R
d, H ∈ Sd, ℓ ∈ R

d, and o(‖ · ‖)’s are taken for ‖ · ‖ → 0.

Proof. All o(‖ ·‖)’s below are to be understood as ‖ ·‖ → 0. Starting with (i)
and letting y := ΣΣΣ−1/2(x − θθθ), the integral takes the form
∫

Rd

{
f1/2(x;θθθ,ΣΣΣ, ℓ, f,Π) − f1/2(x;θθθ,ΣΣΣ, f) − ℓ

′Dλλλf
1/2(x;θθθ,ΣΣΣ,λλλ, f,Π)

∣∣∣
λλλ=000

}2

dx

=

∫

Rd

{
Π1/2(ℓ′ΣΣΣ−1/2(x − θθθ)) − Π1/2(0) − Π1/2(0)Π̇(0)ℓ′ΣΣΣ−1/2(x − θθθ)

}2

× 2cd,f |ΣΣΣ|−1/2f(‖ΣΣΣ−1/2x − θθθ‖)dx

=

∫

Rd

{
Π1/2(ℓ′y) − Π1/2(0) − Π1/2(0)Π̇(0)ℓ′y

}2

2cd,ff(‖y‖)dy.
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Since Π(0) = 1/2, Π1/2(0)Π̇(0) = ˙(Π1/2)(0). Using the fact that Π is bounded,
we obtain, for some real constant C,

{
Π1/2(ℓ′y) − Π1/2(0) − Π1/2(0)Π̇(0)ℓ′y

}2

≤ (2C + CΠ(0)(Π̇(0))2‖y‖2)

=: C+(‖y‖2), say,

where
∫
C+(‖y‖2)2cd,ff(‖y‖)dy < ∞ since f ∈ F1. The result follows from

Lebesgue’s dominated convergence theorem combined with the fact that

{
Π1/2(ℓ′y) − Π1/2(0) − Π1/2(0)Π̇(0)ℓ′y

}2

= o(‖ℓ‖2).

Turning to (ii), the integral there is bounded by C3(S1 +S2 + ‖ℓ‖2S3), where

S1 :=

∫

Rd

{
f1/2(x;θθθ + t,ΣΣΣ + H, f) − f1/2(x;θθθ,ΣΣΣ, f)

−
(

t
vechH

)′
(
Dθθθf

1/2(x;θθθ,ΣΣΣ,000, f,Π)

DΣΣΣf
1/2(x;θθθ,ΣΣΣ,000, f,Π)

)}2

dx,

S2 :=

∫

Rd

{
f1/2(x;θθθ + t,ΣΣΣ + H, ℓ, f,Π) − f1/2(x;θθθ + t,ΣΣΣ + H, f)

− ℓ
′Dλλλf

1/2(x;θθθ + t,ΣΣΣ + H,λλλ, f,Π)
∣∣∣
λλλ=000

}2

dx,

S3 :=

∫

Rd

∥∥∥Dλλλf
1/2(x;θθθ + t,ΣΣΣ + H,λλλ, f,Π)

∣∣∣
λλλ=000

−Dλλλf
1/2(x;θθθ,ΣΣΣ,λλλ, f,Π)

∣∣∣
λλλ=000

∥∥∥
2

dx

and C3 is a strictly positive real constant.
From Lemma A.1 of Hallin and Paindaveine [24], we know that,

under Assumptions (A1) and (A2), S1 is o
(∥∥t′, vech′H

∥∥2
)

, hence

also o
(∥∥t′, vech′H, ℓ′

∥∥2
)

. It follows from (i) above that the same holds true for

S2. It thus remains to show that S3 is o(1) to complete the proof. This, however,

follows from the quadratic mean continuity of (θθθ,ΣΣΣ) 7→ Dλλλf
1/2(x;θθθ,ΣΣΣ,λλλ, f,Π),

since ||Dλλλf
1/2(x;θθθ,ΣΣΣ,λλλ, f,Π)|| belongs to L2(Rd, dx) in view of the fact that f

admits finite moments of order 2. �

Appendix B: Proof of Theorem 3.1

The following notation will be convenient here and in Appendix C. Letting θθθn :=

