[en] The highest risk factor for the development of neurodegenerative diseases like tauopathies is aging. Many physiological decrements underlying aging are linked to cellular senescence. Senescent cells are characterized by an irreversible growth arrest and formation of a senescence-associated secretory phenotype (SASP), a proinflammatory secretome that modifies the cellular microenvironment and contributes to tissue deterioration. Microglia, the innate immune cells in the brain, can enter a senescent state during aging. In addition, senescent microglia have been identified in the brains of tau-transgenic mice and patients suffering from tauopathies. While the contribution of senescent microglia to the development of tauopathies and other neurodegenerative diseases is a growing area of research, the effect of tau on microglial senescence remains elusive. Here, we exposed primary microglia to 5 and 15 nanomolar (nM) of monomeric tau for 18 h, followed by a recovery period of 48 h. Using multiple senescence markers, we found that exposure to 15 nM, but not 5 nM of tau increased levels of cell cycle arrest and a DNA damage marker, induced loss of the nuclear envelope protein lamin B1 and the histone marker H3K9me3, impaired tau clearance and migration, altered the cell morphology and resulted in formation of a SASP. Taken together, we show that exposure to tau can lead to microglial senescence. As senescent cells were shown to negatively impact tau pathologies, this suggests the presence of a vicious circle, which should be further investigated in the future.
Precision for document type :
Review article
Disciplines :
Neurology Immunology & infectious disease Life sciences: Multidisciplinary, general & others
Author, co-author :
Karabag, Deniz; Department for Neuroimmunology, Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany ; German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany ; Faculty of Medicine and University Hospital Cologne, Cluster of Excellence Cellular Stress Response in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany
Scheiblich, Hannah; Department for Neuroimmunology, Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany ; German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
Griep, Angelika; Department for Neuroimmunology, Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany ; German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
Santarelli, Francesco; German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
Schwartz, Stephanie; Department for Neuroimmunology, Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
HENEKA, Michael ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) ; Department for Neuroimmunology, Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany ; German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany ; Divison of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
Ising, Christina ; Faculty of Medicine and University Hospital Cologne, Cluster of Excellence Cellular Stress Response in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany
External co-authors :
yes
Language :
English
Title :
Characterizing microglial senescence: Tau as a key player.
This work was supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy—EXC 2030—390661388 and—EXC 2151—390873048. We would like to thank the Light Microscope Facility at German Center for Neurodegenerative Diseases (DZNE) in Bonn for the microscope and analysis software. Open Access funding enabled and organized by Projekt DEAL.This work was supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy—EXC 2030—390661388 and—EXC 2151—390873048. We would like to thank the Light Microscope Facility at German Center for Neurodegenerative Diseases (DZNE) in Bonn for the microscope and analysis software. Open Access funding enabled and organized by Projekt DEAL.
Alessio, N., Aprile, D., Cappabianca, S., Peluso, G., Di Bernardo, G., & Galderisi, U. (2021). Different stages of quiescence, senescence, and cell stress identified by molecular algorithm based on the expression of Ki67, RPS6, and Beta-galactosidase activity. International Journal of Molecular Sciences, 22, 3102.
Arendt, T., Rödel, L., Gärtner, U., & Holzer, M. (1996). Expression of the cyclin-dependent kinase inhibitor p16 in Alzheimer's disease. Neuroreport, 7, 3047–3049.
Basisty, N., Kale, A., Jeon, O. H., Kuehnemann, C., Payne, T., Rao, C., Holtz, A., Shah, S., Sharma, V., Ferrucci, L., Campisi, J., & Schilling, B. (2020). A proteomic atlas of senescence-associated secretomes for aging biomarker development. PLoS Biology, 18, e3000599.
Bauer, J., Strauss, S., Schreiter-Gasser, U., Ganter, U., Schlegel, P., Witt, I., Yolk, B., & Berger, M. (1991). Interleukin-6 and alpha-2-macroglobulin indicate an acute-phase state in Alzheimer's disease cortices. FEBS Letters, 285, 111–114.
Ben-Porath, I., & Weinberg, R. A. (2005). The signals and pathways activating cellular senescence. The International Journal of Biochemistry & Cell Biology, 37, 961–976.
Blagosklonny, M. V. (2011). Cell cycle arrest is not senescence. Aging, 3, 94–101.
Blagosklonny, M. V. (2012). Cell cycle arrest is not yet senescence, which is not just cell cycle arrest: Terminology for TOR-driven aging. Aging, 4, 159–165.
