BXD mice; UK Biobank; computational biology; high-fat diet; human; inflammatory bowel disease (IBD); module quantitative trait locus (ModQTL) mapping; mouse; systems biology; systems genetics; Mice; Humans; Animals; Quantitative Trait Loci; Diet, High-Fat/adverse effects; Inflammation/genetics; Inflammation/complications; Genetic Predisposition to Disease; Inflammatory Bowel Diseases/genetics; Inflammatory Bowel Diseases/metabolism; Diet, High-Fat; Inflammation; Inflammatory Bowel Diseases; Neuroscience (all); Biochemistry, Genetics and Molecular Biology (all); Immunology and Microbiology (all); General Immunology and Microbiology; General Biochemistry, Genetics and Molecular Biology; General Medicine; General Neuroscience
Abstract :
[en] Inflammatory gut disorders, including inflammatory bowel disease (IBD), can be impacted by dietary, environmental, and genetic factors. While the incidence of IBD is increasing worldwide, we still lack a complete understanding of the gene-by-environment interactions underlying inflammation and IBD. Here, we profiled the colon transcriptome of 52 BXD mouse strains fed with a chow or high-fat diet (HFD) and identified a subset of BXD strains that exhibit an IBD-like transcriptome signature on HFD, indicating that an interplay of genetics and diet can significantly affect intestinal inflammation. Using gene co-expression analyses, we identified modules that are enriched for IBD-dysregulated genes and found that these IBD-related modules share cis-regulatory elements that are responsive to the STAT2, SMAD3, and REL transcription factors. We used module quantitative trait locus analyses to identify genetic loci associated with the expression of these modules. Through a prioritization scheme involving systems genetics in the mouse and integration with external human datasets, we identified Muc4 and Epha6 as the top candidates mediating differences in HFD-driven intestinal inflammation. This work provides insights into the contribution of genetics and diet to IBD risk and identifies two candidate genes, MUC4 and EPHA6, that may mediate IBD susceptibility in humans.
Disciplines :
Genetics & genetic processes
Author, co-author :
Li, Xiaoxu ; Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
Morel, Jean-David; Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
Benegiamo, Giorgia ; Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
Poisson, Johanne ; Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
Bachmann, Alexis; Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
Rapin, Alexis; Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
Sulc, Jonathan; Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
WILLIAMS, Evan ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Gene Expression and Metabolism
Perino, Alessia; Laboratory of Metabolic Signaling, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
Schoonjans, Kristina ; Laboratory of Metabolic Signaling, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
Bou Sleiman, Maroun; Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
Auwerx, Johan ; Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
External co-authors :
yes
Language :
English
Title :
Genetic and dietary modulators of the inflammatory response in the gastrointestinal tract of the BXD mouse genetic reference population.
European Research Council National Research Foundation of Korea China Scholarship Council
Funding text :
We thank the Schoonjans’ and Auwerx’s lab members for technical assistance and discussions and Giacomo von Alvensleben for providing the GWAS analysis pipeline in human UKBB. The work in the JA laboratory was supported by grants from the Ecole Polytechnique Fédérale de Lausanne (EPFL), the European Research Council (ERC-AdG-787702), the Swiss National Science Foundation (SNSF 31003A_179435), and the Global Research Laboratory (GRL) National Research Foundation of Korea (NRF 2017K1A1A2013124). XL was supported by the China Scholarship Council (201906050019).
