artificial intelligence; dementia; machine learning; prevention; risk prediction; Epidemiology; Health Policy; Developmental Neuroscience; Neurology (clinical); Geriatrics and Gerontology; Cellular and Molecular Neuroscience; Psychiatry and Mental Health
Abstract :
[en] INTRODUCTION: A wide range of modifiable risk factors for dementia have been identified. Considerable debate remains about these risk factors, possible interactions between them or with genetic risk, and causality, and how they can help in clinical trial recruitment and drug development. Artificial intelligence (AI) and machine learning (ML) may refine understanding.
METHODS: ML approaches are being developed in dementia prevention. We discuss exemplar uses and evaluate the current applications and limitations in the dementia prevention field.
RESULTS: Risk-profiling tools may help identify high-risk populations for clinical trials; however, their performance needs improvement. New risk-profiling and trial-recruitment tools underpinned by ML models may be effective in reducing costs and improving future trials. ML can inform drug-repurposing efforts and prioritization of disease-modifying therapeutics.
DISCUSSION: ML is not yet widely used but has considerable potential to enhance precision in dementia prevention.
HIGHLIGHTS: Artificial intelligence (AI) is not widely used in the dementia prevention field. Risk-profiling tools are not used in clinical practice. Causal insights are needed to understand risk factors over the lifespan. AI will help personalize risk-management tools for dementia prevention. AI could target specific patient groups that will benefit most for clinical trials.
Research center :
Integrative Research Unit: Social and Individual Development (INSIDE) > PEARL Institute for Research on Socio-Economic Inequality (IRSEI)
Precision for document type :
Review article
Disciplines :
Public health, health care sciences & services Sociology & social sciences Social & behavioral sciences, psychology: Multidisciplinary, general & others Computer science
Author, co-author :
Newby, Danielle ; Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, UK
Orgeta, Vasiliki; Division of Psychiatry, University College London, London, UK
Marshall, Charles R; Preventive Neurology Unit, Wolfson Institute of Population Health, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK ; Department of Neurology, Royal London Hospital, London, UK
Lourida, Ilianna; Population Health Sciences Institute, Newcastle University, Newcastle, UK ; University of Exeter Medical School, Exeter, UK
Albertyn, Christopher P; Department of Old Age Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
Tamburin, Stefano; Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
Raymont, Vanessa; Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, UK
Veldsman, Michele; Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK ; Department of Experimental Psychology, University of Oxford, Oxford, UK
Koychev, Ivan; Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, UK
Bauermeister, Sarah; Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, UK
Weisman, David; Abington Neurological Associates, Abington, Pennsylvania, USA
Foote, Isabelle F; Preventive Neurology Unit, Wolfson Institute of Population Health, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK ; Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, Colorado, USA
Bucholc, Magda; Cognitive Analytics Research Lab, School of Computing, Engineering & Intelligent Systems, Ulster University, Derry, UK
LEIST, Anja ; University of Luxembourg > Faculty of Humanities, Education and Social Sciences (FHSE) > Department of Social Sciences (DSOC) > Socio-Economic Inequality
Tang, Eugene Y H; Population Health Sciences Institute, Newcastle University, Newcastle, UK
Tai, Xin You; Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, UK ; Division of Clinical Neurology, John Radcliffe Hospital, Oxford University Hospitals Trust, Oxford, UK
Llewellyn, David J ✱; University of Exeter Medical School, Exeter, UK ; The Alan Turing Institute, London, UK
Ranson, Janice M ✱; University of Exeter Medical School, Exeter, UK
✱ These authors have contributed equally to this work.
