Andreev reflection; Edge state; Microscopic theory; Proximity couplings; Quantum hall; S-waves; Superconducting correlations; Supercurrents; Through signature; Wave superconductors; Physics and Astronomy (all); Physics - Mesoscopic Systems and Quantum Hall Effect; General Physics and Astronomy
Résumé :
[en] A chiral quantum Hall (QH) edge state placed in proximity to an s-wave superconductor experiences induced superconducting correlations. Recent experiments have observed the effect of proximity coupling in QH edge states through signatures of the mediating process of Andreev reflection. We present the microscopic theory behind this effect by modeling the system with a many-body Hamiltonian, consisting of an s-wave superconductor, subject to spin-orbit coupling and a magnetic field, which is coupled by electron tunneling to an integer QH edge state. By integrating out the superconductor we obtain an effective pairing Hamiltonian in the QH edge state. We clarify the qualitative appearance of nonlocal superconducting correlations in a chiral edge state and analytically predict the suppression of electron-hole conversion at low energies (Pauli blocking) and negative resistance as experimental signatures of Andreev reflection in this setup. In particular, we show how two surface phenomena of the superconductor, namely, Rashba spin-orbit coupling and a supercurrent due to the Meissner effect, are essential for the Andreev reflection. Our work provides a promising pathway to the realization of Majorana zero modes and their parafermionic generalizations.
Disciplines :
Physique
Auteur, co-auteur :
MICHELSEN, Andreas Nicolai Bock ; University of Luxembourg > Faculty of Science, Technology and Medicine > Department of Physics and Materials Science > Team Thomas SCHMIDT ; SUPA, School of Physics and Astronomy, University of St. Andrews, St. Andrews, United Kingdom
Recher, Patrik ; Institut für Mathematische Physik, Technische Universität Braunschweig, Braunschweig, Germany ; Laboratory for Emerging Nanometrology, Braunschweig, Germany
Braunecker, Bernd ; SUPA, School of Physics and Astronomy, University of St. Andrews, St. Andrews, United Kingdom
SCHMIDT, Thomas ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Physics and Materials Science (DPHYMS)
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Supercurrent-enabled Andreev reflection in a chiral quantum Hall edge state
Fonds National de la Recherche Luxembourg Deutsche Forschungsgemeinschaft
Subventionnement (détails) :
The authors wish to thank Harold Baranger, Lingfei Zhao, and Pablo Burset for fruitful discussions. A.B.M. and T.L.S. acknowledge support from the National Research Fund, Luxembourg, under the grant ATTRACT, Grant No. A14/MS/7556175/MoMeSys. A.B.M. and B.B. acknowledge support from St. Leonard's European Inter-University Doctoral Scholarship of the University of St. Andrews. P.R. acknowledges financial support by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) within the framework of Germany's Excellence Strategy – EXC-2123 QuantumFrontiers – 390837967.
Y. Takagaki, Transport properties of semiconductor-superconductor junctions in quantizing magnetic fields, Phys. Rev. B 57, 4009 (1998) 0163-1829 10.1103/PhysRevB.57.4009.
H. Hoppe, U. Zülicke, and G. Schön, Andreev Reflection in Strong Magnetic Fields, Phys. Rev. Lett. 84, 1804 (2000) 0031-9007 10.1103/PhysRevLett.84.1804.
F. Giazotto, M. Governale, U. Zülicke, and F. Beltram, Andreev reflection and cyclotron motion at superconductor-normal-metal interfaces, Phys. Rev. B 72, 054518 (2005) 1098-0121 10.1103/PhysRevB.72.054518.
I. M. Khaymovich, N. M. Chtchelkatchev, I. A. Shereshevskii, and A. S. Mel'nikov, Andreev transport in two-dimensional normal-superconducting systems in strong magnetic fields, EPL 91, 17005 (2010) 0295-5075 10.1209/0295-5075/91/17005.
T. M. Klapwijk, Proximity effect from an Andreev perspective, J. Supercond. 17, 593 (2004) 0896-1107 10.1007/s10948-004-0773-0.