Adolph TE, Meyer M, Schwärzler J, Mayr L, Grabherr F, Tilg H. 2022. The metabolic nature of inflammatory bowel diseases. Nature Reviews. Gastroenterology & Hepatology 19:753–767. DOI: https://doi.org/10.1038/ s41575-022-00658-y, PMID: 35906289
Ahmad R, Rah B, Bastola D, Dhawan P, Singh AB. 2017. Obesity-induces organ and tissue specific tight junction restructuring and barrier deregulation by claudin switching. Scientific Reports 7:5125. DOI: https://doi.org/10. 1038/s41598-017-04989-8, PMID: 28698546
Alatab S, Sepanlou SG, Ikuta K, Vahedi H, Bisignano C, Safiri S, Sadeghi A, Nixon MR, Abdoli A, Abolhassani H, Alipour V, Almadi MAH, Almasi-Hashiani A, Anushiravani A, Arabloo J, Atique S, Awasthi A, Badawi A, Baig AAA, Bhala N, et al. 2020. The global, regional, and national burden of inflammatory bowel disease in 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. The Lancet. Gastroenterology & Hepatology 5:17–30. DOI: https://doi.org/10.1016/S2468-1253(19)30333-4, PMID: 31648971
Arijs I, De Hertogh G, Lemaire K, Quintens R, Van Lommel L, Van Steen K, Leemans P, Cleynen I, Van Assche G, Vermeire S, Geboes K, Schuit F, Rutgeerts P. 2009. Mucosal gene expression of antimicrobial peptides in inflammatory bowel disease before and after first infliximab treatment. PLOS ONE 4:e7984. DOI: https://doi. org/10.1371/journal.pone.0007984, PMID: 19956723
Benegiamo G, von Alvensleben GVG, Rodríguez-López S, Goeminne LJE, Bachmann AM, Morel J-D, Broeckx E, Ma JY, Carreira V, Youssef SA, Azhar N, Reilly DF, D’Aquino K, Mullican S, Bou-Sleiman M, Auwerx J. 2023. The genetic background shapes the susceptibility to mitochondrial dysfunction and NASH progression. The Journal of Experimental Medicine 220:e20221738. DOI: https://doi.org/10.1084/jem.20221738, PMID: 36787127
Bischoff SC, Barbara G, Buurman W, Ockhuizen T, Schulzke J-D, Serino M, Tilg H, Watson A, Wells JM. 2014. Intestinal permeability--a new target for disease prevention and therapy. BMC Gastroenterology 14:189. DOI: https://doi.org/10.1186/s12876-014-0189-7, PMID: 25407511
Brasseit J, Kwong Chung CKC, Noti M, Zysset D, Hoheisel-Dickgreber N, Genitsch V, Corazza N, Mueller C. 2018. Divergent roles of interferon-γ and innate Lymphoid Cells in innate and adaptive immune cell-mediated intestinal inflammation. Frontiers in Immunology 9:23. DOI: https://doi.org/10.3389/fimmu.2018.00023, PMID: 29416538
Brazil JC, Parkos CA. 2022. Finding the sweet spot: glycosylation mediated regulation of intestinal inflammation. Mucosal Immunology 15:211–222. DOI: https://doi.org/10.1038/s41385-021-00466-8, PMID: 34782709
Broman KW, Gatti DM, Simecek P, Furlotte NA, Prins P, Sen Ś, Yandell BS, Churchill GA. 2019. R/qtl2: Software for mapping quantitative trait Loci with high-dimensional data and multiparent populations. Genetics 211:495– 502. DOI: https://doi.org/10.1534/genetics.118.301595, PMID: 30591514
Bycroft C, Freeman C, Petkova D, Band G, Elliott LT, Sharp K, Motyer A, Vukcevic D, Delaneau O, O’Connell J, Cortes A, Welsh S, Young A, Effingham M, McVean G, Leslie S, Allen N, Donnelly P, Marchini J. 2018. The UK Biobank resource with deep phenotyping and genomic data. Nature 562:203–209. DOI: https://doi.org/10. 1038/s41586-018-0579-z, PMID: 30305743
Chang JT. 2020. Pathophysiology of inflammatory bowel diseases. The New England Journal of Medicine 383:2652–2664. DOI: https://doi.org/10.1056/NEJMra2002697, PMID: 33382932
