Biological classification; Immunity, adaptive; Immunity, innate; Neurodegenerative diseases; Neuroinflammation; Neurology; Neurology (clinical); Psychiatry and Mental Health; General Medicine
Abstract :
[en] [en] BACKGROUND: Parkinson's and Alzheimer's disease (PD/AD) are characterized by cellular pathological changes that precede clinical manifestation and symptom onset by decades (prodromal period) as well as by a heterogeneity of clinical symptoms. Both diseases are recognized as system-wide diseases with organ-transgressing dysregulation and involvement of immunological and neuroinflammatory mechanisms facilitating pathological protein aggregation and neurodegeneration.
OBJECTIVES: Overview of natural course, phenotypes and classification of PD/AD with a focus on underlying (system-wide) immunological and neuroinflammatory mechanisms.
METHODS: Literature research and consideration of expert opinions.
RESULTS: The accumulation of misfolded proteins such as amyloid‑β and synuclein in the course of neurodegenerative processes forms the basis of the current biological classifications, understanding of course and subtypes. Protein aggregation in PD/AD induces an innate immune response by activating microglia and the release of inflammatory mediators such as cytokines and chemokines and leading to further spread of neurodegeneration and accumulation of intracellular neurofibrillary tangles (NFTs). There is also growing evidence that adaptive immune responses involving auto-antibodies or auto-antigen-specific T‑/B-cell reactions involving tau, amyloid‑β or synuclein might be involved in the disease progression or subtypes of PD/AD.
CONCLUSIONS: Both innate and adaptive immune responses seem to be substantially involved in the pathological cascade leading to neurodegeneration in PD/AD and may contribute to disease progression and clinical subtypes. Thus, future targeted interventions should not only focus on protein aggregation but also on neuroinflammatory and immunological mechanisms. [de] [de] ZUSAMMENFASSUNG: HINTERGRUND: Neurodegenerative Erkrankungen wie der Morbus Parkinson und Morbus Alzheimer sind gekennzeichnet durch zelluläre Veränderungen, die der klinischen Manifestation jahrzehntelang vorausgehen können, und durch unterschiedliche Subtypen und Phänotypen der Krankheitsmanifestation. Beide Erkrankungen werden zunehmend als Systemerkrankungen verstanden, bei denen immunologische und neuroinflammatorische Mechanismen eine bedeutende Rolle spielen.
ZIEL DER ARBEIT: Übersicht über Krankheitsverlauf, Subtypen der Krankheitsmanifestation und Klassifikation im Kontext immunologischer und neuroinflammatorischer Mechanismen.
MATERIAL UND METHODEN: Literaturrecherche und Einbeziehung von Expertenmeinungen.
ERGEBNISSE: Die Akkumulation von fehlgefalteten Proteinen wie β‑Amyloid und α‑Synuklein im Rahmen des neurodegenerativen Prozesses ist aktuell Basis der biologischen Klassifikationen. In ihrer Verteilung und Ausprägung hilft sie auch für das Verständnis des Verlaufs und bei der Differenzierung einzelner Subtypen. Die Akkumulation induziert Reaktionen des angeborenen Immunsystems, die zu einer Aktivierung von Mikroglia und zur Freisetzung von Entzündungsmediatoren wie Zytokinen und Chemokinen führen. Dies kann eine weitere Ausbreitung der Neurodegeneration und eine weitere Akkumulation intrazellulärer Tau-assoziierter Neurofibrillen („tangles“) nach sich ziehen. Zunehmend gibt es Belege, das auch das adaptive Immunsystem mit einer möglichen Beteiligung von Autoantikörpern oder autoantigenspezifischen T‑Zell-Reaktionen am Krankheitsprozess beteiligt ist.
SCHLUSSFOLGERUNG: Neben Fehlfaltung, Aggregation und Akkumulation von Eiweißen im zentralen Nervensystem als Kardinalzeichen neurodegenerativer Erkrankungen spielen immunogene und neuroinflammatorische Mechanismen eine relevante Rolle. Sie könnten wichtige Ziele krankheitsmodifizierender Therapiestrategien sein.
