Drude oscillators; Exact solution; Interatomic interactions; Many body; Non-covalent interaction; Noncovalent; Quanta computers; Quantum many-body problems; Structure dynamics; Structure stability; Physics and Astronomy (all); Quantum Physics; Physics - Chemical Physics; General Physics and Astronomy
Résumé :
[en] Noncovalent interactions are a key ingredient to determine the structure, stability, and dynamics of materials, molecules, and biological complexes. However, accurately capturing these interactions is a complex quantum many-body problem, with no efficient solution available on classical computers. A widely used model to accurately and efficiently model noncovalent interactions is the Coulomb-coupled quantum Drude oscillator (cQDO) many-body Hamiltonian, for which no exact solution is known. We show that the cQDO model lends itself naturally to simulation on a photonic quantum computer, and we calculate the binding energy curve of diatomic systems by leveraging Xanadu's strawberry fields photonics library. Our study substantially extends the applicability of quantum computing to atomistic modeling by showing a proof-of-concept application to noncovalent interactions, beyond the standard electronic-structure problem of small molecules. Remarkably, we find that two coupled bosonic QDOs exhibit a stable bond. In addition, our study suggests efficient functional forms for cQDO wave functions that can be optimized on classical computers, and capture the bonded-to-noncovalent transition for increasing interatomic distances.
Disciplines :
Physique
Auteur, co-auteur :
SARKIS, Matthieu ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Physics and Materials Science (DPHYMS)
FALLANI, Alessio ; University of Luxembourg > Faculty of Science, Technology and Medicine > Department of Physics and Materials Science > Team Alexandre TKATCHENKO
TKATCHENKO, Alexandre ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Physics and Materials Science (DPHYMS)
Co-auteurs externes :
no
Langue du document :
Anglais
Titre :
Modeling noncovalent interatomic interactions on a photonic quantum computer
FNR- CORE Grant “BroadApp” (FNR-CORE C20/MS/14769845) and ERC-AdG Grant “FITMOL”
Organisme subsidiant :
Horizon 2020 Framework Programme Fonds National de la Recherche Luxembourg
Subventionnement (détails) :
A.F. aknowledges financial support from the European Union's Horizon 2020 research and innovation program under Marie Sklodowska-Curie Grant Agreement No. 956832, “Advanced Machine learning for Innovative Drug Discovery” (AIDD). A.T. acknowledges funding via the FNR-CORE Grant “BroadApp” (FNR-CORE C20/MS/14769845) and ERC-AdG Grant “FITMOL”. The reader will find an open source python code accompanying this paper online .
Commentaire :
12 pages, 6 figures; published version, added various comments and a
figure
Y. Cao, J. Romero, J. P. Olson, M. Degroote, P. D. Johnson, M. Kieferová, I. D. Kivlichan, T. Menke, B. Peropadre, N. P. D. Sawaya, Quantum chemistry in the age of quantum computing, Chem. Rev. 119, 10856 (2019) 0009-2665 10.1021/acs.chemrev.8b00803.
J. Hermann Jr., R. A. DiStasio, and A. Tkatchenko, First-principles models for van der waals interactions in molecules and materials: Concepts, theory, and applications, Chem. Rev. 117, 4714 (2017) 0009-2665 10.1021/acs.chemrev.6b00446.
M. Stöhr, T. V. Voorhis, and A. Tkatchenko, Theory and practice of modeling van der waals interactions in electronic-structure calculations, Chem. Soc. Rev. 48, 4118 (2019) 0306-0012 10.1039/C9CS00060G.
H. Margenau and N. R. Kestner, in Theory of Intermolecular Forces, International Series of Monographs in Natural Philosophy, edited by D. T. Haar, Vol. 18 (Elsevier, Oxford, 2013).
I. G. Kaplan, Intermolecular Interactions: Physical Picture, Computational Methods and Model Potentials (John Wiley & Sons, New York, 2006).