Christ A, Lauterbach M, Latz E. 2019. Western diet and the immune system: an inflammatory connection. Immunity 51:794–811. DOI: https://doi.org/10.1016/j.immuni.2019.09.020, PMID: 31747581
Coulthard MG, Morgan M, Woodruff TM, Arumugam TV, Taylor SM, Carpenter TC, Lackmann M, Boyd AW. 2012. Eph/Ephrin signaling in injury and inflammation. The American Journal of Pathology 181:1493–1503. DOI: https://doi.org/10.1016/j.ajpath.2012.06.043, PMID: 23021982
Czarnewski P, Parigi SM, Sorini C, Diaz OE, Das S, Gagliani N, Villablanca EJ. 2019. Conserved transcriptomic profile between mouse and human colitis allows unsupervised patient stratification. Nature Communications 10:2892. DOI: https://doi.org/10.1038/s41467-019-10769-x, PMID: 31253778
Das S, Rachagani S, Sheinin Y, Smith LM, Gurumurthy CB, Roy HK, Batra SK. 2016. Mice deficient in Muc4 are resistant to experimental colitis and colitis-associated colorectal cancer. Oncogene 35:2645–2654. DOI: https:// doi.org/10.1038/onc.2015.327, PMID: 26364605
Doherty G, Katsanos KH, Burisch J, Allez M, Papamichael K, Stallmach A, Mao R, Berset IP, Gisbert JP, Sebastian S, Kierkus J, Lopetuso L, Szymanska E, Louis E. 2018. European Crohn’s and Colitis Organisation Topical Review on Treatment Withdrawal [’Exit Strategies’] in Inflammatory Bowel Disease. Journal of Crohn’s & Colitis 12:17–31. DOI: https://doi.org/10.1093/ecco-jcc/jjx101, PMID: 28981623
Duan Y, Zeng L, Zheng C, Song B, Li F, Kong X, Xu K. 2018. Inflammatory links between high fat diets and diseases. Frontiers in Immunology 9:2649. DOI: https://doi.org/10.3389/fimmu.2018.02649, PMID: 30483273
Elsworth B, Lyon M, Alexander T, Liu Y, Matthews P, Hallett J, Bates P, Palmer T, Haberland V, Smith GD, Zheng J, Haycock P, Gaunt TR, Hemani G. 2020. The MRC IEU OpenGWAS Data Infrastructure. bioRxiv. DOI: https://doi.org/10.1101/2020.08.10.244293
Enriquez JR, McCauley HA, Zhang KX, Sanchez JG, Kalin GT, Lang RA, Wells JM. 2022. A dietary change to A high-fat diet initiates A rapid adaptation of the intestine. Cell Reports 41:111641. DOI: https://doi.org/10. 1016/j.celrep.2022.111641, PMID: 36384107
Feagan BG, Rutgeerts P, Sands BE, Hanauer S, Colombel JF, Sandborn WJ, Van Assche G, Axler J, Kim HJ, Danese S, Fox I, Milch C, Sankoh S, Wyant T, Xu J, Parikh A, GEMINI 1 Study Group. 2013. Vedolizumab as induction and maintenance therapy for ulcerative colitis. The New England Journal of Medicine 369:699–710. DOI: https://doi.org/10.1056/NEJMoa1215734, PMID: 23964932
Franke A, Balschun T, Karlsen TH, Sventoraityte J, Nikolaus S, Mayr G, Domingues FS, Albrecht M, Nothnagel M, Ellinghaus D, Sina C, Onnie CM, Weersma RK, Stokkers PCF, Wijmenga C, Gazouli M, Strachan D, McArdle WL, Vermeire S, Rutgeerts P, et al. 2008. Sequence variants in IL10, ARPC2 and multiple other loci contribute to ulcerative colitis susceptibility. Nature Genetics 40:1319–1323. DOI: https://doi.org/10.1038/ng.221, PMID: 18836448
Freeman K, Ryan R, Parsons N, Taylor-Phillips S, Willis BH, Clarke A. 2021. The incidence and prevalence of inflammatory bowel disease in UK primary care: a retrospective cohort study of the IQVIA Medical Research Database. BMC Gastroenterology 21:139. DOI: https://doi.org/10.1186/s12876-021-01716-6, PMID: 33771127
Gao XP, Dong JJ, Xie T, Guan X. 2021. Integrative analysis of MUC4 to prognosis and immune infiltration in pan-cancer: Friend or Foe? Frontiers in Cell and Developmental Biology 9:695544. DOI: https://doi.org/10. 3389/fcell.2021.695544, PMID: 34336844