External co-authors :
yes
Language :
English
Title :
Artificial intelligence for dementia prevention
Publication date :
December 2023
Journal title :
Alzheimer's and Dementia: the Journal of the Alzheimer's Association
ISSN :
1552-5260
eISSN :
1552-5279
Publisher :
John Wiley and Sons Inc, United States
Volume :
19
Issue :
12
Pages :
5952-5969
Peer reviewed :
Peer Reviewed verified by ORBi
Focus Area :
Computational Sciences
Development Goals :
3. Good health and well-being
European Projects :
H2020 - 803239 - CRISP - Cognitive Aging: From Educational Opportunities to Individual Risk Profiles
Funders :
Medical Research Council European Research Council Barts Charity Union Européenne
Funding text :
With thanks to the Deep Dementia Phenotyping (DEMON) Network State of the Science symposium participants (in alphabetical order): Peter Bagshaw, Robin Borchert, Magda Bucholc, James Duce, Charlotte James, David Llewellyn, Donald Lyall, Sarah Marzi, Danielle Newby, Neil Oxtoby, Janice Ranson, Tim Rittman, Nathan Skene, Eugene Tang, Michele Veldsman, Laura Winchester, and Zhi Yao. This review was facilitated by the Alzheimer's Association International Society to Advance Alzheimer's research and Treatment (ISTAART), through the AI for Precision Dementia Medicine Professional Interest Area (PIA). The views and opinions expressed in this publication represent those of the authors and do not necessarily reflect those of the PIA membership, ISTAART, or the Alzheimer's Association. This article was the product of a DEMON Network State of the Science symposium entitled “Harnessing Data Science and AI in Dementia Research” funded by Alzheimer's Research UK. J.M.R. and D.J.L. are supported by Alzheimer's Research UK and the Alan Turing Institute/Engineering and Physical Sciences Research Council (EP/N510129/1). D.J.L. also receives funding from the Medical Research Council (MR/X005674/1), National Institute for Health Research (NIHR) Applied Research Collaboration South West Peninsula, National Health and Medical Research Council (NHMRC), and National Institute on Aging/National Institutes of Health (RF1AG055654). This work was additionally supported by the following: European Research Council (grant agreement no. 803239 (A.K.L.), Barts Charity (C.R.M.), George Henry Woolfe Legacy Fund and the National Institute on Aging (RF1AG073593) (I.F.F.), E.Y.H.T. (National Institute for Health Research (NIHR) Clinical Lecturer) is funded by the NIHR and the views expressed in this publication are those of the author(s) and not necessarily those of the NIHR, NHS, or the UK Department of Health and Social Care. S.B. is supported by Dementias Platform UK (DPUK). The Medical Research Council supports DPUK through grant MR/T0333771. M.B. is supported by Alzheimer's Research UK, Economic and Social Research Council (ES/W010240/1), EU (Special EU Programmes body (SEUPB)) INTERREG (European Region Development Fund (ERDF)/SEUPB), Health and Social Care Research and Development HSC R&D (COM/5750/23) and Dr George Moore Endowment for Data Science at Ulster University.
Matthews FE, Stephan BC, Robinson L, et al. A two decade dementia incidence comparison from the Cognitive Function and Ageing Studies I and II. Nat Commun. 2016;7:11398. doi:10.1038/NCOMMS11398
Satizabal CL, Beiser AS, Chouraki V, Chêne G, Dufouil C, Seshadri S. Incidence of dementia over three decades in the Framingham Heart Study. N Engl J Med. 2016;374:523-532. doi:10.1056/NEJMOA1504327
Martin Prince A, Wimo A, Guerchet M, et al. World Alzheimer Report 2015. The global impact of dementia an analysis of prevalence, incidence, cost and trends. 2015. https://www.alzint.org/u/WorldAlzheimerReport2015.pdf