Precision for document type :
Review article
Disciplines :
Neurology Immunology & infectious disease
Author, co-author :
Bartsch, Thorsten; Klinik für Neurologie, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Kiel, Deutschland. t.bartsch@neurologie.uni-kiel.de ; Klinik für Neurologie, AG Gedächtnis und Plastizität, Gedächtnis- und Demenzsprechstunde, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Arnold-Heller-Str. 3, 24105, Kiel, Deutschland. t.bartsch@neurologie.uni-kiel.de
Berg, Daniela; Klinik für Neurologie, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Kiel, Deutschland
HENEKA, Michael ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB)
Leypoldt, Frank; Klinik für Neurologie, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Kiel, Deutschland ; Institut für Klinische Chemie, Universitätsklinikum Schleswig-Holstein, Campus Kiel und Lübeck, Kiel, Deutschland
External co-authors :
yes
Language :
German
Title :
Parkinson- und Alzheimer-Erkrankung als Systemerkrankungen.
Alternative titles :
[en] Parkinson's and Alzheimer's disease as system-wide neurodegenerative disorders.
Albert MS, Dekosky ST, Dickson D et al (2011) The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7:270–279 DOI: 10.1016/j.jalz.2011.03.008
Alvente S, Matteoli G, Molina-Porcel L et al (2022) Pilot study of the effects of chronic intracerebroventricular infusion of human anti-IgLON5 disease antibodies in mice. Cells. 10.3390/cells11061024 DOI: 10.3390/cells11061024
Bastiaansen AEM, Van Steenhoven RW, Te Vaarwerk ES et al (2023) Antibodies associated with autoimmune encephalitis in patients with presumed neurodegenerative dementia. Neurol Neuroimmunol Neuroinflamm. 10.1212/NXI.0000000000200137 DOI: 10.1212/NXI.0000000000200137
Bellomo G, De Luca CMG, Paoletti FP et al (2022) α‑Synuclein seed amplification assays for diagnosing synucleinopathies: the way forward. Neurology 99:195–205 DOI: 10.1212/WNL.0000000000200878
Braak H, Del Tredici K (2015) The preclinical phase of the pathological process underlying sporadic Alzheimer’s disease. Brain 138:2814–2833 DOI: 10.1093/brain/awv236
Brosseron F, Maass A, Kleineidam L et al (2022) Soluble TAM receptors sAXL and sTyro3 predict structural and functional protection in Alzheimer’s disease. Neuron 110:1009–1022.e4 DOI: 10.1016/j.neuron.2021.12.016
Bussian TJ, Aziz A, Meyer CF et al (2018) Clearance of senescent glial cells prevents tau-dependent pathology and cognitive decline. Nature 562:578–582 DOI: 10.1038/s41586-018-0543-y
Galiano-Landeira J, Torra A, Vila M et al (2020) CD8 T cell nigral infiltration precedes synucleinopathy in early stages of Parkinson’s disease. Brain 143:3717–3733 DOI: 10.1093/brain/awaa269
Gelpi E, Höftberger R, Graus F et al (2016) Neuropathological criteria of anti-IgLON5-related tauopathy. Acta Neuropathol 132:531–543 DOI: 10.1007/s00401-016-1591-8
Grüter T, Möllers FE, Tietz A et al (2023) Clinical, serological and genetic predictors of response to immunotherapy in anti-IgLON5 disease. Brain 146:600–611 DOI: 10.1093/brain/awac090
Hampel H, Cummings J, Blennow K et al (2021) Developing the ATX(N) classification for use across the Alzheimer disease continuum. Nat Rev Neurol 17:580–589 DOI: 10.1038/s41582-021-00520-w
Harms AS, Cao S, Rowse AL et al (2013) MHCII is required for α‑synuclein-induced activation of microglia, CD4 T cell proliferation, and dopaminergic neurodegeneration. J Neurosci 33:9592–9600 DOI: 10.1523/JNEUROSCI.5610-12.2013
Heneka MT, Carson MJ, El Khoury J et al (2015) Neuroinflammation in Alzheimer’s disease. Lancet Neurol 14:388–405 DOI: 10.1016/S1474-4422(15)70016-5
Höglinger GU, Adler CH, Berg D et al (2023) Towards a biological definition of Parkinson’s disease. Preprints. 10.20944/preprints202304.0108.v1 DOI: 10.20944/preprints202304.0108.v1