Graham DB, Xavier RJ. 2020. Pathway paradigms revealed from the genetics of inflammatory bowel disease. Nature 578:527–539. DOI: https://doi.org/10.1038/s41586-020-2025-2, PMID: 32103191
Grandi A, Zini I, Palese S, Giorgio C, Tognolini M, Marchesani F, Bruno S, Flammini L, Cantoni AM, Castelli R, Lodola A, Fusari A, Barocelli E, Bertoni S. 2019. Targeting the Eph/Ephrin System as Anti-Inflammatory Strategy in IBD. Frontiers in Pharmacology 10:691. DOI: https://doi.org/10.3389/fphar.2019.00691, PMID: 31297055
Guda K, Veigl ML, Varadan V, Nosrati A, Ravi L, Lutterbaugh J, Beard L, Willson JKV, Sedwick WD, Wang ZJ, Molyneaux N, Miron A, Adams MD, Elston RC, Markowitz SD, Willis JE. 2015. Novel recurrently mutated genes in African American colon cancers. PNAS 112:1149–1154. DOI: https://doi.org/10.1073/pnas.1417064112, PMID: 25583493
Halldorsson BV, Eggertsson HP, Moore KHS, Hauswedell H, Eiriksson O, Ulfarsson MO, Palsson G, Hardarson MT, Oddsson A, Jensson BO, Kristmundsdottir S, Sigurpalsdottir BD, Stefansson OA, Beyter D, Holley G, Tragante V, Gylfason A, Olason PI, Zink F, Asgeirsdottir M, et al. 2022. The sequences of 150,119 genomes in the UK Biobank. Nature 607:732–740. DOI: https://doi.org/10.1038/s41586-022-04965-x, PMID: 35859178
Harbord M, Eliakim R, Bettenworth D, Karmiris K, Katsanos K, Kopylov U, Kucharzik T, Molnár T, Raine T, Sebastian S, de Sousa HT, Dignass A, Carbonnel F. 2017. Third European Evidence-based Consensus on Diagnosis and Management of Ulcerative Colitis. Part 2: Current Management. Journal of Crohn’s & Colitis 11:769–784. DOI: https://doi.org/10.1093/ecco-jcc/jjx009, PMID: 28513805
Hasegawa Y, Chen SY, Sheng L, Jena PK, Kalanetra KM, Mills DA, Wan YJY, Slupsky CM. 2020. Long-term effects of western diet consumption in male and female mice. Scientific Reports 10:14686. DOI: https://doi.org/10. 1038/s41598-020-71592-9, PMID: 32895402
Hemani G, Tilling K, Davey Smith G. 2017. Orienting the causal relationship between imprecisely measured traits using GWAS summary data. PLOS Genetics 13:e1007081. DOI: https://doi.org/10.1371/journal.pgen.1007081, PMID: 29149188
Hemani G, Zheng J, Elsworth B, Wade KH, Haberland V, Baird D, Laurin C, Burgess S, Bowden J, Langdon R, Tan VY, Yarmolinsky J, Shihab HA, Timpson NJ, Evans DM, Relton C, Martin RM, Davey Smith G, Gaunt TR, Haycock PC. 2018. The MR-Base platform supports systematic causal inference across the human phenome. eLife 7:e34408. DOI: https://doi.org/10.7554/eLife.34408, PMID: 29846171
Hemani G. 2022. Perform fast queries in R against a massive database of complete GWAS summary data. 0.1.5. GitHub. https://mrcieu.github.io/ieugwasr/
Hou JK, Abraham B, El-Serag H. 2011. Dietary intake and risk of developing inflammatory bowel disease: A systematic review of the literature. The American Journal of Gastroenterology 106:563–573. DOI: https://doi. org/10.1038/ajg.2011.44, PMID: 21468064
Huang H, Fang M, Jostins L, Umićević Mirkov M, Boucher G, Anderson CA, Andersen V, Cleynen I, Cortes A, Crins F, D’Amato M, Deffontaine V, Dmitrieva J, Docampo E, Elansary M, Farh KK-H, Franke A, Gori A-S, Goyette P, Halfvarson J, et al. 2017. Fine-mapping inflammatory bowel disease loci to single-variant resolution. Nature 547:173–178. DOI: https://doi.org/10.1038/nature22969, PMID: 28658209