Brelstaff, J. H., Mason, M., Katsinelos, T., McEwan, W. A., Ghetti, B., Tolkovsky, A. M., & Spillantini, M. G. (2021). Microglia become hypofunctional and release metalloproteases and tau seeds when phagocytosing live neurons with P301S tau aggregates. Science Advances, 7, eabg4980.
Bussian, T. J., Aziz, A., Meyer, C. F., Swenson, B. L., van Deursen, J. M., & Baker, D. J. (2018). Clearance of senescent glial cells prevents tau-dependent pathology and cognitive decline. Nature, 562, 578–582.
Caldeira, C., Cunha, C., Vaz, A. R., Falcão, A. S., Barateiro, A., Seixas, E., Fernandes, A., & Brites, D. (2017). Key aging-associated alterations in primary microglia response to Beta-amyloid stimulation. Frontiers in Aging Neuroscience, 9, 277.
Caldeira, C., Oliveira, A. F., Cunha, C., Vaz, A. R., Falcão, A. S., Fernandes, A., & Brites, D. (2014). Microglia change from a reactive to an age-like phenotype with the time in culture. Frontiers in Cellular Neuroscience, 8, 152.
Campisi, J., & Di Fagagna, F. D. (2007). Cellular senescence: When bad things happen to good cells. Nature Reviews. Molecular Cell Biology, 8, 729–740.
Chinta, S. J., Woods, G., Demaria, M., Rane, A., Zou, Y., McQuade, A., Rajagopalan, S., Limbad, C., Madden, D. T., Campisi, J., & Andersen, J. K. (2018). Cellular senescence is induced by the environmental neurotoxin Paraquat and contributes to neuropathology linked to Parkinson's disease. Cell Reports, 22, 930–940.
Cohn, R. L., Gasek, N. S., Kuchel, G. A., & Xu, M. (2022). The heterogeneity of cellular senescence: Insights at the single-cell level. Trends in Cell Biology, S0962-8924(22), 116–117.
Colonna, M., & Butovsky, O. (2017). Microglia function in the central nervous system during health and neurodegeneration. Annual Review of Immunology, 35, 441–468.
Coppé, J.-P., Desprez, P.-Y., Krtolica, A., & Campisi, J. (2010). The senescence-associated secretory phenotype: The dark side of tumor suppression. Annual Review of Pathology, 5, 99–118.
Coppé, J.-P., Patil, C. K., Rodier, F., Sun, Y., Muñoz, D. P., Goldstein, J., Nelson, P. S., Desprez, P.-Y., & Campisi, J. (2008). Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biology, 6, e301.
Coppé, J.-P., Rodier, F., Patil, C. K., Freund, A., Desprez, P.-Y., & Campisi, J. (2011). Tumor suppressor and aging biomarker p16(INK4a) induces cellular senescence without the associated inflammatory secretory phenotype. The Journal of Biological Chemistry, 286, 36396–36403.
Cuollo, L., Antonangeli, F., Santoni, A., & Soriani, A. (2020). The senescence-associated secretory phenotype (SASP) in the challenging future of cancer therapy and age-related diseases. Biology, 9, 485.
Damani, M. R., Zhao, L., Fontainhas, A. M., Amaral, J., Fariss, R. N., & Wong, W. T. (2011). Age-related alterations in the dynamic behavior of microglia. Aging Cell, 10, 263–276.
Di Micco, R., Krizhanovsky, V., Baker, D., & d'Adda di Fagagna, F. (2021). Cellular senescence in ageing: From mechanisms to therapeutic opportunities. Nature Reviews Molecular Cell Biology, 22, 75–95.
Farmer, K. M., Ghag, G., Puangmalai, N., Montalbano, M., Bhatt, N., & Kayed, R. (2020). P53 aggregation, interactions with tau, and impaired DNA damage response in Alzheimer's disease. Acta Neuropathologica Communications, 8, 132.
Freund, A., Laberge, R.-M., Demaria, M., & Campisi, J. (2012). Lamin B1 loss is a senescence-associated biomarker. Molecular Biology of the Cell, 23, 2066–2075.
Frost, B., Bardai, F. H., & Feany, M. B. (2016). Lamin dysfunction mediates neurodegeneration in Tauopathies. Current Biology, 26, 129–136.
Fujimaki, K., & Yao, G. (2020). Cell dormancy plasticity: Quiescence deepens into senescence through a dimmer switch. Physiological Genomics, 52, 558–562.