Z. Wan, A. Kazakov, M. J. Manfra, L. N. Pfeiffer, K. W. West, and L. P. Rokhinson, Induced superconductivity in high-mobility two-dimensional electron gas in gallium arsenide heterostructures, Nat. Commun. 6, 7426 (2015) 2041-1723 10.1038/ncomms8426.
V. E. Calado, S. Goswami, G. Nanda, M. Diez, A. R. Akhmerov, K. Watanabe, T. Taniguchi, T. M. Klapwijk, and L. M. K. Vandersypen, Ballistic Josephson junctions in edge-contacted graphene, Nat. Nanotechnol. 10, 761 (2015) 1748-3387 10.1038/nnano.2015.156.
M. Ben Shalom, M. J. Zhu, V. I. Fal'ko, A. Mishchenko, A. V. Kretinin, K. S. Novoselov, C. R. Woods, K. Watanabe, T. Taniguchi, A. K. Geim, and J. R. Prance, Quantum oscillations of the critical current and high-field superconducting proximity in ballistic graphene, Nat. Phys. 12, 318 (2016) 1745-2473 10.1038/nphys3592.
F. Amet, C. T. Ke, I. V. Borzenets, J. Wang, K. Watanabe, T. Taniguchi, R. S. Deacon, M. Yamamoto, Y. Bomze, S. Tarucha, and G. Finkelstein, Supercurrent in the quantum Hall regime, Science 352, 966 (2016) 0036-8075 10.1126/science.aad6203.
M. R. Sahu, A. K. Paul, J. Sutradhar, K. Watanabe, T. Taniguchi, V. Singh, S. Mukerjee, S. Banerjee, and A. Das, Quantized conductance with non-zero shot noise as a signature of Andreev edge state, Phys. Rev. B 104, 054202 (2021) 2469-9950 10.1103/PhysRevB.104.054202.
L. Zhao, E. G. Arnault, A. Bondarev, A. Seredinski, T. F. Q. Larson, A. W. Draelos, H. Li, K. Watanabe, T. Taniguchi, F. Amet, H. U. Baranger, and G. Finkelstein, Interference of chiral Andreev edge states, Nat. Phys. 16, 862 (2020) 1745-2473 10.1038/s41567-020-0898-5.
M. Hatefipour, J. J. Cuozzo, J. Kanter, W. M. Strickland, C. R. Allemang, T.-M. Lu, E. Rossi, and J. Shabani, Induced superconducting pairing in integer quantum Hall edge States, Nano Lett. 22, 6173 (2022) 1530-6984 10.1021/acs.nanolett.2c01413.
A. L. R. Manesco, I. M. Flór, C.-X. Liu, and A. R. Akhmerov, Mechanisms of Andreev reflection in quantum Hall graphene, SciPost Phys. Core 5, 045 (2021) 2666-9366 10.21468/SciPostPhysCore.5.3.045.
V. D. Kurilovich, Z. M. Raines, and L. I. Glazman, Disorder in Andreev reflection of a quantum Hall edge, arXiv:2201.00273.
G.-H. Lee, K.-F. Huang, D. K. Efetov, D. S. Wei, S. Hart, T. Taniguchi, K. Watanabe, A. Yacoby, and P. Kim, Inducing superconducting correlation in quantum Hall edge states, Nat. Phys. 13, 693 (2017) 1745-2473 10.1038/nphys4084.
Ö. Gül, Y. Ronen, S. Y. Lee, H. Shapourian, J. Zauberman, Y. H. Lee, K. Watanabe, T. Taniguchi, A. Vishwanath, A. Yacoby, and P. Kim, Andreev Reflection in the Fractional Quantum Hall State, Phys. Rev. X 12, 021057 (2022) 2160-3308 10.1103/PhysRevX.12.021057.
N. Schiller, B. A. Katzir, A. Stern, E. Berg, N. H. Lindner, and Y. Oreg, Interplay of superconductivity and dissipation in quantum Hall edges, arXiv:2202.10475.