A. Stone, The Theory of Intermolecular Forces (Oxford University Press, Oxford, 2013).
J. O. Hirschfelder, in Intermolecular Forces, Volume 12, edited by I. Prigogine and S. Rice, Vol. 12 (John Wiley & Sons, New York, 2009).
H. B. G. Casimir and D. Polder, The influence of retardation on the london-van der waals forces, Phys. Rev. 73, 360 (1948) 0031-899X 10.1103/PhysRev.73.360.
S. Y. Buhmann, Dispersion Forces I: Macroscopic Quantum Electrodynamics and Ground-State Casimir, Casimir-Polder and Van Der Waals Forces, Vol. 247 (Springer, Berlin, 2013).
S. Y. Buhmann and D. G. Welsch, Dispersion forces in macroscopic quantum electrodynamics, Prog. Quantum. Electron. 31, 51 (2007) 0079-6727 10.1016/j.pquantelec.2007.03.001.
G. Compagno, R. Passante, and F. Persico, Atom-Field Interactions and Dressed Atoms (Cambridge University Press, New York, 1995).
R. Passante, Dispersion interactions between neutral atoms and the quantum electrodynamical vacuum, Symmetry 10, 735 (2018) 2073-8994 10.3390/sym10120735.
C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Photons and Atoms-Introduction to Quantum Electrodynamics (Wiley-VCH Verlag, Morlenbach, 1997).
C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Atom-Photon Interactions: Basic Processes and Applications (Wiley-VCH Verlag, Morlenbach, 1998).
G. Preparata, QED Coherence in Matter (World Scientific, Singapore, 1995).
A. Salam, Molecular Quantum Electrodynamics: Long-Range Intermolecular Interactions (John Wiley & Sons, New York, 2009).
D. P. Craig and T. Thirunamachandran, Molecular Quantum Electrodynamics (Dover, Mineola, 1984).
J. Hoja Jr., H.-Y. Ko, M. A. Neumann, R. Car, R. A. DiStasio, and A. Tkatchenko, Reliable and practical computational description of molecular crystal polymorphs, Sci. Adv. 5, eaau3338 (2019) 2375-2548 10.1126/sciadv.aau3338.
J. Hoja and A. Tkatchenko, First-principles stability ranking of molecular crystal polymorphs with the dft+ mbd approach, Faraday Discuss. 211, 253 (2018) 1359-6640 10.1039/C8FD00066B.
M. Mortazavi, J. G. Brandenburg, R. J. Maurer, and A. Tkatchenko, Structure and stability of molecular crystals with many-body dispersion-inclusive density functional tight binding, J. Phys. Chem. Lett. 9, 399 (2018) 1948-7185 10.1021/acs.jpclett.7b03234.
M. Stöhr and A. Tkatchenko, Quantum mechanics of proteins in explicit water: The role of plasmon-like solute-solvent interactions, Sci. Adv. 5, eaax0024 (2019) 2375-2548 10.1126/sciadv.aax0024.
A. M. Reilly and A. Tkatchenko, Role of dispersion interactions in the polymorphism and entropic stabilization of the aspirin crystal, Phys. Rev. Lett. 113, 055701 (2014) 0031-9007 10.1103/PhysRevLett.113.055701.
M. Galante and A. Tkatchenko, Anisotropic van der waals dispersion forces in polymers: Structural symmetry breaking leads to enhanced conformational search, Phys. Rev. Res. 5, L012028 (2023) 2643-1564 10.1103/PhysRevResearch.5.L012028.
A. Kleshchonok and A. Tkatchenko, Tailoring van der waals dispersion interactions with external electric charges, Nature Commun. 9, 3017 (2018) 2041-1723 10.1038/s41467-018-05407-x.
A. Ambrosetti, P. Umari, P. L. Silvestrelli, J. Elliott, and A. Tkatchenko, Optical van-der-waals forces in molecules: From electronic bethe-salpeter calculations to the many-body dispersion model, Nature Commun. 13, 813 (2022) 2041-1723 10.1038/s41467-022-28461-y.