Galloway, D. A., Phillips, A. E. M., Owen, D. R. J., & Moore, C. S. (2019). Phagocytosis in the brain: Homeostasis and disease. Frontiers in Immunology, 10, 790.
Garwood, C. J., Simpson, J. E., Al, M. S., Axe, C., Wilson, S., Heath, P. R., Shaw, P. J., et al. (2014). DNA damage response and senescence in endothelial cells of human cerebral cortex and relation to Alzheimer's neuropathology progression: A population-based study in the Medical Research Council cognitive function and ageing study (MRC-CFAS) cohort. Neuropathology and Applied Neurobiology, 40, 802–814.
Gil, L., Niño, S. A., Guerrero, C., & Jiménez-Capdeville, M. E. (2021). Phospho-tau and chromatin landscapes in early and late Alzheimer's disease. International Journal of Molecular Sciences, 22, 10283.
Giunta, B., Fernandez, F., Nikolic, W. V., Obregon, D., Rrapo, E., Town, T., & Tan, J. (2008). Inflammaging as a prodrome to Alzheimer's disease. Journal of Neuroinflammation, 5, 51.
González-Gualda, E., Baker, A. G., Fruk, L., & Muñoz-Espín, D. (2021). A guide to assessing cellular senescence in vitro and in vivo. The FEBS Journal, 288, 56–80.
Greenberg, S. B., Grove, G. L., & Cristofalo, V. J. (1977). Cell size in aging monolayer cultures. In Vitro, 13, 297–300.
Hayflick, L., & Moorhead, P. S. (1961). The serial cultivation of human diploid cell strains. Experimental Cell Research, 25, 585–621.
Hellwig, S., Masuch, A., Nestel, S., Katzmarski, N., Meyer-Luehmann, M., & Biber, K. (2015). Forebrain microglia from wild-type but not adult 5xFAD mice prevent amyloid-β plaque formation in organotypic hippocampal slice cultures. Scientific Reports, 5, 14624.
Heneka, M. T., Carson, M. J., El Khoury, J., Landreth, G. E., Brosseron, F., Feinstein, D. L., Jacobs, A. H., et al. (2015). Neuroinflammation in Alzheimer's disease. Lancet Neurology, 14, 388–405.
Heneka, M. T., Golenbock, D. T., & Latz, E. (2015). Innate immunity in Alzheimer's disease. Nature Immunology, 16, 229–236.
Heneka, M. T., Kummer, M. P., Stutz, A., Delekate, A., Schwartz, S., Vieira-Saecker, A., Griep, A., Axt, D., Remus, A., Tzeng, T. C., Gelpi, E., Halle, A., Korte, M., Latz, E., & Golenbock, D. T. (2013). NLRP3 is activated in Alzheimer's disease and contributes to pathology in APP/PS1 mice. Nature, 493, 674–678.
Hernandez-Segura, A., Nehme, J., & Demaria, M. (2018). Hallmarks of cellular senescence. Trends in Cell Biology, 28, 436–453.
Ishida, T., Ishida, M., Tashiro, S., & Takeishi, Y. (2019). DNA damage and senescence-associated inflammation in cardiovascular disease. Biological & Pharmaceutical Bulletin, 42, 531–537.
Ising, C., Venegas, C., Zhang, S., Scheiblich, H., Schmidt, S. V., Vieira-Saecker, A., Schwartz, S., Albasset, S., McManus, R. M., Tejera, D., Griep, A., Santarelli, F., Brosseron, F., Opitz, S., Stunden, J., Merten, M., Kayed, R., Golenbock, D. T., Blum, D., … Heneka, M. T. (2019). NLRP3 inflammasome activation drives tau pathology. Nature, 575, 669–673.
Jury, N., Abarzua, S., Diaz, I., Guerra, M. V., Ampuero, E., Cubillos, P., Martinez, P., Herrera-Soto, A., Arredondo, C., Rojas, F., Manterola, M., Rojas, A., Montecino, M., Varela-Nallar, L., & van Zundert, B. (2020). Widespread loss of the silencing epigenetic mark H3K9me3 in astrocytes and neurons along with hippocampal-dependent cognitive impairment in C9orf72 BAC transgenic mice. Clinical Epigenetics, 12, 32.
Kalliolias, G. D., & Ivashkiv, L. B. (2008). IL-27 activates human monocytes via STAT1 and suppresses IL-10 production but the inflammatory functions of IL-27 are abrogated by TLRs and p38. Journal of Immunology, 180, 6325–6333.