T. H. Galambos, F. Ronetti, B. Hetényi, D. Loss, and J. Klinovaja, Crossed Andreev reflection in spin-polarized chiral edge states due to Meissner effect, Phys. Rev. B 106, 075410 (2022) 2469-9950 10.1103/PhysRevB.106.075410.
J. Alicea, New directions in the pursuit of Majorana fermions in solid state systems, Rep. Prog. Phys. 75, 076501 (2012) 0034-4885 10.1088/0034-4885/75/7/076501.
C. W. J. Beenakker, Random-matrix theory of Majorana fermions and topological superconductors, Rev. Mod. Phys. 87, 1037 (2015) 0034-6861 10.1103/RevModPhys.87.1037.
D. J. Clarke, J. Alicea, and K. Shtengel, Exotic non-Abelian anyons from conventional fractional quantum Hall states, Nat. Commun. 4, 1348 (2013) 2041-1723 10.1038/ncomms2340.
J. Alicea and P. Fendley, Topological phases with parafermions: Theory and blueprints, Annu. Rev. Condens. Matter Phys. 7, 119 (2016) 1947-5454 10.1146/annurev-conmatphys-031115-011336.
A. Y. Kitaev, Fault-tolerant quantum computation by anyons, Ann. Phys. (Amsterdam) 303, 2 (2003) 0003-4916 10.1016/S0003-4916(02)00018-0.
B. Lian, X.-Q. Sun, A. Vaezi, X.-L. Qi, and S.-C. Zhang, Topological quantum computation based on chiral Majorana fermions, Proc. Natl. Acad. Sci. USA 115, 10938 (2018) 0027-8424 10.1073/pnas.1810003115.
D. J. Clarke, J. Alicea, and K. Shtengel, Exotic circuit elements from zero-modes in hybrid superconductor/quantum Hall systems, Nat. Phys. 10, 877 (2014) 1745-2473 10.1038/nphys3114.
J. A. M. van Ostaay, A. R. Akhmerov, and C. W. J. Beenakker, Spin-triplet supercurrent carried by quantum Hall edge states through a Josephson junction, Phys. Rev. B 83, 195441 (2011) 1098-0121 10.1103/PhysRevB.83.195441.
F. London, On the problem of the molecular theory of superconductivity, Phys. Rev. 74, 562 (1948) 0031-899X 10.1103/PhysRev.74.562.
J. Bardeen, Choice of gauge in london's approach to the theory of superconductivity, Phys. Rev. 81, 469 (1951) 0031-899X 10.1103/PhysRev.81.469.2.
B. I. Halperin, Quantized Hall conductance, current-carrying edge states, and the existence of extended states in a two-dimensional disordered potential, Phys. Rev. B 25, 2185 (1982) 0163-1829 10.1103/PhysRevB.25.2185.
W. N. Mei and Y. C. Lee, Harmonic oscillator with potential barriers-exact solutions and perturbative treatments, J. Phys. A: Math. Gen. 16, 1623 (1983) 0305-4470 10.1088/0305-4470/16/8/010.
T. Patlatiuk, C. P. Scheller, D. Hill, Y. Tserkovnyak, G. Barak, A. Yacoby, L. N. Pfeiffer, K. W. West, and D. M. Zumbühl, Evolution of the quantum Hall bulk spectrum into chiral edge states, Nat. Commun. 9, 3692 (2018) 2041-1723 10.1038/s41467-018-06025-3.
M. P. A. Fisher, Cooper-pair tunneling into a quantum Hall fluid, Phys. Rev. B 49, 14550 (1994) 0163-1829 10.1103/PhysRevB.49.14550.
A. B. Michelsen, T. L. Schmidt, and E. G. Idrisov, Current correlations of Cooper-pair tunneling into a quantum Hall system, Phys. Rev. B 102, 125402 (2020) 2469-9950 10.1103/PhysRevB.102.125402.