Kapasi A, DeCarli C, Schneider JA. Impact of multiple pathologies on the threshold for clinically overt dementia. Acta Neuropathol. 2017;134:171-186. doi:10.1007/s00401-017-1717-7
Beason-Held LL, Goh JO, An Y, et al. Changes in brain function occur years before the onset of cognitive impairment. J Neurosci. 2013;33:18008-18014. doi:10.1523/JNEUROSCI.1402-13.2013
Zissimopoulos J, Crimmins E, Stclair P. The value of delaying Alzheimer's disease onset. Forum Health Econ Policy. 2014;18:25. doi:10.1515/FHEP-2014-0013
Beeri MS. Prevention of dementia presents a potentially critical platform for improvement of long-term public health. Dialogues Clin Neurosci. 2019;21:93. doi:10.31887/DCNS.2019.21.1/MBEERI
Livingston G, Huntley J, Sommerlad A, et al. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. Lancet. 2020;396:413-446. doi:10.1016/S0140-6736(20)30367-6
Ngandu T, Lehtisalo J, Solomon A, et al. A 2 year multidomain intervention of diet, exercise, cognitive training, and vascular risk monitoring versus control to prevent cognitive decline in at-risk elderly people (FINGER): a randomised controlled trial. Lancet. 2015;385:2255-2263. doi:10.1016/S0140-6736(15)60461-5
Minghui R. WHO Guidelines—Risk reduction for cognitive decline and dementia. Risk reduction of cognitive decline and dementia 2019:96. ISBN: 978 92 4 155054 3. https://www.who.int/publications/i/item/9789241550543
Eggink E, van Charante EPM, van Gool WA, Richard E. A population perspective on prevention of dementia. J Clin Med. 2019;8:834. doi:10.3390/JCM8060834
James C, Ranson JM, Everson R, Llewellyn DJ. Performance of machine learning algorithms for predicting progression to dementia in memory clinic patients. JAMA Netw Open. 2021;4:e2136553-e2136553. doi:10.1001/JAMANETWORKOPEN.2021.36553
Eckhardt CM, Madjarova SJ, Williams RJ, et al. Unsupervised machine learning methods and emerging applications in healthcare. Knee Surg Sports Traumatol Arthrosc. 2023;31:376-381. doi:10.1007/S00167-022-07233-7
Deo RC. Machine learning in medicine. Circulation. 2015;132:1920. doi:10.1161/CIRCULATIONAHA.115.001593
Gamberger D, Lavrač N, Srivatsa S, Tanzi RE, Doraiswamy PM. Identification of clusters of rapid and slow decliners among subjects at risk for Alzheimer's disease. Sci Rep. 2017;7:1-12. doi:10.1038/s41598-017-06624-y
Calvin CM, Conroy MC, Moore SF, Kuźma E, Littlejohns TJ. Association of multimorbidity, disease clusters, and modification by genetic factors with risk of dementia. JAMA Netw Open. 2022;5:e2232124-e2232124. doi:10.1001/JAMANETWORKOPEN.2022.32124
Bijlani N, Nilforooshan R, Kouchaki S. An unsupervised data-driven anomaly detection approach for adverse health conditions in people living with dementia: cohort study. JMIR Aging. 2022;5:e38211. doi:10.2196/38211
Goldstein M, Uchida S. A comparative evaluation of unsupervised anomaly detection algorithms for multivariate data. PLoS One. 2016;11:e0152173. doi:10.1371/JOURNAL.PONE.0152173
Nezhadmoghadam F, Martinez-Torteya A, Treviño V, et al. Robust discovery of mild cognitive impairment subtypes and their risk of Alzheimer's disease conversion using unsupervised machine learning and gaussian mixture modeling. Curr Alzheimer Res. 2021;18:595-606. doi:10.2174/1567205018666210831145825
Shao Y, Zeng QT, Chen KK, Shutes-David A, Thielke SM, Tsuang DW. Detection of probable dementia cases in undiagnosed patients using structured and unstructured electronic health records. BMC Med Inform Decis Mak. 2019;19:1-11. doi:10.1186/S12911-019-0846-4/TABLES/5
Sidey-Gibbons JAM, Sidey-Gibbons CJ. Machine learning in medicine: a practical introduction. BMC Med Res Methodol. 2019;19:1-18. doi:10.1186/S12874-019-0681-4/TABLES/5
Alpaydin E. Introduction to Machine Learning Fourth Edition. MIT Press; 2020.