θθθ + n−1/2τττ
(n)
1 for some bounded sequence of d-dimensional vectors τττ

(n)
1 and

ΣΣΣn := ΣΣΣ + n−1/2τττ
(n)
2 for some bounded sequence of d × d matrices τττ

(n)
2 , define

ϑϑϑ0n := (θθθ′
n, vech′ΣΣΣn,0

′)′.
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Lemma A.2. Let h : R+ → R
+ be such that hp for p = 1 (resp., p = 2) is

integrable with respect to the measure ν, where ν is absolutely continuous with
respect to the Lebesgue measure. Then,

lim
n→∞

∫

Rd

|h(||ΣΣΣ−1/2
n (x − θθθn)||) − h(||ΣΣΣ−1/2(x − θθθ)||)|pdν(x) = 0

for p = 1 (resp., p = 2).

Proof. For any ǫ > 0, we can choose hǫ from C∞
c (R+) such

that ||h− hǫ||Lp(dν) < ǫ. Then,

lim
n→∞

∫

Rd

∣∣∣h(||ΣΣΣ−1/2
n (x − θθθn)||) − h(||ΣΣΣ−1/2(x − θθθ)||)

∣∣∣
p

dν(x)

≤ lim
n→∞

∫

Rd

∣∣∣h(||ΣΣΣ−1/2
n (x − θθθn)||) − hǫ(||ΣΣΣ−1/2

n (x − θθθn)||)
∣∣∣
p

dν(x)

+ lim
n→∞

∫

Rd

∣∣∣h(||ΣΣΣ−1/2(x − θθθ)||) − hǫ(||ΣΣΣ−1/2(x − θθθ)||)
∣∣∣
p

dν(x)

+ lim
n→∞

∫

Rd

∣∣∣hǫ(||ΣΣΣ−1/2
n (x − θθθn)||) − hǫ(||ΣΣΣ−1/2(x − θθθ)||)

∣∣∣
p

dν(x)

≤ 2ǫp + lim
n→∞

∫

Rd

∣∣∣hǫ(||ΣΣΣ−1/2
n (x − θθθn)||) − hǫ(||ΣΣΣ−1/2(x − θθθ)||)

∣∣∣
p

dν(x).

Given that hǫ ∈ C∞
c (R+), Lebesgue’s dominated convergence theorem implies

that the latter limit is zero. Now, for all ǫ > 0,

lim
n→∞

∫

Rd

∣∣∣h(||ΣΣΣ−1/2
n (x − θθθn)||) − h(||ΣΣΣ−1/2(x − θθθ)||)

∣∣∣
p

dν(x) < 2ǫp.

The claim follows. �

We now turn to the proof of Theorem 3.1.

Proof of Theorem 3.1

(i) To start with, let us show that

(∆∆∆3(ϑ̂ϑϑ0))′(ΓΓΓf ;33(ϑϑϑ0))−1∆∆∆3(ϑ̂ϑϑ0) − (∆∆∆3(ϑϑϑ0))′(ΓΓΓf ;33(ϑϑϑ0))−1∆∆∆3(ϑϑϑ0) = oP(1)

as n → ∞ under P
(n)
θθθ, ΣΣΣ, 0;f . The asymptotic linearity property combined with

Lemma 4.4 of Kreiss [35] entails that ∆∆∆3(ϑ̂ϑϑ0) − ∆∆∆3(ϑϑϑ0) = oP(1) as n → ∞.
Hence,

(∆∆∆3(ϑ̂ϑϑ0))′(ΓΓΓf ;33(ϑϑϑ0))−1∆∆∆3(ϑ̂ϑϑ0) = (∆∆∆3(ϑϑϑ0))′(ΓΓΓf ;33(ϑϑϑ0))−1∆∆∆3(ϑϑϑ0) + oP(1)

as n → ∞ under P
(n)
θθθ, ΣΣΣ, 0;f and the asymptotic normality of ∆∆∆3(ϑϑϑ0) yields the

desired result for given f . This, however, holds for any f ∈ F1 and ΣΣΣ ∈ Sd, so
that (i) follows under the entire H0;θθθ.
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(ii) By contiguity,