M. R. Karimpour, D. V. Fedorov, and A. Tkatchenko, Quantum framework for describing retarded and nonretarded molecular interactions in external electric fields, Phys. Rev. Res. 4, 013011 (2022) 2643-1564 10.1103/PhysRevResearch.4.013011.
D. D. Richardson, Dispersion contribution of two-atom interaction energy: Multipole interactions, J. Phys. A: Math. Gen. 8, 1828 (1975) 0305-4470 10.1088/0305-4470/8/11/019.
J. Mahanty and B. W. Ninham, Dispersion contributions to surface energy, J. Chem. Phys. 59, 6157 (1973) 0021-9606 10.1063/1.1679985.
L. M. Woods, D. A. R. Dalvit, A. Tkatchenko, P. Rodriguez-Lopez, A. W. Rodriguez, and R. Podgornik, Materials perspective on casimir and van der waals interactions, Rev. Mod. Phys. 88, 045003 (2016) 0034-6861 10.1103/RevModPhys.88.045003.
A. Tkatchenko, Current understanding of van der waals effects in realistic materials, Adv. Funct. Mater. 25, 2054 (2015) 1616-301X 10.1002/adfm.201403029.
X. Ren, P. Rinke, C. Joas, and M. Scheffler, Random-phase approximation and its applications in computational chemistry and materials science, J. Mater. Sci. 47, 7447 (2012) 0022-2461 10.1007/s10853-012-6570-4.
J. Harl and G. Kresse, Accurate bulk properties from approximate many-body techniques, Phys. Rev. Lett. 103, 056401 (2009) 0031-9007 10.1103/PhysRevLett.103.056401.
J. F. Dobson and T. Gould, Calculation of dispersion energies, J. Phys.: Condens. Matter 24, 073201 (2012) 0953-8984 10.1088/0953-8984/24/7/073201.
V. A. Parsegian, Van der Waals Forces: A Handbook for Biologists, Chemists, Engineers, and Physicists (Cambridge University Press, Cambridge, 2005).
A. D. Becke and E. R. Johnson, A simple effective potential for exchange, J. Chem. Phys. 124, 221101 (2006) 0021-9606 10.1063/1.2213970.
A. D. Becke and E. R. Johnson, Exchange-hole dipole moment and the dispersion interaction: High-order dispersion coefficients, J. Chem. Phys. 124, 014104 (2006) 0021-9606 10.1063/1.2139668.
S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (dft-d) for the 94 elements h-pu, J. Chem. Phys. 132, 154104 (2010) 0021-9606 10.1063/1.3382344.
S. Grimme, Semiempirical gga-type density functional constructed with a long-range dispersion correction, J. Comput. Chem. 27, 1787 (2006) 0192-8651 10.1002/jcc.20495.
A. Tkatchenko, R. A. DiStasio, R. Car, and M. Scheffler, Accurate and efficient method for many-body van der waals interactions, Phys. Rev. Lett. 108, 236402 (2012) 0031-9007 10.1103/PhysRevLett.108.236402.
D. Massa, A. Ambrosetti, and P. L. Silvestrelli, Many-body van der waals interactions beyond the dipole approximation, J. Chem. Phys. 154, 224115 (2021) 0021-9606 10.1063/5.0051604.
A. Ambrosetti Jr., A. M. Reilly, R. A. DiStasio, and A. Tkatchenko, Long-range correlation energy calculated from coupled atomic response functions, J. Chem. Phys. 140, 18A508 (2014) 0021-9606 10.1063/1.4865104.
W. L. Bade and J. G. Kirkwood, Drude-model calculation of dispersion forces. ii. the linear lattice, J. Chem. Phys. 27, 1284 (1957) 0021-9606 10.1063/1.1743992.
M. Gori, P. Kurian, and A. Tkatchenko, Second quantization approach to many-body dispersion interactions, arXiv:2205.11549 (2022).
D. Massa, A. Ambrosetti, and P. L. Silvestrelli, Beyond-dipole van der waals contributions within the many-body dispersion framework, Electron. Struct. 3, 044002 (2021) 2516-1075 10.1088/2516-1075/ac3b5c.