Ito R, Shin-Ya M, Kishida T, Urano A, Takada R, Sakagami J, Imanishi J, Kita M, Ueda Y, Iwakura Y, Kataoka K, Okanoue T, Mazda O. 2006. Interferon-gamma is causatively involved in experimental inflammatory bowel disease in mice. Clinical and Experimental Immunology 146:330–338. DOI: https://doi.org/10.1111/j.1365- 2249.2006.03214.x, PMID: 17034586
Jha P, McDevitt MT, Gupta R, Quiros PM, Williams EG, Gariani K, Sleiman MB, Diserens L, Jochem A, Ulbrich A, Coon JJ, Auwerx J, Pagliarini DJ. 2018a. Systems analyses reveal physiological roles and genetic regulators of liver lipid species. Cell Systems 6:722–733. DOI: https://doi.org/10.1016/j.cels.2018.05.016, PMID: 29909277
Jha P, McDevitt MT, Halilbasic E, Williams EG, Quiros PM, Gariani K, Sleiman MB, Gupta R, Ulbrich A, Jochem A, Coon JJ, Trauner M, Pagliarini DJ, Auwerx J. 2018b. Genetic regulation of plasma lipid species and their association with metabolic phenotypes. Cell Systems 6:709–721. DOI: https://doi.org/10.1016/j.cels.2018.05. 009, PMID: 29909275
Keubler LM, Buettner M, Häger C, Bleich A. 2015. A multihit model: Colitis lessons from the interleukin-10-deficient mouse. Inflammatory Bowel Diseases 21:1967–1975. DOI: https://doi.org/10.1097/MIB. 0000000000000468, PMID: 26164667
Khor B, Gardet A, Xavier RJ. 2011. Genetics and pathogenesis of inflammatory bowel disease. Nature 474:307– 317. DOI: https://doi.org/10.1038/nature10209, PMID: 21677747
Kim ER, Chang DK. 2014. Colorectal cancer in inflammatory bowel disease: the risk, pathogenesis, prevention and diagnosis. World Journal of Gastroenterology 20:9872–9881. DOI: https://doi.org/10.3748/wjg.v20.i29. 9872, PMID: 25110418
Kong L, Pokatayev V, Lefkovith A, Carter GT, Creasey EA, Krishna C, Subramanian S, Kochar B, Ashenberg O, Lau H, Ananthakrishnan AN, Graham DB, Deguine J, Xavier RJ. 2023. The landscape of immune dysregulation in Crohn’s disease revealed through single-cell transcriptomic profiling in the ileum and colon. Immunity 56:444–458. DOI: https://doi.org/10.1016/j.immuni.2023.01.002, PMID: 36720220
Kreuter R. 2019. The role of obesity in inflammatory bowel disease’, Biochimica et Biophysica Acta (BBA. Molecular Basis of Disease 1865:63–72.
Kulakovskiy IV, Vorontsov IE, Yevshin IS, Sharipov RN, Fedorova AD, Rumynskiy EI, Medvedeva YA, Magana-Mora A, Bajic VB, Papatsenko DA, Kolpakov FA, Makeev VJ. 2018. HOCOMOCO: towards a complete collection of transcription factor binding models for human and mouse via large-scale ChIP-Seq analysis. Nucleic Acids Research 46:D252–D259. DOI: https://doi.org/10.1093/nar/gkx1106, PMID: 29140464
Langfelder P, Horvath S. 2008. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9:559. DOI: https://doi.org/10.1186/1471-2105-9-559, PMID: 19114008
Li H, Rukina D, David FPA, Li TY, Oh CM, Gao AW, Katsyuba E, Bou Sleiman M, Komljenovic A, Huang Q, Williams RW, Robinson-Rechavi M, Schoonjans K, Morgenthaler S, Auwerx J. 2019. Identifying gene function and module connections by the integration of multispecies expression compendia. Genome Research 29:2034–2045. DOI: https://doi.org/10.1101/gr.251983.119, PMID: 31754022
Li H, Auwerx J. 2020. Mouse systems genetics as a prelude to precision medicine. Trends in Genetics 36:259– 272. DOI: https://doi.org/10.1016/j.tig.2020.01.004, PMID: 32037011
Li JY, Xiao J, Gao M, Zhou HF, Fan H, Sun F, Cui DD. 2021. IRF/Type I IFN signaling serves as a valuable therapeutic target in the pathogenesis of inflammatory bowel disease. International Immunopharmacology 92:107350. DOI: https://doi.org/10.1016/j.intimp.2020.107350, PMID: 33444921