Kamentsky, L., Jones, T. R., Fraser, A., Bray, M.-A., Logan, D. J., Madden, K. L., Ljosa, V., Rueden, C., Eliceiri, K. W., & Carpenter, A. E. (2011). Improved structure, function and compatibility for CellProfiler: Modular high-throughput image analysis software. Bioinformatics, 27, 1179–1180.
Kettenmann, H., Hanisch, U.-K., Noda, M., & Verkhratsky, A. (2011). Physiology of microglia. Physiological Reviews, 91, 461–553.
Kiecolt-Glaser, J. K., Preacher, K. J., MacCallum, R. C., Atkinson, C., Malarkey, W. B., & Glaser, R. (2003). Chronic stress and age-related increases in the proinflammatory cytokine IL-6. Proceedings of the National Academy of Sciences of the United States of America, 100, 9090–9095.
Lasry, A., & Ben-Neriah, Y. (2015). Senescence-associated inflammatory responses: Aging and cancer perspectives. Trends in Immunology, 36, 217–228.
Lee, J.-H., Kim, E. W., Croteau, D. L., & Bohr, V. A. (2020). Heterochromatin: An epigenetic point of view in aging. Experimental & Molecular Medicine, 52, 1466–1474.
Lee, V. M.-Y., Goedert, M., & Trojanowski, J. Q. (2001). Neurodegenerative tauopathies. Annual Review of Neuroscience, 24, 1121–1159.
Li, X.-G., Hong, X.-Y., Wang, Y.-L., Zhang, S.-J., Zhang, J.-F., Li, X.-C., Liu, Y.-C., Sun, D. S., Feng, Q., Ye, J. W., Gao, Y., Ke, D., Wang, Q., Li, H. L., Ye, K., Liu, G. P., & Wang, J. Z. (2019). Tau accumulation triggers STAT1-dependent memory deficits by suppressing NMDA receptor expression. EMBO Reports, 20, e47202.
Liang, C.-C., Park, A. Y., & Guan, J.-L. (2007). In vitro scratch assay: A convenient and inexpensive method for analysis of cell migration in vitro. Nature Protocols, 2, 329–333.
Mah, L.-J., El-Osta, A., & Karagiannis, T. C. (2010). γH2AX as a molecular marker of aging and disease. Epigenetics, 5, 129–136.
McShea, A., Harris, P. L., Webster, K. R., Wahl, A. F., & Smith, M. A. (1997). Abnormal expression of the cell cycle regulators P16 and CDK4 in Alzheimer's disease. The American Journal of Pathology, 150, 1933–1939.
Morita, Y., Masters, E. A., Schwarz, E. M., & Muthukrishnan, G. (2021). Interleukin-27 and its diverse effects on bacterial infections. Frontiers in Immunology, 12, 678515.
Moujaber, O., Fishbein, F., Omran, N., Liang, Y., Colmegna, I., Presley, J. F., & Stochaj, U. (2019). Cellular senescence is associated with reorganization of the microtubule cytoskeleton. Cellular and Molecular Life Sciences, 76, 1169–1183.
Muñoz-Espín, D., & Serrano, M. (2014). Cellular senescence: From physiology to pathology. Nature Reviews Molecular Cell Biology, 15, 482–496.
Musi, N., Valentine, J. M., Sickora, K. R., Baeuerle, E., Thompson, C. S., Shen, Q., & Orr, M. E. (2018). Tau protein aggregation is associated with cellular senescence in the brain. Aging Cell, 17, e12840.
Nishio, K., & Inoue, A. (2005). Senescence-associated alterations of cytoskeleton: Extraordinary production of vimentin that anchors cytoplasmic p53 in senescent human fibroblasts. Histochemistry and Cell Biology, 123, 263–273.
Ogrodnik, M. (2021). Cellular aging beyond cellular senescence: Markers of senescence prior to cell cycle arrest in vitro and in vivo. Aging Cell, 20, e13338.
Perea, J. R., Ávila, J., & Bolós, M. (2018). Dephosphorylated rather than hyperphosphorylated tau triggers a pro-inflammatory profile in microglia through the p38 MAPK pathway. Experimental Neurology, 310, 14–21.
Perry, V. H., & Holmes, C. (2014). Microglial priming in neurodegenerative disease. Nature Reviews Neurology, 10, 217–224.
