exhalation; radon; thoron; underground coal mine; Air Pollutants, Radioactive; Coal; Radon; Exhalation; Radon/analysis; Radiation Monitoring; Pollution; Public Health, Environmental and Occupational Health
Abstract :
[en] The objective of this work was to perform a series of measurements of radon and thoron exhalation in the underground workings of an experimental coal mine. In the years 2012-2015, experiments on underground coal gasification were carried out in a coal mine, which caused, among other effects, damage to rock mass. Afterward, periodic increases in the concentration of potential alpha energy (PAEC) of radon decay products in the air were found, which could pose a hazard to miners. The question posed was whether the gasification experiment resulted in the increased migration of radon and thoron. If so, did it increase the radiation hazard to miners? The adaptation of the existing instrumentation to the specific conditions was conducted, and a series of measurements were made. It was found that the measured values of radon and thoron exhalation rates ranged from 3.0 up to 38 Bq·m-2·h-1 for radon and from 500 up to 2000 Bq·m-2·h-1 for thoron.
Disciplines :
Physical, chemical, mathematical & earth Sciences: Multidisciplinary, general & others
Author, co-author :
Bonczyk, Michał ; Główny Instytut Górnictwa, Plac Gwarków 1, 40-166 Katowice, Poland
Chałupnik, Stanisław; Główny Instytut Górnictwa, Plac Gwarków 1, 40-166 Katowice, Poland
Wysocka, Malgorzata; Główny Instytut Górnictwa, Plac Gwarków 1, 40-166 Katowice, Poland
Grygier, Agata; Główny Instytut Górnictwa, Plac Gwarków 1, 40-166 Katowice, Poland
Hildebrandt, Robert ; Główny Instytut Górnictwa, Plac Gwarków 1, 40-166 Katowice, Poland
TOSHEVA, Zornitza ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Physics and Materials Science (DPHYMS)
External co-authors :
yes
Language :
English
Title :
The Determination of Radon/Thoron Exhalation Rate in an Underground Coal Mine-Preliminary Results.
Publication date :
16 May 2022
Journal title :
International Journal of Environmental Research and Public Health
MNiSW - Polish Ministry of Science and Higher Education
Funding number :
11121011
Funding text :
Funding: This research was funded by the Polish Ministry of Education and Science within the statutory activity in the year 2021 of the Central Mining Institute, contract number 11353011.
Skowronek, J.; Skubacz, K.; Michalik, B.; Kajdasz, R.; Strześniewicz, Z. Moritoring and control of the radon hazard in Polish coal mines. In Proceedings of the 1997 International Symposium “Radon and Thoron in Human Environment”, Fukuoka, Japan, 24–25 October 1997.
Tanner, A.B. Radon migration in the ground: A review. In Proceedings of the International Symposium on the Natural Radiation Environment, Houston, TX, USA, 10–13 April 1963; Adams, J.A.S., Lowder, W.M., Eds.; University of Chicago Press: Chicago, IL, USA, 1964; pp. 161–190.
Tanner, A.B. Radon Migration in the Ground: A Supplementary Review. In Proceedings of the International Symposium on the Natural Radiation Environment III, Houston, TX, USA, 23–28 April 1978; Gesell, T.F., Lowder, W.M., Eds.; U.S. Department of Energy: Washington, DC, USA, 1980; Volume 1, pp. 5–56. [CrossRef]
Wysocka, M.; Skowronek, J.; Syrek, B.; Poręba, G. Changes of Radon Concentration in Soil Gas over Some Main Faults in Upper Silesia Coal Basin; Series M-22 (310); Institute of Geophysics of the Polish Academy of Sciences: Warsaw, Poland, 1999.
Shahrokhi, A.; Vigh, T.; Németh, C.; Csordás, A.; Kovács, T. Radon measurements and dose estimate of workers in a manganese ore mine. Appl. Radiat. Isot. 2017, 124, 32–37. [CrossRef] [PubMed]
Hewson, G.S.; Ralph, M.I. An investigation into radiation exposures in underground non-uranium mines in Western Australia. J. Radiol. Prot. 1994, 14, 359–370. [CrossRef]
Duggan, M.J.; Howell, D.M.; Soilleux, P.J. Concentrations of222Radon in coal mines in England and Scotland. Nature 1968, 219, 1149. [CrossRef] [PubMed]
Vanmarcke, H. Exhalation of radon and thoron from phosphogypsum used as building material. In Proceedings of the 9th International Radiation Protection Association Congress, Vienna, Austria, 14–19 April 1996.