M. Sadhukhan and F. R. Manby, Quantum mechanics of drude oscillators with full coulomb interaction, Phys. Rev. B 94, 115106 (2016) 2469-9950 10.1103/PhysRevB.94.115106.
A. Peruzzo, J. McClean, P. Shadbolt, M.-H. Yung, X.-Q. Zhou, P. J. Love, A. Aspuru-Guzik, and J. L. O'brien, A variational eigenvalue solver on a photonic quantum processor, Nature Commun. 5, 4213 (2014) 2041-1723 10.1038/ncomms5213.
A. Kandala, A. Mezzacapo, K. Temme, M. Takita, M. Brink, J. M. Chow, and J. M. Gambetta, Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets, Nature (London) 549, 242 (2017) 0028-0836 10.1038/nature23879.
Y. Nam, J. Chen, N. C. Pisenti, K. Wright, C. Delaney, D. Maslov, K. R. Brown, S. Allen, J. M. Amini, Ground-state energy estimation of the water molecule on a trapped-ion quantum computer, npj Quantum Inf. 6, 33 (2020) 2056-6387 10.1038/s41534-020-0259-3.
L. W. Anderson, M. Kiffner, P. K. Barkoutsos, I. Tavernelli, J. Crain, and D. Jaksch, Coarse-grained intermolecular interactions on quantum processors, Phys. Rev. A 105, 062409 (2022) 2469-9926 10.1103/PhysRevA.105.062409.
M. Ditte, M. Barborini, L. M. Sandonas, and A. Tkatchenko, Molecules in environments: Towards systematic quantum embedding of electrons and drude oscillators, arXiv:2303.16250.
S. Lloyd and S. L. Braunstein, Quantum computation over continuous variables, Phys. Rev. Lett. 82, 1784 (1999) 0031-9007 10.1103/PhysRevLett.82.1784.
A. K. Pati, S. L. Braunstein, and S. Lloyd, Quantum searching with continuous variables arXiv:quant-ph/0002082.
A. K. Pati and S. L. Braunstein, Deutsch-jozsa algorithm for continuous variables, in Quantum Information with Continuous Variables (Springer, Berlin, 2003), pp. 31-36.
S. L. Braunstein and P. van Loock, Quantum information with continuous variables, Rev. Mod. Phys. 77, 513 (2005) 0034-6861 10.1103/RevModPhys.77.513.
U. L. Andersen, G. Leuchs, and C. Silberhorn, Continuous-variable quantum information processing, Laser Photonics Rev. 4, 337 (2010) 1863-8880 10.1002/lpor.200910010.
S. J. Lomonaco Jr. and L. H. Kauffman, A continuous variable Shor algorithm, arXiv:quant-ph/0210141.
H.-S. Zhong, H. Wang, Y.-H. Deng, M.-C. Chen, L.-C. Peng, Y.-H. Luo, J. Qin, D. Wu, X. Ding, Y. Hu, Quantum computational advantage using photons, Science 370, 1460 (2020) 0036-8075 10.1126/science.abe8770.
M. Tillmann, B. Dakić, R. Heilmann, S. Nolte, A. Szameit, and P. Walther, Experimental boson sampling, Nature Photon 7, 540 (2013) 1749-4885 10.1038/nphoton.2013.102.
K. Marshall, R. Pooser, G. Siopsis, and C. Weedbrook, Quantum simulation of quantum field theory using continuous variables, Phys. Rev. A 92, 063825 (2015) 1050-2947 10.1103/PhysRevA.92.063825.
K. Yeter-Aydeniz, E. Moschandreou, and G. Siopsis, Quantum imaginary-time evolution algorithm for quantum field theories with continuous variables, Phys. Rev. A 105, 012412 (2022) 2469-9926 10.1103/PhysRevA.105.012412.