(∆∆∆3(ϑ̂ϑϑ0))′(ΓΓΓf ;33(ϑϑϑ0))−1∆∆∆3(ϑ̂ϑϑ0) − (∆∆∆3(ϑϑϑ0))′(ΓΓΓf ;33(ϑϑϑ0))−1∆∆∆3(ϑϑϑ0) = oP(1)

under P
(n)

θθθ,ΣΣΣ,n−1/2τττ
(n)
3 ;g,Π

for every ΣΣΣ. By the Central Limit Theorem, un-

der P
(n)
θθθ, ΣΣΣ, 0;g and as n → ∞




∆∆∆3(θθθ,ΣΣΣ, 0)

(τττ
(n)
2 )′∆∆∆g;2(θθθ,ΣΣΣ, 0) + (τττ

(n)
3 )′∆∆∆3(θθθ,ΣΣΣ, 0)

− 1
2
(τττ

(n)
2 )′ΓΓΓg;22(ϑϑϑ000)τττ

(n)
2 − 1

2
(τττ

(n)
3 )′ΓΓΓg;33(ϑϑϑ000)τττ

(n)
3 + oP(1)




D
−→ Nd+1

((
0

0

)
,

(
4(Π̇(0))2

Id 4(Π̇(0))2τττ3

4(Π̇(0))2τττ ′
3 τττ ′

2ΓΓΓg;22(θθθ,ΣΣΣ, 0)τττ 2 + τττ ′
3τττ34(Π̇(0))2

))

for τττ3 = limn→∞ τττ
(n)
3 and τττ2 = limn→∞ τττ

(n)
2 . The asymptotic distribution

of(ΓΓΓf ;33(ϑϑϑ000))−1/2∆∆∆3(θθθ,ΣΣΣ,0) under the alternative then follows from Le Cam’s
Third Lemma.

(iii) The asymptotic level α of φ
(n)
θθθ under H0;θθθ follows from the asymptotic

normality provided under (i). Local asymptotic maximinity is a consequence of
the weak convergence to Gaussian shifts of the local skewness experiments. �

Appendix C: Proof of Theorem 4.1, Lemma 4.1, and Lemma 4.2

Proof of Theorem 4.1

(i) Let us show that

(∆∆∆†
f ;3(ϑ̂ϑϑ0))′

(
ΓΓΓ†

f ;33(ϑ̂ϑϑ0)
)−1

∆∆∆†
f ;3(ϑ̂ϑϑ0)−(∆∆∆†

f ;3(ϑϑϑ0))′
(
ΓΓΓ†

f ;33(ϑϑϑ0)
)−1

∆∆∆†
f ;3(ϑϑϑ0) (A.1)

is oP(1) as n → ∞ under P
(n)
θθθ, ΣΣΣ, 0;f . Continuity of the Fisher information matrices

and asymptotic linearity yield

∆∆∆
†
f ;3(θ̂θθ, Σ̂ΣΣ,0) = ∆∆∆3(θ̂θθ, Σ̂ΣΣ,0) − ΓΓΓf ;13(ϑ̂ϑϑ0)ΓΓΓ−1

f ;11(ϑ̂ϑϑ0)∆∆∆f ;1(θ̂θθ, Σ̂ΣΣ,0)

= ∆∆∆3(θ̂θθ, Σ̂ΣΣ,0) − ΓΓΓf ;13(ϑϑϑ0)ΓΓΓ−1
f ;11(ϑϑϑ0)∆∆∆f ;1(θ̂θθ, Σ̂ΣΣ,0) + oP(1)

= ∆∆∆3(θθθ,ΣΣΣ,0) − ΓΓΓf ;13(ϑϑϑ0)n1/2(θ̂θθ − θθθ) − ΓΓΓf ;13(ϑϑϑ0)ΓΓΓ−1
f ;11(ϑϑϑ0)∆∆∆f ;1(θθθ,ΣΣΣ,0)

+ ΓΓΓf ;13(ϑϑϑ0)ΓΓΓ−1
f ;11(ϑϑϑ0)ΓΓΓf ;11(ϑϑϑ0)n1/2(θ̂θθ − θθθ) + oP(1)