Goerdten J, Čukić I, Danso SO, Carrière I, Muniz-Terrera G. Statistical methods for dementia risk prediction and recommendations for future work: a systematic review. Alzheimers Dement. 2019;5:563. doi:10.1016/J.TRCI.2019.08.001
Li H, Habes M, Wolk DA, Fan Y. A deep learning model for early prediction of Alzheimer's disease dementia based on hippocampal MRI. Alzheimers Dement. 2019;15:1059. doi:10.1016/J.JALZ.2019.02.007
Maroco J, Silva D, Rodrigues A, Guerreiro M, Santana I, De Mendonça A. Data mining methods in the prediction of dementia: a real-data comparison of the accuracy, sensitivity and specificity of linear discriminant analysis, logistic regression, neural networks, support vector machines, classification trees and random forests. BMC Res Notes. 2011;4:1-14. doi:10.1186/1756-0500-4-299/FIGURES/8
Costa A, Pais M, Loureiro J, et al. Decision tree-based classification as a support to diagnosis in the Alzheimer's disease continuum using cerebrospinal fluid biomarkers: insights from automated analysis. Braz J Psychiat. 2022;44:370. doi:10.47626/1516-4446-2021-2277
Lin H, Himali JJ, Satizabal CL, et al. Identifying blood biomarkers for dementia using machine learning methods in the Framingham Heart Study. Cells. 2022;11:1506. doi:10.3390/CELLS11091506/S1
Ahmed MR, Zhang Y, Feng Z, Lo B, Inan OT, Liao H. Neuroimaging and machine learning for dementia diagnosis: recent advancements and future prospects. IEEE Rev Biomed Eng. 2019;12:19-33. doi:10.1109/RBME.2018.2886237
Chang CH, Lin CH, Lane HY. Machine learning and novel biomarkers for the diagnosis of Alzheimer's disease. Int J Mol Sci. 2021;22:1-12. doi:10.3390/IJMS22052761
Wu Y, Jia M, Xiang C, Lin S, Jiang Z, Fang Y. Predicting the long-term cognitive trajectories using machine learning approaches: a Chinese nationwide longitudinal database. Psychiatry Res. 2022;310:114434. doi:10.1016/J.PSYCHRES.2022.114434
van Engelen JE, Hoos HH. A survey on semi-supervised learning. Mach Learn. 2020;109:373-440. doi:10.1007/S10994-019-05855-6/FIGURES/5
Triguero I, García S, Herrera F. Self-labeled techniques for semi-supervised learning: taxonomy, software and empirical study. Knowl Inf Syst. 2015;42:245-284. doi:10.1007/S10115-013-0706-Y/FIGURES/13
Chai H, Liang Y, Wang S, wei ShenH. A novel logistic regression model combining semi-supervised learning and active learning for disease classification. Sci Rep. 2018;8:1-10. doi:10.1038/s41598-018-31395-5
Tanha J, van Someren M, Afsarmanesh H. Semi-supervised self-training for decision tree classifiers. Int J Mach Learn Cybern. 2017;8:355-370. doi:10.1007/S13042-015-0328-7/TABLES/11
Blum A, Mitchell T. Combining labeled and unlabeled data with co-training. Proceedings of the Annual ACM Conference on Computational Learning Theory. 1998:92-100. doi:10.1145/279943.279962
Wang Y, Gu X, Hou W, Zhao M, Sun L, Guo C. Dual semi-supervised learning for classification of Alzheimer's disease and mild cognitive impairment based on neuropsychological data. Brain Sci. 2023;13:306. doi:10.3390/BRAINSCI13020306
Teramoto R. Prediction of Alzheimer's diagnosis using semi-supervised distance metric learning with label propagation. Comput Biol Chem. 2008;32:438-441. doi:10.1016/J.COMPBIOLCHEM.2008.07.030
Bucholc M, James C, Khleifat AA, et al. Artificial intelligence for dementia research methods optimization. Alzheimer's Dement. 2023;1-18. doi:10.1002/alz.13441
Sibbett RA, Russ TC, Deary IJ, Starr JM. Risk factors for dementia in the ninth decade of life and beyond: a study of the Lothian birth cohort 1921. BMC Psychiatry. 2017;17:1-10. doi:10.1186/S12888-017-1366-3
Song X, Mitnitski A, Rockwood K. Nontraditional risk factors combine to predict Alzheimer disease and dementia. Neurology. 2011;77:227-234. doi:10.1212/WNL.0B013E318225C6BC
Reitz C, Tang M, Schupf N, Manly JJ, Mayeux R, Luchsinger JA. A summary risk score for the prediction of Alzheimer disease in elderly persons. Arch Neurol. 2010;67:835-841. doi:10.1001/ARCHNEUROL.2010.136
Exalto LG, Biessels GJ, Karter AJ, et al. Risk score for prediction of 10 year dementia risk in individuals with type 2 diabetes: a cohort study. Lancet Diabetes Endocrinol. 2013;1:183-190. doi:10.1016/S2213-8587(13)70048-2
Deo RC. Machine learning in medicine. Circulation. 2015;132:1920-1930. doi:10.1161/CIRCULATIONAHA.115.001593
Oren O, Gersh BJ, Bhatt DL. Artificial intelligence in medical imaging: switching from radiographic pathological data to clinically meaningful endpoints. Lancet Digit Health. 2020;2:e486-e488. doi:10.1016/S2589-7500(20)30160-6
Marzi SJ, Schilder B, Nott A, et al. Artificial intelligence for neurodegenerative experimentalmodels. Alzheimers Dement. Accepted.
