Article (Périodiques scientifiques)
Rigorous Assessment of Model Inference Accuracy using Language Cardinality
Clun, Donato; Shin, Donghwan; Filieri, Antonio et al.
2024In ACM Transactions on Software Engineering and Methodology
Peer reviewed vérifié par ORBi Dataset
 

Documents


Texte intégral
main.pdf
Postprint Auteur (1.15 MB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Computer Science - Software Engineering
Résumé :
[en] Models such as finite state automata are widely used to abstract the behavior of software systems by capturing the sequences of events observable during their execution. Nevertheless, models rarely exist in practice and, when they do, get easily outdated; moreover, manually building and maintaining models is costly and error-prone. As a result, a variety of model inference methods that automatically construct models from execution traces have been proposed to address these issues. However, performing a systematic and reliable accuracy assessment of inferred models remains an open problem. Even when a reference model is given, most existing model accuracy assessment methods may return misleading and biased results. This is mainly due to their reliance on statistical estimators over a finite number of randomly generated traces, introducing avoidable uncertainty about the estimation and being sensitive to the parameters of the random trace generative process. This paper addresses this problem by developing a systematic approach based on analytic combinatorics that minimizes bias and uncertainty in model accuracy assessment by replacing statistical estimation with deterministic accuracy measures. We experimentally demonstrate the consistency and applicability of our approach by assessing the accuracy of models inferred by state-of-the-art inference tools against reference models from established specification mining benchmarks.
Centre de recherche :
Interdisciplinary Centre for Security, Reliability and Trust (SnT) > SVV - Software Verification and Validation
Disciplines :
Sciences informatiques
Auteur, co-auteur :
Clun, Donato
Shin, Donghwan
Filieri, Antonio
BIANCULLI, Domenico  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SVV
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Rigorous Assessment of Model Inference Accuracy using Language Cardinality
Date de publication/diffusion :
janvier 2024
Titre du périodique :
ACM Transactions on Software Engineering and Methodology
ISSN :
1049-331X
Maison d'édition :
Association for Computing Machinery (ACM), Etats-Unis
Peer reviewed :
Peer reviewed vérifié par ORBi
Disponible sur ORBilu :
depuis le 22 novembre 2023

Statistiques


Nombre de vues
103 (dont 17 Unilu)
Nombre de téléchargements
59 (dont 6 Unilu)

citations Scopus®
 
0
citations Scopus®
sans auto-citations
0
citations OpenAlex
 
0

Bibliographie


Publications similaires



Contacter ORBilu