decentralized parameter estimation; Estimation; Hybrid transceiver design; majorization theory; Millimeter wave communication; MIMO communication; mmWave MIMO; Parameter estimation; Radio frequency; Transceivers; wireless sensor networks; Wireless sensor networks; Signal Processing; Information Systems; Hardware and Architecture; Computer Science Applications; Computer Networks and Communications
Résumé :
[en] Hybrid precoder and combiner designs are conceived for decentralized parameter estimation in millimeter wave (mmWave) multiple-input multiple-output (MIMO) wireless sensor networks (WSNs). More explicitly, efficient pre-and post-processing of the sensor observations and received signal are proposed for the minimum mean square error (MMSE) estimation of a parameter vector. The proposed techniques exploit the limited scattering nature of the mmWave MIMO channel for formulating the hybrid transceiver design framework as a multiple measurement vectors (MMV)-based sparse signal recovery problem. This is then solved using the iterative appealingly low-complexity simultaneous orthogonal matching pursuit (SOMP). Tailor-made designs are presented for WSNs operating under both total and per-sensor power constraints, while considering ideal noiseless as well as realistic noisy sensors. Furthermore, both the Bayesian Cramer-Rao lower bound and the centralized MMSE bound are derived for benchmarking the proposed decentralized estimation schemes. Our simulation results demonstrate the efficiency of the designs advocated and verify the analytical findings.
Disciplines :
Ingénierie électrique & électronique
Auteur, co-auteur :
Maity, Priyanka
Srivastava, Suraj
RAJPUT, Kunwar ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SPARC
Venkategowda, Naveen K. D.
Jagannatham, Aditya K.
Hanzo, Lajos
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Hybrid Precoder and Combiner Designs for Decentralized Parameter Estimation in mmWave MIMO Wireless Sensor Networks
Date de publication/diffusion :
27 juin 2023
Titre du périodique :
IEEE Internet of Things Journal
eISSN :
2327-4662
Maison d'édition :
Institute of Electrical and Electronics Engineers Inc.