Li H, Perino A, Huang Q, Von Alvensleben GVG, Banaei-Esfahani A, Velazquez-Villegas LA, Gariani K, Korbelius M, Bou Sleiman M, Imbach J, Sun Y, Li X, Bachmann A, Goeminne LJE, Gallart-Ayala H, Williams EG, Ivanisevic J, Auwerx J, Schoonjans K. 2022. Integrative systems analysis identifies genetic and dietary modulators of bile acid homeostasis. Cell Metabolism 34:1594–1610. DOI: https://doi.org/10.1016/j.cmet. 2022.08.015, PMID: 36099916
Li X. 2023. Elife_Gut_Paper. swh:1:rev:d37d218ab1e96018bddbfb561d6e7362e6a64da9. Software Heritage. https://archive.softwareheritage.org/swh:1:dir:fc70b9e231b1e6b63c0f9566fc9e4d0fb9fa39ea;origin=https:// github.com/xianshu-li/elife_gut_paper;visit=swh:1:snp:19bbb9114c630ec616d02b6a91582e58c58cb2e1; anchor=swh:1:rev:d37d218ab1e96018bddbfb561d6e7362e6a64da9
Liu Z, Geboes K, Colpaert S, D’Haens GR, Rutgeerts P, Ceuppens JL. 2000. IL-15 is highly expressed in inflammatory bowel disease and regulates local T cell-dependent cytokine production. Journal of Immunology 164:3608–3615. DOI: https://doi.org/10.4049/jimmunol.164.7.3608, PMID: 10725717
Liu JZ, van Sommeren S, Huang H, Ng SC, Alberts R, Takahashi A, Ripke S, Lee JC, Jostins L, Shah T, Abedian S, Cheon JH, Cho J, Dayani NE, Franke L, Fuyuno Y, Hart A, Juyal RC, Juyal G, Kim WH, et al. 2015. Association analyses identify 38 susceptibility loci for inflammatory bowel disease and highlight shared genetic risk across populations. Nature Genetics 47:979–986. DOI: https://doi.org/10.1038/ng.3359, PMID: 26192919
Lonsdale J, Thomas J, Salvatore M, Phillips R, Lo E, Shad S, Hasz R, Walters G, Garcia F, Young N, Foster B, Moser M, Karasik E, Gillard B, Ramsey K, Sullivan S, Bridge J, Magazine H, Syron J, Fleming J, et al. 2013. The Genotype-Tissue Expression (GTEx) project. Nature Genetics 45:580–585. DOI: https://doi.org/10.1038/ng. 2653, PMID: 23715323
Lutsey PL, Steffen LM, Stevens J. 2008. Dietary intake and the development of the metabolic syndrome. Circulation 117:754–761. DOI: https://doi.org/10.1161/CIRCULATIONAHA.107.716159
Maconi G, Ardizzone S, Cucino C, Bezzio C, Russo AG, Bianchi Porro G. 2010. Pre-illness changes in dietary habits and diet as a risk factor for inflammatory bowel disease: a case-control study. World Journal of Gastroenterology 16:4297–4304. DOI: https://doi.org/10.3748/wjg.v16.i34.4297, PMID: 20818813
Mähler M, Bristol IJ, Leiter EH, Workman AE, Birkenmeier EH, Elson CO, Sundberg JP. 1998. Differential susceptibility of inbred mouse strains to dextran sulfate sodium-induced colitis. American Journal of Physiology-Gastrointestinal and Liver Physiology 274:G544–G551. DOI: https://doi.org/10.1152/ajpgi.1998. 274.3.G544
Maurya SK, Carley AN, Maurya CK, Lewandowski ED. 2023. Western diet causes heart failure with reduced ejection fraction and metabolic shifts after diastolic dysfunction and novel cardiac lipid derangements. JACC. Basic to Translational Science 8:422–435. DOI: https://doi.org/10.1016/j.jacbts.2022.10.009, PMID: 37138801
Misiorek JO, Lähdeniemi IAK, Nyström JH, Paramonov VM, Gullmets JA, Saarento H, Rivero-Müller A, Husøy T, Taimen P, Toivola DM. 2016. Keratin 8-deletion induced colitis predisposes to murine colorectal cancer enforced by the inflammasome and IL-22 pathway. Carcinogenesis 37:777–786. DOI: https://doi.org/10.1093/ carcin/bgw063, PMID: 27234655