= ∆∆∆3(θθθ,ΣΣΣ,0) − ΓΓΓf ;13(ϑϑϑ0)ΓΓΓ−1
f ;11(ϑϑϑ0)∆∆∆f ;1(θθθ,ΣΣΣ,0) + oP(1)

= ∆∆∆†
f ;3(θθθ,ΣΣΣ,0) + oP(1)

as n → ∞ under P
(n)
θθθ, ΣΣΣ, 0;f . The continuous mapping theorem implies

that ΓΓΓ†
f ;33(ϑ̂ϑϑ0) − ΓΓΓ†

f ;33(ϑϑϑ0) = oP(1), so that
(
ΓΓΓ†

f ;33(ϑ̂ϑϑ0)
)−1

−
(
ΓΓΓ†

f ;33(ϑϑϑ0)
)−1

is oP(1) under P
(n)
θθθ, ΣΣΣ, 0;f . A simple application of Slutsky’s Lemma then yields
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the desired result that (A.1) is oP(1); the asymptotic normality of ∆∆∆
†
f ;3(ϑϑϑ0)

completes the proof of this part of the theorem.

(ii) By contiguity,

(∆∆∆†
f ;3(ϑ̂ϑϑ0))′(ΓΓΓ†

f ;33(ϑ̂ϑϑ0))−1∆∆∆†
f ;3(ϑ̂ϑϑ0) − (∆∆∆†

f ;3(ϑϑϑ0))′(ΓΓΓ†
f ;33(ϑϑϑ0))−1∆∆∆†

f ;3(ϑϑϑ0) = oP(1)

under P
(n)

θθθ,ΣΣΣ,n−1/2τττ
(n)
3 ;f,Π

for every θθθ and ΣΣΣ. The Central Limit Theorem entails

(
∆∆∆†

f ;3(θθθ,ΣΣΣ,0)

(τττ (n))′((∆∆∆f ;1(ϑϑϑ0))′, (∆∆∆f ;2(ϑϑϑ0))′, (∆∆∆3(ϑϑϑ0))′)′ − 1
2 (τττ (n))′ΓΓΓf (ϑϑϑ0)τττ (n) + oP(1)

)

D→ Nd+1



(

0
0

)
,




4(Π̇(0))2 Id,f − d

Id,f
Id 4(Π̇(0))2 Id,f − d

Id,f
τττ3

4(Π̇(0))2 Id,f − d

Id,f
τττ ′

3 τττ ′ΓΓΓf (ϑϑϑ0)τττ







under P
(n)
θθθ, ΣΣΣ, 0;f for τττ = (τττ ′

1, τττ
′
2, τττ

′
3)′ with τττ j = limn→∞ τττ

(n)
j for j = 1, 2, 3. The

asymptotic distribution of (ΓΓΓ†
f ;33(ϑϑϑ0))−1/2∆∆∆†

f ;3(θθθ,ΣΣΣ,0) under the alternative fol-
lows from Le Cam’s Third Lemma.

(iii) The asymptotic level α of φ
(n)
f under H0;f follows from the asymptotic

normality provided under (i). Local asymptotic maximinity is a consequence of
the weak convergence to Gaussian shifts of the local skewness experiments. �

Proof of Lemma 4.1

Rewrite the difference K̂d,f(θ̂θθ, Σ̂ΣΣ) − Kd,f,g as

K̂d,f (θ̂θθ, Σ̂ΣΣ) − K̂d,f (θθθ,ΣΣΣ) + K̂d,f (θθθ,ΣΣΣ) − Kd,f,g.