Doherty T, Yao Z, Khleifat AA, et al. Artificial intelligence for dementia drug discovery and trials optimization. Alzheimer's Dement. 2023;1-12. doi:10.1002/alz.13428
Bettencourt C, Skene N, Bandres-Ciga S, et al. Artificial intelligence for dementia genetics and omics. Alzheimer's Dement. 2023;1-17. doi:10.1002/alz.13427
Winchester LM, Harshfield EL, Shi L, et al. Artificial intelligence for biomarker discovery in Alzheimer's disease and dementia. Alzheimer's Dement. 2023;1-12. doi:10.1002/alz.13390
Borchert RJ, Azevedo T, Badhwar AP, et al. Artificial intelligence for diagnostic and prognostic neuroimaging in dementia: A systematic review. Alzheimer's Dement. 2023;1-20. doi:10.1002/alz.13412
Lyall DM, Kormilitzin A, Lancaster C, et al. Artificial intelligence for dementia—Applied models and digital health. Alzheimer's Dement. 2023;1-13. doi:10.1002/alz.13391
Lisko I, Kulmala J, Annetorp M, Ngandu T, Mangialasche F, Kivipelto M. How can dementia and disability be prevented in older adults: where are we today and where are we going? J Intern Med. 2021;289:807-830. doi:10.1111/JOIM.13227
Livingston G, Sommerlad A, Orgeta V, et al. The Lancet Commissions Dementia prevention, intervention, and care. Lancet. 2017;390:2673-2734. doi:10.1016/S0140-6736(17)31363-6
Peters R, Booth A, Rockwood K, Peters J, D'Este C, Anstey KJ. Combining modifiable risk factors and risk of dementia: a systematic review and meta-analysis. BMJ Open. 2019;9:e022846. doi:10.1136/BMJOPEN-2018-022846
Deckers K, Van Boxtel MPJ, Schiepers OJG, et al. Target risk factors for dementia prevention: a systematic review and Delphi consensus study on the evidence from observational studies. Int J Geriatr Psychiatry. 2015;30:234-246. doi:10.1002/GPS.4245
Zhang YR, Xu W, Zhang W, et al. Modifiable risk factors for incident dementia and cognitive impairment: an umbrella review of evidence. J Affect Disord. 2022;314:160-167. doi:10.1016/J.JAD.2022.07.008
Anstey KJ, Ee N, Eramudugolla R, Jagger C, Peters R. A systematic review of meta-analyses that evaluate risk factors for dementia to evaluate the quantity, quality, and global representativeness of evidence. J Alzheimers Dis. 2019;70:S165-S186. doi:10.3233/JAD-190181
Bellou V, Belbasis L, Tzoulaki I, Middleton LT, Ioannidis JPA, Evangelou E. Systematic evaluation of the associations between environmental risk factors and dementia: an umbrella review of systematic reviews and meta-analyses. Alzheimers Dement. 2017;13:406-418. doi:10.1016/J.JALZ.2016.07.152
Kuźma E, Lourida I, Moore SF, Levine DA, Ukoumunne OC, Llewellyn DJ. Stroke and dementia risk: a systematic review and meta-analysis. Alzheimers Dement. 2018;14:1416-1426. doi:10.1016/J.JALZ.2018.06.3061
Pereira JVB, Aung Thein MZ, Nitchingham A, Caplan GA. Delirium in older adults is associated with development of new dementia: a systematic review and meta-analysis. Int J Geriatr Psychiatry. 2021;36:993-1003. doi:10.1002/GPS.5508
Jack CR, Knopman DS, Jagust WJ, et al. Tracking pathophysiological processes in Alzheimer's disease: an updated hypothetical model of dynamic biomarkers. Lancet Neurol. 2013;12:207-216. doi:10.1016/S1474-4422(12)70291-0
Hadjichrysanthou C, Evans S, Bajaj S, Siakallis LC, McRae-Mckee K, De Wolf F. The dynamics of biomarkers across the clinical spectrum of Alzheimer's disease. Alzheimers Res Ther. 2020;12:1-16. doi:10.1186/S13195-020-00636-Z/FIGURES/5