Čeliković, I.T.; Pantelić, G.K.; Živanović, M.Z.; Vukanac, I.S.; Krneta Nikolić, J.D.; Kandić, A.B.; Lončar, B.B. Radon and thoron exhalation rate measurements from building materials used in Serbia. Nukleonika 2020, 65, 111–114. [CrossRef]
Cosma, C.; Cozar, O.; Jurcut, T.; Baciu, C.; Pop, I. Simultaneous measurement of radon and thoron exhalation rate from soil and building materials. Nat. Radiat. Environ. 2005, 7, 699–705. [CrossRef]
Jónás, J.; Sas, Z.; Vaupotic, J.; Kocsis, E.; Somlai, J.; Kovács, T. Thoron emanation and exhalation of Slovenian soils determined by a PIC detector-equipped radon monitor. Nukleonika 2016, 61, 379–384. [CrossRef]
Kumar, A.; Chauhan, R.P.; Joshi, M.; Prajith, R.; Sahoo, B.K. Estimation of radionuclides content and radon-thoron exhalation from commonly used building materials in India. Environ. Earth Sci. 2015, 74, 1539–1546. [CrossRef]
Frutos-Puerto, S.; Pinilla-Gil, E.; Andrade, E.; Reis, M.; Madruga, M.J.; Miró Rodríguez, C. Radon and thoron exhalation rate, emanation factor and radioactivity risks of building materials of the Iberian Peninsula. PeerJ 2020, 8, e10331. [CrossRef]
Mehta, V.; Singh, S.P.; Chauhan, R.P.; Mudahar, G.S. Study of Indoor Radon, Thoron, Their Progeny Concentration and Radon Exhalation Rate in the Environs of Mohali, Punjab, Northern India. Aerosol Air Qual. Res. 2015, 15, 1380–1389. [CrossRef]
Nazaroff, W.W.; Nero, A.V. Radon and Its Decay Products in Indoor Air; John Wiley and Sons Incorporated: New York, NY, USA, 1988.
Wilkening, M.; Clements, W.E.; Stanley, D.222Radon flux measurements in widely separated regions. In The Natural Radiation Environment VII; Adams, J.A.S., Lowder, W.M., Gesell, T.F., Eds.; USAEC Report Conf-720805-P2; National Technical Information Service: Springfield, VA, USA, 1972.
Porstendorfer, J. Radon and thoron and their decay products. In Proceedings of the 5th International Conference on Natural Radiation Environment, Salzburg, Austria, 22–28 September 1991.
Colle, R.; Rubin, R.J.; Knab, L.I.; Hutchins, T.M.R. Radon Transport through and Exhalation from Building Materials; National Bureau of Standards Technical Note 1139; National Technical Information Service: Springfield, VA, USA, 1981.
Wysocka, M. Correlation of Radon Levels in Upper Silesia Region with Geological and Mining Conditions. Ph.D. Thesis, Central Mining Institute, Katowice, Poland, 2002. (In Polish)
Wysocka, M.; Chałupnik, S. Correlation of radon concentration level with mining and geological conditions in Upper Silesia region. J. Min. Sci. 2003, 30, 199–206. [CrossRef]
Skowronek, J.; Skubacz, K.; Chalupnik, S.; Kajdasz, R.; Nalepa, S. A comparison of environmental and personal control of short-lived radon decay products in hard coal mines. Nukleonika 1993, 38, 121–136.
Lubin, J.H.; Boice, J.D., Jr.; Edling, C.; Hornung, R.W.; Howe, G.R.; Kunz, E.; Kusiak, R.A.; Morrison, H.I.; Radford, E.P.; Samet, J.M.; et al. Lung cancer in radon-exposed miners and estimation of risk from indoor exposure. J. Natl. Cancer Inst. 1995, 87, 817–827. [CrossRef] [PubMed]
NRC. Comparative Dosimetry of Radon in Mines and Homes; National Research Council, National Academy Press: Washington DC, USA, 1991; ISBN 0-309-04484-7.