The Law of Large Numbers implies that K̂d,f (θθθ,ΣΣΣ) − Kd,f,g = oP(1) as n → ∞
under P

(n)
θθθ, ΣΣΣ, 0;g. Letting h(r) = ϕ′

f (r) + d−1
r ϕf (r) in Lemma A.2 with p = 1

(integrability w.r.t. rd−1g(r)dr holds since g ∈ F1;f ), we get the L1-convergence

to zero of K̂d,f (θθθn,ΣΣΣn) − K̂d,f (θθθ,ΣΣΣ), hence also

K̂d,f (θθθn,ΣΣΣn) − K̂d,f (θθθ,ΣΣΣ) = oP(1) as n → ∞ under P
(n)
θθθ, ΣΣΣ, 0;g. (A.2)

This, combined with Lemma 4.4 of Kreiss [35], concludes the proof. �

Proof of Lemma 4.2

(i) Rewrite ∆∆∆‡
f ;3(ϑ̂ϑϑ0) − ∆∆∆‡

fg;3(ϑϑϑ0) as

∆∆∆‡
f ;3(ϑ̂ϑϑ0) − ∆∆∆‡

f ;3(ϑϑϑ0) + ∆∆∆‡
f ;3(ϑϑϑ0) − ∆∆∆‡

fg;3(ϑϑϑ0).
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We have

∆∆∆‡
f ;3(ϑϑϑ0)−∆∆∆‡

fg;3(ϑϑϑ0)

= − 2Π̇(0)dn−1/2
n∑

i=1

ϕf (di(θθθ,ΣΣΣ))Ui(θθθ,ΣΣΣ)

(
1

K̂d,f (θθθ,ΣΣΣ)
− 1

Kd,f,g

)
.

The continuous mapping theorem combined with the Law of Large Numbers,
the fact that Kd,f,g 6= 0, and the integrability of ϕf w.r.t. rd−1g(r)dr yield

∆∆∆‡
f ;3(ϑϑϑ0) − ∆∆∆‡

fg;3(ϑϑϑ0) = oP(1)

as n → ∞ under P
(n)
θθθ, ΣΣΣ, 0;g.

Next, let us show that ∆∆∆‡
f ;3(ϑ̂ϑϑ0)−∆∆∆‡

f ;3(ϑϑϑ0) = oP(1) as n → ∞ under P
(n)
θθθ, ΣΣΣ, 0;g.

Therefore, note that (in view of the existence of finite second-order moments)

n−1/2
n∑

i=1

[di(θθθn,ΣΣΣn)Ui(θθθn,ΣΣΣn) − di(θθθ,ΣΣΣ)Ui(θθθ,ΣΣΣ)] = oL2(1)

as n → ∞ under P
(n)
θθθ, ΣΣΣ, 0;g, which directly implies the convergence in probability.

Let us show that, similarly,

n−1/2
n∑

i=1

[
1

K̂d,f (θθθn,ΣΣΣn)
ϕf (di(θθθn,ΣΣΣn))Ui(θθθn,ΣΣΣn)

− 1

K̂d,f(θθθ,ΣΣΣ)
ϕf (di(θθθ,ΣΣΣ))Ui(θθθ,ΣΣΣ)

]
= oP(1).

The latter expression can be rewritten as

[
1

K̂d,f(θθθn,ΣΣΣn)
− 1

K̂d,f(θθθ,ΣΣΣ)

]
n−1/2

n∑

i=1

ϕf (di(θθθn,ΣΣΣn))Ui(θθθn,ΣΣΣn)

+
n−1/2

K̂d,f (θθθ,ΣΣΣ)

n∑

i=1

[ϕf (di(θθθn,ΣΣΣn))Ui(θθθn,ΣΣΣn)−ϕf(di(θθθ,ΣΣΣ))Ui(θθθ,ΣΣΣ)] .

(A.3)

Combined with the continuous mapping theorem, (A.2) implies

that
1

K̂d,f(θθθn,ΣΣΣn)
− 1

K̂d,f(θθθ,ΣΣΣ)
is oP(1) as n → ∞ under P

(n)
θθθ, ΣΣΣ, 0;g, which takes

care of the first term in (A.3) provided that

n−1/2
n∑

i=1

ϕf (di(θθθn,ΣΣΣn))Ui(θθθn,ΣΣΣn) = OP(1)
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as n → ∞ under P
(n)
θθθ, ΣΣΣ, 0;g. This fact, however, follows from the Central Limit

