Article (Périodiques scientifiques)
TrustDL: Use of trust-based dictionary learning to facilitate recommendation in social networks
KHALEDIAN, Navid; Nazari, Amin; Khamforoosh, Keyhan et al.
2023In Expert Systems with Applications, 228, p. 120487
Peer reviewed vérifié par ORBi
 

Documents


Texte intégral
TrustDL.pdf
Postprint Auteur (1.1 MB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Dictionary learning; Machine learning; Recommender systems; Sparse representation; Trust relationship; Cold-start; Data sparsity; Embeddings; Learning models; Learning techniques; Machine-learning; matrix; Engineering (all); Computer Science Applications; Artificial Intelligence; General Engineering
Résumé :
[en] Collaborative filtering (CF) is a widely applied method to perform recommendation tasks in a wide range of domains and applications. Dictionary learning (DL) models, which are highly important in CF-based recommender systems (RSs), are well represented by rating matrices. However, these methods alone do not resolve the cold start and data sparsity issues in RSs. We observed a significant improvement in rating results by adding trust information on the social network. For that purpose, we proposed a new dictionary learning technique based on trust information, called TrustDL, where the social network data were employed in the process of recommendation based on structural details on the trusted network. TrustDL sought to integrate the sources of information, including trust statements and ratings, into the recommendation model to mitigate both problems of cold start and data sparsity. It conducted dictionary learning and trust embedding simultaneously to predict unknown rating values. In this paper, the dictionary learning technique was integrated into rating learning, along with the trust consistency regularization term designed to offer a more accurate understanding of the feature representation. Moreover, partially identical trust embedding was developed, where users with similar rating sets could cluster together, and those with similar rating sets could be represented collaboratively. The proposed strategy appears significantly beneficial based on experiments conducted on four frequently used datasets: Epinions, Ciao, FilmTrust, and Flixster.
Disciplines :
Sciences informatiques
Auteur, co-auteur :
KHALEDIAN, Navid   ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > CritiX ; Department of Computer Engineering, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran
Nazari, Amin ;  Department of Computer Engineering, Bu-Ali Sina University, Hamedan, Iran
Khamforoosh, Keyhan ;  Department of Computer Engineering, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran
Abualigah, Laith ;  Hourani Center for Applied Scientific Research, Al-Ahliyya Amman University, Amman, Jordan
Javaheri, Danial ;  Department of Computer Engineering, Chosun University, Gwangju, South Korea
 Ces auteurs ont contribué de façon équivalente à la publication.
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
TrustDL: Use of trust-based dictionary learning to facilitate recommendation in social networks
Date de publication/diffusion :
15 octobre 2023
Titre du périodique :
Expert Systems with Applications
ISSN :
0957-4174
eISSN :
1873-6793
Maison d'édition :
Elsevier Ltd
Volume/Tome :
228
Pagination :
120487
Peer reviewed :
Peer reviewed vérifié par ORBi
Disponible sur ORBilu :
depuis le 21 novembre 2023

Statistiques


Nombre de vues
54 (dont 8 Unilu)
Nombre de téléchargements
206 (dont 1 Unilu)

citations Scopus®
 
29
citations Scopus®
sans auto-citations
24
OpenCitations
 
3
citations OpenAlex
 
31
citations WoS
 
23

Bibliographie


Publications similaires



Contacter ORBilu