Article (Périodiques scientifiques)
A data-driven reduced-order surrogate model for entire elastoplastic simulations applied to representative volume elements.
VIJAYARAGHAVAN, Soumianarayanan; Wu, L; Noels, L et al.
2023In Scientific Reports, 13 (1), p. 12781
Peer reviewed vérifié par ORBi Dataset
 

Documents


Texte intégral
Vijayaraghavan2023.pdf
Postprint Éditeur (4.93 MB) Licence Creative Commons - Transfert dans le Domaine Public
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Multidisciplinary
Résumé :
[en] This contribution discusses surrogate models that emulate the solution field(s) in the entire simulation domain. The surrogate uses the most characteristic modes of the solution field(s), in combination with neural networks to emulate the coefficients of each mode. This type of surrogate is well known to rapidly emulate flow simulations, but rather new for simulations of elastoplastic solids. The surrogate avoids the iterative process of constructing and solving the linearized governing equations of rate-independent elastoplasticity, as necessary for direct numerical simulations or (hyper-)reduced-order-models. Instead, the new plastic variables are computed only once per increment, resulting in substantial time savings. The surrogate uses a recurrent neural network to treat the path dependency of rate-independent elastoplasticity within the neural network itself. Because only a few of these surrogates have been developed for elastoplastic simulations, their potential and limitations are not yet well studied. The aim of this contribution is to shed more light on their numerical capabilities in the context of elastoplasticity. Although more widely applicable, the investigation focuses on a representative volume element, because these surrogates have the ability to both emulate the macroscale stress-deformation relation (which drives the multiscale simulation), as well as to recover all microstructural quantities within each representative volume element.
Disciplines :
Ingénierie aérospatiale
Ingénierie civile
Science des matériaux & ingénierie
Ingénierie mécanique
Auteur, co-auteur :
VIJAYARAGHAVAN, Soumianarayanan ;  University of Luxembourg > Faculty of Science, Technology and Medicine > Department of Engineering > Team Stéphane BORDAS
Wu, L;  University of Liege, Bât. B52/3 Computational & Multiscale Mechanics of Materials, Quartier Polytech 1, allée de la Découverte 9, 4000, Liège, Belgium
Noels, L;  University of Liege, Bât. B52/3 Computational & Multiscale Mechanics of Materials, Quartier Polytech 1, allée de la Découverte 9, 4000, Liège, Belgium
BORDAS, Stéphane ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Engineering (DoE)
Natarajan, S;  Department of Mechanical Engineering, Indian Institute of Technology, Madras, Chennai, 600036, India
BEEX, Lars ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Engineering (DoE)
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
A data-driven reduced-order surrogate model for entire elastoplastic simulations applied to representative volume elements.
Date de publication/diffusion :
07 août 2023
Titre du périodique :
Scientific Reports
eISSN :
2045-2322
Maison d'édition :
Nature Research, England
Volume/Tome :
13
Fascicule/Saison :
1
Pagination :
12781
Peer reviewed :
Peer reviewed vérifié par ORBi
Focus Area :
Computational Sciences
Objectif de développement durable (ODD) :
9. Industrie, innovation et infrastructure
12. Consommation et production responsables
Projet FnR :
INTER/FNRS/15/11019432/En-LightenIt/Bordas
Intitulé du projet de recherche :
Multiscale modelling of lightweight metallic materials accounting for variability of geometrical and material properties
N° du Fonds :
INTER/FNRS/15/11019432/En-LightenIt/Bordas
Subventionnement (détails) :
S.V., L.B. and S.B. gratefully acknowledge the support of Fonds National de la Recherche Luxembourg (FNR) grant INTER/FNRS/15/11019432/En-LightenIt/Bordas. This project has received funding from the H2020-EU.1.2.1.-FET Open Programme project MOAMMM under grant No. 862015 and the EU’ s H2020 project DRIVEN under grant No. 811099. Computational resources have been provided by the HPC of the University of Luxembourg and HPC CÉCI (funded by FRS-FNRS).
Jeu de données :
Disponible sur ORBilu :
depuis le 22 novembre 2023

Statistiques


Nombre de vues
155 (dont 2 Unilu)
Nombre de téléchargements
49 (dont 0 Unilu)

citations Scopus®
 
12
citations Scopus®
sans auto-citations
11
citations OpenAlex
 
12
citations WoS
 
10

Bibliographie


Publications similaires



Contacter ORBilu