Theorem applied to n−1/2
∑n

i=1 ϕf (di(θθθ,ΣΣΣ))Ui(θθθ,ΣΣΣ) and the L2 convergence to
zero of

n−1/2
n∑

i=1

[ϕf (di(θθθn,ΣΣΣn))Ui(θθθn,ΣΣΣn) − ϕf (di(θθθ,ΣΣΣ))Ui(θθθ,ΣΣΣ)] ,

which we shall establish now (that proof is also required for showing that the
second term above is oP(1)). It is sufficient to show that

E [‖ϕf (di(θθθn,ΣΣΣn)) [Ui(θθθn,ΣΣΣn) − Ui(θθθ,ΣΣΣ)]

+ [ϕf (di(θθθn,ΣΣΣn)) − ϕf (di(θθθ,ΣΣΣ))] Ui(θθθ,ΣΣΣ)‖2
]

=: E1 + E2 = o(1)

as n → ∞ under P
(n)
θθθ, ΣΣΣ, 0;g. Applying Hölder’s inequality for p = (2 + ǫ)/2

and q = (2 + ǫ)/ǫ, then using the fact that g ∈ F1;f and ‖Ui(θθθn,ΣΣΣn)‖ ≤ 1,
together with Lebesgue’s dominated convergence theorem, one easily obtains
that E1 = o(1). The convergence to zero of E2 follows from Lemma A.2
with h(r) = ϕf (r) and p = 2 (integrability w.r.t. rd−1g(r)dr holds
for g ∈ F1;f ). Since L2 convergence implies convergence in probability, the Law

of Large Numbers and the continuous mapping theorem applied to K̂
−1
d,f(θθθ,ΣΣΣ)

complete the proof of part (i).

(ii) We still have to show that Γ̂ΓΓ
‡

f (ϑ̂ϑϑ0) − ΓΓΓ‡
f (ϑϑϑ0) = oP(1) as n → ∞ un-

der P
(n)
θθθ, ΣΣΣ, 0;g. In view of Lemma 4.4 of Kreiss [35], this reduces to proving that

Γ̂ΓΓ
‡

f (ϑϑϑ0n) − ΓΓΓ‡
f (ϑϑϑ0) = oP(1). The latter rewrites as

Γ̂ΓΓ
‡

f (ϑϑϑ0n) − ΓΓΓ‡
f (ϑϑϑ0n) + ΓΓΓ‡

f (ϑϑϑ0n) − ΓΓΓ‡
f (ϑϑϑ0) =:

4(Π̇(0))2

d
(A1 + A2).

Term A1 takes the form

A1 = − 2d

n

n∑

i=1

di(θθθn,ΣΣΣn)ϕf (di(θθθn,ΣΣΣn))

(
1

K̂d,f (θθθn,ΣΣΣn)
− 1

Kd,f,g

)

+
d2

n

n∑

i=1

(ϕf (di(θθθn,ΣΣΣn)))2

(
1

(K̂d,f (θθθn,ΣΣΣn))2
− 1

(Kd,f,g)2

)
.

The proof of Lemma 4.1, combined with the continuous mapping theorem, im-
plies that both

1

K̂d,f (θθθn,ΣΣΣn)
− 1

Kd,f,g
and

1

(K̂d,f (θθθn,ΣΣΣn))2
− 1

(Kd,f,g)2

are oP(1) as n → ∞ under P
(n)
θθθ, ΣΣΣ, 0;g. Using similar arguments as above, one can

show that

1

n

n∑

i=1

di(θθθn,ΣΣΣn)ϕf (di(θθθn,ΣΣΣn)) − 1

n

n∑

i=1

di(θθθ,ΣΣΣ)ϕf (di(θθθ,ΣΣΣ)) = oL1(1),



Babić, Gelbgras, Hallin, and Ley/Optimal tests for elliptical symmetry 38

hence that 1
n

∑n
i=1 di(θθθn,ΣΣΣn)ϕf (di(θθθn,ΣΣΣn)) is OP(1) as n → ∞ under P

(n)
θθθ, ΣΣΣ, 0;g.

A similar conclusion holds for 1
n

∑n
i=1(ϕf (di(θθθn,ΣΣΣn)))2, which is also OP(1). It

follows that Γ̂ΓΓ
‡

f (ϑϑϑ0n) − ΓΓΓ‡
f (ϑϑϑ0n) = oP(1) as n → ∞ under P

(n)
θθθ, ΣΣΣ, 0;g.