C. Culver and D. Schaich, Quantum computing for lattice supersymmetry arXiv:2112.07651.
M. Schuld and F. Petruccione, Machine Learning with Quantum Computers (Springer, Berlin, 2021).
N. Killoran, T. R. Bromley, J. M. Arrazola, M. Schuld, N. Quesada, and S. Lloyd, Continuous-variable quantum neural networks, Phys. Rev. Res. 1, 033063 (2019) 2643-1564 10.1103/PhysRevResearch.1.033063.
J. M. Arrazola, T. R. Bromley, J. Izaac, C. R. Myers, K. Brádler, and N. Killoran, Machine learning method for state preparation and gate synthesis on photonic quantum computers, Quantum Sci. Technol. 4, 024004 (2019) 2058-9565 10.1088/2058-9565/aaf59e.
Y. Enomoto, K. Anai, K. Udagawa, and S. Takeda, Continuous-variable quantum approximate optimization on a programmable photonic quantum processor, Phys. Rev. Res. 5, 043005 (2023) 10.1103/PhysRevResearch.5.043005.
T. R. Bromley, J. M. Arrazola, S. Jahangiri, J. Izaac, N. Quesada, A. D. Gran, M. Schuld, J. Swinarton, Z. Zabaneh, and N. Killoran, Applications of near-term photonic quantum computers: Software and algorithms, Quantum Sci. Technol. 5, 034010 (2020) 2058-9565 10.1088/2058-9565/ab8504.
G. Herzberg, Molecular Spectra and Molecular Structure (D. van Nostrand, New York, 1945).
J. Apanavicius, Y. Feng, Y. Flores, M. Hassan, and McGuigan, Morse potential on a quantum computer for molecules and supersymmetric quantum mechanics arXiv:2102.05102.
R. J. L. Roy, Y. Huang, and C. Jary, An accurate analytic potential function for ground-state n2 from a direct-potential-fit analysis of spectroscopic data, J. Chem. Phys. 125, 164310 (2006) 0021-9606 10.1063/1.2354502.
R. J. L. Roy and R. D. E. Henderson, A new potential function form incorporating extended long-range behaviour: Application to ground-state ca2, Mol. Phys. 105, 663 (2007) 0026-8976 10.1080/00268970701241656.
S.-W. Chiu, H. L. Scott, and E. Jakobsson, A coarse-grained model based on morse potential for water and n-alkanes, J. Chem. Theory Comput. 6, 851 (2010) 1549-9618 10.1021/ct900475p.
A. Jones, Quantum drude oscillators for accurate many-body intermolecular forces, Ph.D. thesis, University of Edinburgh, 2010.
S. Góger, A. Khabibrakhmanov, O. Vaccarelli, D. V. Fedorov, and A. Tkatchenko, Optimized quantum drude oscillators for atomic and molecular response properties, J. Phys. Chem. Lett. 14, 6217 (2023) 1948-7185 10.1021/acs.jpclett.3c01221.
U. Chabaud, P.-E. Emeriau, and F. Grosshans, Witnessing wigner negativity, Quantum 5, 471 (2021) 2521-327X 10.22331/q-2021-06-08-471.
I. I. Arkhipov, A. Barasiński, and J. Svozilík, Negativity volume of the generalized wigner function as an entanglement witness for hybrid bipartite states, Sci. Rep. 8, 16955 (2018) 2045-2322 10.1038/s41598-018-35330-6.
A. I. Lvovsky and M. G. Raymer, Continuous-variable optical quantum-state tomography, Rev. Mod. Phys. 81, 299 (2009) 0034-6861 10.1103/RevModPhys.81.299.
S. Puri, S. Boutin, and A. Blais, Engineering the quantum states of light in a kerr-nonlinear resonator by two-photon driving, npj Quantum Inf. 3, 18 (2017) 2056-6387 10.1038/s41534-017-0019-1.
A. Grimm, N. E. Frattini, S. Puri, S. O. Mundhada, S. Touzard, M. Mirrahimi, S. M. Girvin, S. Shankar, and M. H. Devoret, Stabilization and operation of a Kerr-cat qubit, Nature 584, 205 (2020) 0028-0836 10.1038/s41586-020-2587-z.