A. Kamlapure, M. Mondal, M. Chand, A. Mishra, J. Jesudasan, V. Bagwe, L. Benfatto, V. Tripathi, and P. Raychaudhuri, Measurement of magnetic penetration depth and superconducting energy gap in very thin epitaxial NbN films, Appl. Phys. Lett. 96, 072509 (2010) 0003-6951 10.1063/1.3314308.
S. Sundar, L. S. Sharath Chandra, V. K. Sharma, M. K. Chattopadhyay, and S. B. Roy, Electrical transport and magnetic properties of superconducting (Equation presented) alloy, in Solid State Physics: Proceedings of the 57th DAE Solid State Physics Symposium 2012, edited by A. K. Chauhan, Chitra Murli, and S. C. Gadkari, AIP Conf. Proc. No. 1512 (AIP, New York, 2013), p. 1092.
K. Makise, Y. Mizokami, T. Nogami, G. Sawada, T. Asano, B. Shinozaki, and F. Ichikawa, Estimations of superconducting fluctuation effects in amorphous MoRu and MoRe alloy thin films, Mater. Res. Express 5, 096406 (2018) 2053-1591 10.1088/2053-1591/aad65c.
M. Tinkham, Uniform current in pure superconductors, in Introduction to Superconductivity, 2nd ed. (McGraw-Hill, New York, 1996), pp. 387-388.
A. Larkin and A. Varlamov, Theory of Fluctuations in Superconductors, International Series of Monographs on Physics (Oxford University Press, Oxford, 2005).
Y. Kim, J. Zhang, E. Rossi, and R. M. Lutchyn, Impurity-Induced Bound States in Superconductors with Spin-Orbit Coupling, Phys. Rev. Lett. 114, 236804 (2015) 0031-9007 10.1103/PhysRevLett.114.236804.
A. Kohen, T. Proslier, T. Cren, Y. Noat, W. Sacks, H. Berger, and D. Roditchev, Probing the Superfluid Velocity with a Superconducting Tip: The Doppler Shift Effect, Phys. Rev. Lett. 97, 027001 (2006) 0031-9007 10.1103/PhysRevLett.97.027001.
P. F. Bagwell, Critical current of a one-dimensional superconductor, Phys. Rev. B 49, 6841 (1994) 0163-1829 10.1103/PhysRevB.49.6841.
N. Read and D. Green, Paired states of fermions in two dimensions with breaking of parity and time-reversal symmetries and the fractional quantum Hall effect, Phys. Rev. B 61, 10267 (2000) 0163-1829 10.1103/PhysRevB.61.10267.
P. Virtanen and P. Recher, Signatures of Rashba spin-orbit interaction in the superconducting proximity effect in helical Luttinger liquids, Phys. Rev. B 85, 035310 (2012) 1098-0121 10.1103/PhysRevB.85.035310.
S. Datta, Electronic Transport in Mesoscopic Systems, Cambridge Studies in Semiconductor Physics and Microelectronic Engineering (Cambridge University Press, Cambridge, 1995).
T. Wakamura, N. Hasegawa, K. Ohnishi, Y. Niimi, and Y. C. Otani, Spin Injection into a Superconductor with Strong Spin-Orbit Coupling, Phys. Rev. Lett. 112, 036602 (2014) 0031-9007 10.1103/PhysRevLett.112.036602.
B. R. Johnson, New numerical methods applied to solving the one-dimensional eigenvalue problem, J. Chem. Phys. 67, 4086 (1977) 0021-9606 10.1063/1.435384.
A. Altland and B. Simons, Functional field integral, in Condensed Matter Field Theory, 2nd ed. (Cambridge University Press, Cambridge, 2010), Chap. 4, pp. 156-192.
G. E. Blonder, M. Tinkham, and T. M. Klapwijk, Transition from metallic to tunneling regimes in superconducting microconstrictions: Excess current, charge imbalance, and supercurrent conversion, Phys. Rev. B 25, 4515 (1982) 0163-1829 10.1103/PhysRevB.25.4515.