By Lemma A.2 with h(r) = (r − d
Kd,f,g

ϕf (r))2 and p = 1 (integrability with

respect to rd−1g(r)dr follows from the square integrability of r and ϕf (r)), we

get the L1 convergence, hence the convergence to zero in probability of ΓΓΓ‡
f (ϑϑϑ0n)−

ΓΓΓ‡
f (ϑϑϑ0) under P

(n)
θθθ, ΣΣΣ, 0;g. �

Appendix D: Additional numerical results

Tables A.1 and A.2 below are providing the finite-sample rejection frequencies,
as described in Section 5.4, of the unspecified-location tests: our optimal tests

φ
‡(n)
f (f elliptical Student with ν = 2.1, 4, and 8 degrees of freedom), Schott’s

test φ
(n)
Schott, and Cassart’s pseudo-Gaussian test φ

(n)
pG , in dimension d = 3.

Table A.3 shows the p-values for the optimal semiparametric test φ
(n)
0

(spec-
ified location θθθ0 = 0) and the optimal semiparametric test for unspecified loca-

tion φ
‡(n)
t4

, both applied to three-year subseries of the 17-dimensional financial
return data described in Section 6.
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Table A.1
Rejection frequencies (out of N = 3, 000 replications), under various three-dimensional

elliptical (λλλ = (0, 0, 0)) and related skewed densities (increasing λλλ values), of our

unspecified-location optimal tests φ
‡;(n)
f

(f the trivariate elliptical t distributions with 2.1, 4,

and 8 degrees of freedom), Schott’s test φ
(n)
Schott

and Cassart’s pseudo-Gaussian test φ
(n)
pG

for

the null hypothesis of ellipticity with unspecified location. The sample size is n = 100, the
nominal probability level 5%.

Method\λλλ (0, 0, 0) (1, −2, 0) (1, 1, 1) (2, 2, 2) (3, 3, 3)

Skew-normal

φ
‡(n)
t2.1

0.044 0.110 0.199 0.463 0.558

φ
‡(n)
t4

0.045 0.118 0.207 0.468 0.572

φ
‡(n)
t8

0.046 0.119 0.211 0.466 0.564

φ
(n)
Schott 0.038 0.038 0.038 0.038 0.049

φ
(n)
pG 0.043 0.122 0.062 0.083 0.088

Skew-t2.1

φ
‡(n)
t2.1

0.023 0.369 0.436 0.571 0.578

φ
‡(n)
t4

0.018 0.276 0.328 0.446 0.455

φ
‡(n)
t8

0.015 0.202 0.227 0.320 0.328

φ
(n)
Schott 0.270 0.293 0.315 0.317 0.324

φ
(n)
pG 0.014 0.106 0.107 0.158 0.153

Skew-t4.1

φ
‡(n)
t2.1

0.040 0.507 0.637 0.845 0.867

φ
‡(n)
t4

0.037 0.446 0.557 0.773 0.802

φ
‡(n)
t8

0.032 0.364 0.459 0.659 0.692

φ
(n)
Schott 0.047 0.042 0.051 0.055 0.057

φ
(n)
pG 0.033 0.224 0.195 0.267 0.274

Skew-t8

φ
‡(n)
t2.1

0.038 0.367 0.507 0.781 0.839

φ
‡(n)
t4

0.040 0.349 0.483 0.753 0.807

φ
‡(n)
t8

0.036 0.316 0.436 0.692 0.746

φ
(n)
Schott 0.039 0.041 0.034 0.049 0.053

φ
(n)
pG 0.043 0.223 0.158 0.209 0.228

Skew-t10

φ
‡(n)
t2.1

0.045 0.310 0.439 0.724 0.799

φ
‡(n)
t4

0.047 0.304 0.420 0.706 0.778

φ
‡(n)
t8

0.049 0.281 0.393 0.658 0.730

φ
(n)
Schott 0.034 0.039 0.036 0.040 0.049

φ
(n)
pG 0.054 0.213 0.134 0.184 0.208
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Table A.2
Rejection frequencies (out of N = 3, 000 replications), under various three-dimensional

elliptical (λλλ = (0, 0, 0)) and related skewed densities (increasing λλλ values), of our

unspecified-location optimal tests φ
‡;(n)
f

(f the trivariate elliptical t distributions with 2.1, 4,

and 8 degrees of freedom), Schott’s test φ
(n)
Schott

and Cassart’s pseudo-Gaussian test φ
(n)
pG

for

the null hypothesis of ellipticity with unspecified location. The sample size is n = 100, the
nominal probability level 5%.