Mogensen TH. 2018. IRF and STAT Transcription Factors-From Basic Biology to Roles in Infection, Protective Immunity, and Primary Immunodeficiencies. Frontiers in Immunology 9:3047. DOI: https://doi.org/10.3389/ fimmu.2018.03047, PMID: 30671054
Molodecky NA, Panaccione R, Ghosh S, Barkema HW, Kaplan GG, Alberta Inflammatory Bowel Disease Consortium. 2011. Challenges associated with identifying the environmental determinants of the inflammatory bowel diseases. Inflammatory Bowel Diseases 17:1792–1799. DOI: https://doi.org/10.1002/ibd.21511, PMID: 21744435
Mottis A, Li TY, El Alam G, Rapin A, Katsyuba E, Liaskos D, D’Amico D, Harris NL, Grier MC, Mouchiroud L, Nelson ML, Auwerx J. 2022. Tetracycline-induced mitohormesis mediates disease tolerance against influenza. The Journal of Clinical Investigation 132:e151540. DOI: https://doi.org/10.1172/JCI151540, PMID: 35787521
Mun J, Hur W, Ku NO. 2022. Roles of keratins in intestine. International Journal of Molecular Sciences 23:8051. DOI: https://doi.org/10.3390/ijms23148051, PMID: 35887395
Nadeau JH, Auwerx J. 2019. The virtuous cycle of human genetics and mouse models in drug discovery. Nature Reviews. Drug Discovery 18:255–272. DOI: https://doi.org/10.1038/s41573-018-0009-9, PMID: 30679805
Nayak RR, Kearns M, Spielman RS, Cheung VG. 2009. Coexpression network based on natural variation in human gene expression reveals gene interactions and functions. Genome Research 19:1953–1962. DOI: https://doi.org/10.1101/gr.097600.109, PMID: 19797678
Peters LA, Perrigoue J, Mortha A, Iuga A, Song WM, Neiman EM, Llewellyn SR, Di Narzo A, Kidd BA, Telesco SE, Zhao Y, Stojmirovic A, Sendecki J, Shameer K, Miotto R, Losic B, Shah H, Lee E, Wang M, Faith JJ, et al. 2017. A functional genomics predictive network model identifies regulators of inflammatory bowel disease. Nature Genetics 49:1437–1449. DOI: https://doi.org/10.1038/ng.3947, PMID: 28892060
Porcu E, Sadler MC, Lepik K, Auwerx C, Wood AR, Weihs A, Sleiman MSB, Ribeiro DM, Bandinelli S, Tanaka T, Nauck M, Völker U, Delaneau O, Metspalu A, Teumer A, Frayling T, Santoni FA, Reymond A, Kutalik Z. 2021. Differentially expressed genes reflect disease-induced rather than disease-causing changes in the transcriptome. Nature Communications 12:5647. DOI: https://doi.org/10.1038/s41467-021-25805-y, PMID: 34561431
Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, Maller J, Sklar P, de Bakker PIW, Daly MJ, Sham PC. 2007. PLINK: a tool set for whole-genome association and population-based linkage analyses. American Journal of Human Genetics 81:559–575. DOI: https://doi.org/10.1086/519795, PMID: 17701901
Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK. 2015. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Research 43:e47–. DOI: https://doi.org/ 10.1093/nar/gkv007, PMID: 25605792
Rutgeerts P, Sandborn WJ, Feagan BG, Reinisch W, Olson A, Johanns J, Travers S, Rachmilewitz D, Hanauer SB, Lichtenstein GR, de Villiers WJS, Present D, Sands BE, Colombel JF. 2005. Infliximab for induction and maintenance therapy for ulcerative colitis. The New England Journal of Medicine 353:2462–2476. DOI: https:// doi.org/10.1056/NEJMoa050516, PMID: 16339095
Shah SC, Itzkowitz SH. 2022. Colorectal cancer in inflammatory bowel disease: Mechanisms and management. Gastroenterology 162:715–730. DOI: https://doi.org/10.1053/j.gastro.2021.10.035, PMID: 34757143