Pflanz, S., Timans, J. C., Cheung, J., Rosales, R., Kanzler, H., Gilbert, J., Hibbert, L., Churakova, T., Travis, M., Vaisberg, E., Blumenschein, W. M., Mattson, J. D., Wagner, J. L., To, W., Zurawski, S., McClanahan, T. K., Gorman, D. M., Bazan, J. F., de Waal Malefyt, R., … Kastelein, R. A. (2002). IL-27, a heterodimeric cytokine composed of EBI3 and p28 protein, induces proliferation of naive CD4+ T cells. Immunity, 16, 779–790.
Rea, I. M., Gibson, D. S., McGilligan, V., McNerlan, S. E., Alexander, H. D., & Ross, O. A. (2018). Age and age-related diseases: Role of inflammation triggers and cytokines. Frontiers in Immunology, 9, 586.
Reed, M. J., Ferara, N. S., & Vernon, R. B. (2001). Impaired migration, integrin function, and Actin cytoskeletal organization in dermal fibroblasts from a subset of aged human donors. Mechanisms of Ageing and Development, 122, 1203–1220.
Rodier, F., Coppé, J.-P., Patil, C. K., Hoeijmakers, W. A. M., Muñoz, D. P., Raza, S. R., Freund, A., Campeau, E., Davalos, A. R., & Campisi, J. (2009). Persistent DNA damage signalling triggers senescence-associated inflammatory cytokine secretion. Nature Cell Biology, 11, 973–979.
Saito, N., Araya, J., Ito, S., Tsubouchi, K., Minagawa, S., Hara, H., Ito, A., Nakano, T., Hosaka, Y., Ichikawa, A., Kadota, T., Yoshida, M., Fujita, Y., Utsumi, H., Kurita, Y., Kobayashi, K., Hashimoto, M., Wakui, H., Numata, T., … Kuwano, K. (2019). Involvement of Lamin B1 reduction in accelerated cellular senescence during chronic obstructive pulmonary disease pathogenesis. Journal of Immunology, 202, 1428–1440.
Schafer, M. J., Zhang, X., Kumar, A., Atkinson, E. J., Zhu, Y., Jachim, S., Mazula, D. L., Brown, A. K., Berning, M., Aversa, Z., Kotajarvi, B., Bruce, C. J., Greason, K. L., Suri, R. M., Tracy, R. P., Cummings, S. R., White, T. A., & LeBrasseur, N. K. (2020). The senescence-associated secretome as an indicator of age and medical risk. JCI Insight, 5, 133668.
Scheiblich, H., & Bicker, G. (2015). Regulation of microglial migration, phagocytosis, and neurite outgrowth by HO-1/CO signaling. Developmental Neurobiology, 75, 854–876.
Scheiblich, H., Dansokho, C., Mercan, D., Schmidt, S. V., Bousset, L., Wischhof, L., Eikens, F., Odainic, A., Spitzer, J., Griep, A., Schwartz, S., Bano, D., Latz, E., Melki, R., & Heneka, M. T. (2021). Microglia jointly degrade fibrillar alpha-synuclein cargo by distribution through tunneling nanotubes. Cell, 184, 5089–5106.e21.
Shang, D., Hong, Y., Xie, W., Tu, Z., & Xu, J. (2020). Interleukin-1β drives cellular senescence of rat astrocytes induced by Oligomerized amyloid β peptide and oxidative stress. Frontiers in Neurology, 11, 929.
Sidler, C., Kovalchuk, O., & Kovalchuk, I. (2017). Epigenetic regulation of cellular senescence and aging. Frontiers in Genetics, 8, 138.
Sikora, E., Bielak-Zmijewska, A., & Mosieniak, G. (2013). Cellular senescence in ageing, age-related disease and longevity. Current Vascular Pharmacology, 12, 698–706.
Stein, G. H., Drullinger, L. F., Soulard, A., & Dulić, V. (1999). Differential roles for cyclin-dependent kinase inhibitors p21 and p16 in the mechanisms of senescence and differentiation in human fibroblasts. Molecular and Cellular Biology, 19, 2109–2117.
Streit, W. J. (2006). Microglial senescence: Does the brain's immune system have an expiration date? Trends in Neurosciences, 29, 506–510.
Streit, W. J., Braak, H., Xue, Q.-S., & Bechmann, I. (2009). Dystrophic (senescent) rather than activated microglial cells are associated with tau pathology and likely precede neurodegeneration in Alzheimer's disease. Acta Neuropathologica, 118, 475–485.
Su, L., Dong, Y., Wang, Y., Wang, Y., Guan, B., Lu, Y., Wu, J., et al. (2021). Potential role of senescent macrophages in radiation-induced pulmonary fibrosis. Cell Death & Disease, 12, 1–12.