Holstege H, Hulsman M, Charbonnier C et al (2022) Exome sequencing identifies rare damaging variants in ATP8B4 and ABCA1 as risk factors for Alzheimer’s disease. Nat Genet 54:1786–1794 DOI: 10.1038/s41588-022-01208-7
Horsager J, Andersen KB, Knudsen K et al (2020) Brain-first versus body-first Parkinson’s disease: a multimodal imaging case-control study. Brain 143:3077–3088 DOI: 10.1093/brain/awaa238
Jack CR Jr., Bennett DA, Blennow K et al (2018) NIA-AA research framework: toward a biological definition of Alzheimer’s disease. Alzheimers Dement 14:535–562 DOI: 10.1016/j.jalz.2018.02.018
Jack CR Jr., Bennett DA, Blennow K et al (2016) A/T/N: an unbiased descriptive classification scheme for Alzheimer disease biomarkers. Neurology 87:539–547 DOI: 10.1212/WNL.0000000000002923
Jack CR Jr., Knopman DS, Jagust WJ et al (2013) Tracking pathophysiological processes in Alzheimer’s disease: an updated hypothetical model of dynamic biomarkers. Lancet Neurol 12:207–216 DOI: 10.1016/S1474-4422(12)70291-0
Jellinger KA (2020) Pathobiological subtypes of Alzheimer disease. Dement Geriatr Cogn Disord 49:321–333 DOI: 10.1159/000508625
Landa J, Gaig C, Plagumà J et al (2020) Effects of IgLON5 antibodies on neuronal cytoskeleton: a link between autoimmunity and neurodegeneration. Ann Neurol 88:1023–1027 DOI: 10.1002/ana.25857
Landa J, Serafim AB, Gaig C et al (2023) Patients’ IgLON5 autoantibodies interfere with IgLON5-protein interactions. Front Immunol 14:1151574 DOI: 10.3389/fimmu.2023.1151574
Lindestam Arlehamn CS, Dhanwani R, Pham J et al (2020) α‑Synuclein-specific T cell reactivity is associated with preclinical and early Parkinson’s disease. Nat Commun 11:1875 DOI: 10.1038/s41467-020-15626-w
Marras C, Chaudhuri KR (2016) Nonmotor features of Parkinson’s disease subtypes. Mov Disord 31:1095–1102 DOI: 10.1002/mds.26510
Mckhann GM, Knopman DS, Chertkow H et al (2011) The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7:263–269 DOI: 10.1016/j.jalz.2011.03.005
Mestre TA, Fereshtehnejad SM, Berg D et al (2021) Parkinson’s disease subtypes: critical appraisal and recommendations. J Parkinsons Dis 11:395–404 DOI: 10.3233/JPD-202472
Poewe W, Seppi K, Tanner CM et al (2017) Parkinson disease. Nat Rev Dis Primers 3:17013 DOI: 10.1038/nrdp.2017.13
Postuma RB, Berg D, Stern M et al (2015) MDS clinical diagnostic criteria for Parkinson’s disease. Mov Disord 30:1591–1601 DOI: 10.1002/mds.26424
Sabater L, Gaig C, Gelpi E et al (2014) A novel non-rapid-eye movement and rapid-eye-movement parasomnia with sleep breathing disorder associated with antibodies to IgLON5: a case series, characterisation of the antigen, and post-mortem study. Lancet Neurol 13:575–586 DOI: 10.1016/S1474-4422(14)70051-1
Sommer A, Marxreiter F, Krach F et al (2018) Th17 lymphocytes induce neuronal cell death in a human iPSC-based model of Parkinson’s disease. Cell Stem Cell 23:123–131.e6 DOI: 10.1016/j.stem.2018.06.015
Sulzer D, Alcalay RN, Garretti F et al (2017) T cells from patients with Parkinson’s disease recognize α‑synuclein peptides. Nature 546:656–661 DOI: 10.1038/nature22815
Venegas C, Kumar S, Franklin BS et al (2017) Microglia-derived ASC specks cross-seed amyloid‑β in Alzheimer’s disease. Nature 552:355–361 DOI: 10.1038/nature25158
Vogel JW, Young AL, Oxtoby NP et al (2021) Four distinct trajectories of tau deposition identified in Alzheimer’s disease. Nat Med 27:871–881 DOI: 10.1038/s41591-021-01309-6
Wissemann WT, Hill-Burns EM, Zabetian CP et al (2013) Association of Parkinson disease with structural and regulatory variants in the HLA region. Am J Hum Genet 93:984–993 DOI: 10.1016/j.ajhg.2013.10.009