Method\λλλ (0, 0, 0) (0.15, −2, 0) (0.15, 0.15, 0.15) (0.3, 0.3, 0.3) (0.45, 0.45, 0.45)

SAS-normal

φ
‡(n)
t2.1

0.049 0.175 0.266 0.840 0.993

φ
‡(n)
t4

0.050 0.174 0.271 0.844 0.991

φ
‡(n)
t8

0.046 0.173 0.263 0.827 0.986

φ
(n)
Schott 0.037 0.043 0.032 0.032 0.041

φ
(n)
pG 0.054 0.354 0.386 0.936 0.998

SAS-t4.1

φ
‡(n)
t2.1

0.039 0.108 0.123 0.400 0.701

φ
‡(n)
t4

0.038 0.095 0.104 0.345 0.606

φ
‡(n)
t8

0.035 0.083 0.087 0.269 0.489

φ
(n)
Schott 0.045 0.040 0.045 0.049 0.057

φ
(n)
pG 0.032 0.124 0.113 0.365 0.633

LSGM

φ
‡(n)
t2.1

0.050 0.054 0.073 0.182 0.398

φ
‡(n)
t4

0.046 0.051 0.069 0.149 0.335

φ
‡(n)
t8

0.042 0.047 0.058 0.123 0.269

φ
(n)
Schott 0.461 0.452 0.450 0.450 0.429

φ
(n)
pG 0.058 0.057 0.073 0.132 0.254

Gaussian Mixture

µµµ1 (0, 0, 0) (0, 0, 0) (1, 0, 0) (1, 0, 0) (1, 0, 0)
µµµ2 (0, 0, 0) (−1, 0, 0) (−1, 0, 0) (−2, 0, 0) (−3, 0, 0)

φ
‡(n)
t2.1

0.044 0.436 0.905 0.955 0.957

φ
‡(n)
t4

0.044 0.404 0.860 0.915 0.911

φ
‡(n)
t8

0.044 0.365 0.777 0.832 0.815

φ
(n)
Schott 0.081 0.083 0.120 0.236 0.383

φ
(n)
pG 0.057 0.118 0.142 0.114 0.093
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Table A.3
p-values for testing for elliptical symmetry in 17-dimensional financial return data for

rolling windows over three years. We compare the optimal semiparametric test φ
(n)
0

for fixed

θθθ0 = 0 with the optimal semiparametric test for unspecified location φ
‡(n)
t4

based on the
multivariate t distribution with 4 degrees of freedom.

Start End p-value φ
‡(n)
t4

p-value φ
(n)
0

Number of observations

2000-01-07 2002-12-31 0.107659 0.041650 778
2001-01-01 2003-12-31 0.571561 0.480889 783
2002-01-01 2004-12-31 0.251470 0.527236 784
2003-01-01 2005-12-30 0.028470 0.276275 783
2004-01-01 2006-12-29 0.007923 0.243174 782
2005-01-03 2007-12-31 0.000157 0.286752 781
2006-01-02 2008-12-31 0.000152 0.100240 783
2007-01-01 2009-12-31 0.000146 0.183233 784
2008-01-01 2010-12-31 0.005695 0.872441 784
2009-01-01 2011-12-30 0.000010 0.904906 782
2010-01-01 2012-12-31 0.000103 0.626142 782
2011-01-03 2013-12-31 0.011507 0.109618 782
2012-01-02 2014-12-31 0.035069 0.204622 783
2013-01-01 2015-12-31 0.000004 0.027661 783
2014-01-01 2016-12-30 0.000011 0.380901 783
2015-01-01 2017-09-20 0.006327 0.766111 710
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