Terzi, M. Y., Izmirli, M., & Gogebakan, B. (2016). The cell fate: senescence or quiescence. Molecular Biology Reports, 43, 1213–1220.
Trias, E., Beilby, P. R., Kovacs, M., Ibarburu, S., Varela, V., Barreto-Núñez, R., Bradford, S. C., Beckman, J. S., & Barbeito, L. (2019). Emergence of microglia bearing senescence markers during paralysis progression in a rat model of inherited ALS. Frontiers in Aging Neuroscience, 11, 42.
Tsurumi, A., & Li, W. (2012). Global heterochromatin loss. Epigenetics, 7, 680–688.
Ungerleider, K., Beck, J., Lissa, D., Turnquist, C., Horikawa, I., Harris, B. T., & Harris, C. C. (2021). Astrocyte senescence and SASP in neurodegeneration: Tau joins the loop. Cell Cycle Georget, 20, 752–764.
Velarde, M. C., & Menon, R. (2016). Positive and negative effects of cellular senescence during female reproductive aging and pregnancy. The Journal of Endocrinology, 230, R59–R76.
Venegas, C., Kumar, S., Franklin, B. S., Dierkes, T., Brinkschulte, R., Tejera, D., Vieira-Saecker, A., Schwartz, S., Santarelli, F., Kummer, M. P., Griep, A., Gelpi, E., Beilharz, M., Riedel, D., Golenbock, D. T., Geyer, M., Walter, J., Latz, E., & Heneka, M. T. (2017). Microglia-derived ASC specks cross-seed amyloid-β in Alzheimer's disease. Nature, 552, 355–361.
Wallis, R., Milligan, D., Hughes, B., Mizen, H., López-Domínguez, J. A., Eduputa, U., Tyler, E. J., Serrano, M., & Bishop, C. L. (2022). Senescence-associated morphological profiles (SAMPs): An image-based phenotypic profiling method for evaluating the inter and intra model heterogeneity of senescence. Aging, 14, 4220–4246.
Wang, E. (1985). Are cross-bridging structures involved in the bundle formation of intermediate filaments and the decrease in locomotion that accompany cell aging? The Journal of Cell Biology, 100, 1466–1473.
Wiley, C. D., Flynn, J. M., Morrissey, C., Lebofsky, R., Shuga, J., Dong, X., Unger, M. A., Vijg, J., Melov, S., & Campisi, J. (2017). Analysis of individual cells identifies cell-to-cell variability following induction of cellular senescence. Aging Cell, 16, 1043–1050.
Yamada, K., Cirrito, J. R., Stewart, F. R., Jiang, H., Finn, M. B., Holmes, B. B., Binder, L. I., Mandelkow, E. M., Diamond, M. I., Lee, V. M. Y., & Holtzman, D. M. (2011). In vivo microdialysis reveals age-dependent decrease of brain interstitial fluid tau levels in P301S human tau transgenic mice. Journal of Neuroscience, 31, 13110–13117.
Yang, H., Wang, H., Ren, J., Chen, Q., & Chen, Z. J. (2017). cGAS is essential for cellular senescence. Proceedings of the National Academy of Sciences of the United States of America, 114, E4612–E4620.
Yoshiyama, Y., Higuchi, M., Zhang, B., Huang, S.-M., Iwata, N., Saido, T. C., Maeda, J., Suhara, T., Trojanowski, J. Q., & Lee, V. M.-Y. (2007). Synapse loss and microglial activation precede tangles in a P301S Tauopathy mouse model. Neuron, 53, 337–351.
Zhang, B., Fu, D., Xu, Q., Cong, X., Wu, C., Zhong, X., Ma, Y., Lv, Z., Chen, F., Han, L., Qian, M., Chin, Y. E., Lam, E. W. F., Chiao, P., & Sun, Y. (2018). The senescence-associated secretory phenotype is potentiated by feedforward regulatory mechanisms involving Zscan4 and TAK1. Nature Communications, 9, 1723.
Zhang, F., Nance, E., Alnasser, Y., Kannan, R., & Kannan, S. (2016). Microglial migration and interactions with dendrimer nanoparticles are altered in the presence of neuroinflammation. Journal of Neuroinflammation, 13, 65.
Zhang, X., Liu, X., Du, Z., Wei, L., Fang, H., Dong, Q., Niu, J., et al. (2021). The loss of heterochromatin is associated with multiscale three-dimensional genome reorganization and aberrant transcription during cellular senescence. Genome Research, 31, 1121–1135.