Stolzer I, Dressel A, Chiriac MT, Neurath MF, Günther C. 2021. An IFN-STAT Axis Augments Tissue Damage and Inflammation in a Mouse Model of Crohn’s Disease. Frontiers in Medicine 8:644244. DOI: https://doi.org/10. 3389/fmed.2021.644244, PMID: 34141714
Tannock LR, De Beer MC, Ji A, Shridas P, Noffsinger VP, den Hartigh L, Chait A, De Beer FC, Webb NR. 2018. Serum amyloid A3 is a high density lipoprotein-associated acute-phase protein. Journal of Lipid Research 59:339–347. DOI: https://doi.org/10.1194/jlr.M080887, PMID: 29247043
Tilg H, van Montfrans C, van den Ende A, Kaser A, van Deventer SJH, Schreiber S, Gregor M, Ludwiczek O, Rutgeerts P, Gasche C, Koningsberger JC, Abreu L, Kuhn I, Cohard M, LeBeaut A, Grint P, Weiss G. 2002. Treatment of Crohn’s disease with recombinant human interleukin 10 induces the proinflammatory cytokine interferon gamma. Gut 50:191–195. DOI: https://doi.org/10.1136/gut.50.2.191, PMID: 11788558
Uhlén M, Fagerberg L, Hallström BM, Lindskog C, Oksvold P, Mardinoglu A, Sivertsson Å, Kampf C, Sjöstedt E, Asplund A, Olsson I, Edlund K, Lundberg E, Navani S, Szigyarto CAK, Odeberg J, Djureinovic D, Takanen JO, Hober S, Alm T, et al. 2015. Proteomics. Tissue-based map of the human proteome. Science 347:1260419. DOI: https://doi.org/10.1126/science.1260419, PMID: 25613900
Williams EG, Wu Y, Jha P, Dubuis S, Blattmann P, Argmann CA, Houten SM, Amariuta T, Wolski W, Zamboni N, Aebersold R, Auwerx J. 2016. Systems proteomics of liver mitochondria function. Science 352:aad0189. DOI: https://doi.org/10.1126/science.aad0189, PMID: 27284200
Wu Y, Williams EG, Dubuis S, Mottis A, Jovaisaite V, Houten SM, Argmann CA, Faridi P, Wolski W, Kutalik Z, Zamboni N, Auwerx J, Aebersold R. 2014. Multilayered genetic and omics dissection of mitochondrial activity in a mouse reference population. Cell 158:1415–1430. DOI: https://doi.org/10.1016/j.cell.2014.07.039, PMID: 25215496
Yang X, Letterio JJ, Lechleider RJ, Chen L, Hayman R, Gu H, Roberts AB, Deng C. 1999. Targeted disruption of SMAD3 results in impaired mucosal immunity and diminished T cell responsiveness to TGF-beta. The EMBO Journal 18:1280–1291. DOI: https://doi.org/10.1093/emboj/18.5.1280, PMID: 10064594
Ye RD, Sun L. 2015. Emerging functions of serum amyloid A in inflammation. Journal of Leukocyte Biology 98:923–929. DOI: https://doi.org/10.1189/jlb.3VMR0315-080R, PMID: 26130702
Yoshihara K, Yajima T, Kubo C, Yoshikai Y. 2006. Role of interleukin 15 in colitis induced by dextran sulphate sodium in mice. Gut 55:334–341. DOI: https://doi.org/10.1136/gut.2005.076000, PMID: 16162679
Yu G, Wang LG, Han Y, He QY. 2012. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16:284–287. DOI: https://doi.org/10.1089/omi.2011.0118, PMID: 22455463
Zeevi D, Korem T, Zmora N, Israeli D, Rothschild D, Weinberger A, Ben-Yacov O, Lador D, Avnit-Sagi T, Lotan-Pompan M, Suez J, Mahdi JA, Matot E, Malka G, Kosower N, Rein M, Zilberman-Schapira G, Dohnalová L, Pevsner-Fischer M, Bikovsky R, et al. 2015. Personalized nutrition by prediction of glycemic responses. Cell 163:1079–1094. DOI: https://doi.org/10.1016/j.cell.2015.11.001, PMID: 26590418
Zhao D, Cai C, Chen Q, Jin S, Yang B, Li N. 2020. High-Fat Diet Promotes DSS-Induced Ulcerative Colitis by Downregulated FXR Expression through the TGFB Pathway. BioMed Research International 2020:3516128. DOI: https://doi.org/10.1155/2020/3516128, PMID: 33029504