Sharma, N.; Virk, H.S. Exhalation rate study of radon/thoron in some building materials. Radiat. Meas. 2001, 34, 467–469. [CrossRef]
Hosoda, M.; Tokonami, S.; Sorimachi, A.; Ishikawa, T.; Sahoo, S.K.; Furukawa, M.; Shiroma, Y.; Yasuoka, Y.; Janik, M.; Kavasi, N.; et al. Influence of soil environmental parameters on thoron exhalation rate. Radiat. Prot. Dosim. 2010, 141, 420–423. [CrossRef] [PubMed]
Nguyễn, N.T.A.; Nguyễn-Thùy, D.; Nguyễn, H.V.; Schimmelmann, A. Radioactive Thoron220Rn Exhalation from Unfired Mud Building Material Into Room Air of Earthen Dwellings. Earth Sci. 2021, 9, 629241. [CrossRef]
Kaur, M.; Kumar, A.; Mehra, R.; Mishra, R. Study of radon/thoron exhalation rate, soil-gas radon concentration, and assessment of indoor radon/thoron concentration in Siwalik Himalayas of Jammu & Kashmir. Hum. Ecol. Risk Assess. Int. J. 2018, 24, 2275–2287. [CrossRef]
Chauhan, R.P.; Kumar, A.; Chauhan, N.; Joshi, M.; Aggarwal, P.; Sahoo, B.K. Ventilation effect on indoor radon-thoron levels in dwellings and correlation with soil exhalation rates. Indoor Built Environ. 2016, 25, 203–212. [CrossRef]
Janik, M.; Omori, Y.; Yonehara, H. Influence of humidity on radon and thoron exhalation rates from building materials. Appl. Radiat. Isot. 2015, 95, 102–107. [CrossRef]
Narang, S.; Kumar, D.; Sharma, D.K.; Kumar, A. A study of indoor radon, thoron and their exhalation rates in the environment of Fazilka district, Punjab, India. Acta Geophys. 2018, 66, 1233–1241. [CrossRef]
Kanse, S.D.; Sahoo, B.K.; Gaware, J.J.; Sapra, B.K. A novel method based on220Rn (thoron) exhalation rate of indoor surfaces for robust estimates of220Rn concentration and equilibrium factor to compute inhalation dose. Chemosphere 2021, 267, 128908. [CrossRef]
Rozporzadzenie,˛ 2013, Decree of the Polish Ministry of Environment, Dated 29th January 2013, on the Natural Hazards in Mines, with Amendments Dz.U.2021.1617. Available online: https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=wdu20130000230 (accessed on 13 May 2022).
Skubacz, K.; Wojtecki, L.; Urban, P. Aerosol concentration and particle size distributions in underground excavations of a hard coal mine. Int. J. Occup. Saf. Ergon. 2017, 23, 318–327. [CrossRef] [PubMed]
Page, D.; Smith, D.M. The Distribution of Radon and its Decay Products in Some UK Coal Mines. Radiat. Prot. Dosim. 1992, 45, 163–166. [CrossRef]
Chalupnik, S.; Skubacz, K.; Urban, P.; Wysocka, M. Measurements of airbone concentrations of radon and thoron decay produchts. Radiat. Prot. Dosim. 2017, 177, 45–48. [CrossRef] [PubMed]
Skubacz, K.; Michalik, B.; Wysocka, M. Occupational radiation risk caused by NORM in coal mining industry. Radioprotection 2011, 46, S669–S674. [CrossRef]
Skubacz, K.; Wysocka, M.; Michalik, B.; Dziurzynski, W.; Krach, A.; Krawczyk, J.; Palka, T. Modelling of radon hazards in underground mine workings. Sci. Total Environ. 2019, 695, 133853. [CrossRef] [PubMed]
Sahu, P.; Panigrahi, D.C.; Mishra, D.P. Sources of radon and its measurement techniques in underground uranium mines—An overview. J. Sustain. Min. 2014, 13, 11–18. [CrossRef]
Stańczyk, K.; Dubiński, J.; Cybulski, K.; Wiatowski, M.; Świadrowski,˛ J.; Kapusta, K.; Rogut, J.; Smoliński, A.; Krause, E.; Grabowski, J. Underground coal gasification—World experience and experiments performed in experimental mine Barbara. Energy Policy J. 2010, 13, 423–433.
Chałupnik, S.; Wysocka, M. Measurement of radon exhalation from soil—Development of the method and preliminary results. J. Min. Sci. 2003, 30, 191–198. [CrossRef]
Tan, Y.L.; Xiao, D.T. The method for recalibration of thoron concentration reading of RAD7 and obtaining the thoron exhalation rate from soil surface. Nucl. Technol. Radiat. Prot. 2013, 28, 92–96. [CrossRef]
Chałupnik, S.; Meisenberg, O.; Bi, L.; Wang, J.; Skubacz, K.; Tschiersch, J. Application of LSC and TLD methods for the measurement of radon and thoron decay products in air. Radiat. Prot. Dosim. 2010, 141, 390–394. [CrossRef]