Jansen WJ, Ossenkoppele R, Knol DL, et al. Prevalence of cerebral amyloid pathology in persons without dementia: a meta-analysis. JAMA. 2015;313:1924-1938. doi:10.1001/JAMA.2015.4668
Perera G, Rijnbeek PR, Alexander M, et al. Vascular and metabolic risk factor differences prior to dementia diagnosis: a multidatabase case–control study using European electronic health records. BMJ Open. 2020;10:e038753. doi:10.1136/BMJOPEN-2020-038753
Singh-Manoux A, Dugravot A, Shipley M, et al. Obesity trajectories and risk of dementia: 28 years of follow-up in the Whitehall II Study. Alzheimers Dement. 2018;14:178-186. doi:10.1016/J.JALZ.2017.06.2637
Sheetal A, Jiang Z, Di Milia L. Using machine learning to analyze longitudinal data: a tutorial guide and best-practice recommendations for social science researchers. Applied Psychology. 2023;72:1339-1364. doi:10.1111/APPS.12435
Hou XH, Feng L, Zhang C, Cao XP, Tan L, Yu JT. Models for predicting risk of dementia: a systematic review. J Neurol Neurosurg Psychiatry. 2019;90:373-379. doi:10.1136/JNNP-2018-318212
Tang EYH, Harrison SL, Errington L, et al. Current developments in dementia risk prediction modelling: an updated systematic review. PLoS One. 2015;10:e0136181. doi:10.1371/JOURNAL.PONE.0136181
Kivipelto M, Ngandu T, Laatikainen T, Winblad B, Soininen H, Tuomilehto J. Risk score for the prediction of dementia risk in 20 years among middle aged people: a longitudinal, population-based study. Lancet Neurol. 2006;5:735-741. doi:10.1016/S1474-4422(06)70537-3
Anatürk M, Patel R, Ebmeier K, et al. Development and validation of a dementia risk score in the UK Biobank and Whitehall II Cohorts. British Medical Journal Mental Health. 2023;26:e300719. doi:10.1136/BMJMENT-2023-300719
Dallora AL, Eivazzadeh S, Mendes E, Berglund J, Anderberg P. Machine learning and microsimulation techniques on the prognosis of dementia: a systematic literature review. PLoS One. 2017;12:e0179804. doi:10.1371/JOURNAL.PONE.0179804
Danso SO, Zeng Z, Muniz-Terrera G, Ritchie CW. Developing an explainable machine learning-based personalised dementia risk prediction model: a transfer learning approach with ensemble learning algorithms. Front Big Data. 2021;0:21. doi:10.3389/FDATA.2021.613047
Stamate D, Smith R, Tsygancov R, et al. Applying deep learning to predicting dementia and mild cognitive impairment. Artif Intell Appl Innov. 2020;584:308. doi:10.1007/978-3-030-49186-4_26
Aschwanden D, Aichele S, Ghisletta P, et al. Predicting cognitive impairment and dementia: a machine learning approach. J Alzheimers Dis. 2020;75:717-728. doi:10.3233/JAD-190967
Kuan V, Denaxas S, Patalay P, et al. Identifying and visualising multimorbidity and comorbidity patterns in patients in the English National Health Service: a population-based study. Lancet Digit Health. 2023;5:e16-e27. doi:10.1016/S2589-7500(22)00187-X
Hu HY, Zhang YR, Aerqin Q, et al. Association between multimorbidity status and incident dementia: a prospective cohort study of 245,483 participants. Transl Psychiatry. 2022;12:1-10. doi:10.1038/s41398-022-02268-3
Green R, Lord J, Xu J, et al. Metabolic correlates of late midlife cognitive outcomes: findings from the 1946 British Birth Cohort. Brain Commun. 2022;4:fcab291. doi:10.1093/BRAINCOMMS/FCAB291
Muzio G, O'Bray L, Borgwardt K. Biological network analysis with deep learning. Brief Bioinform. 2021;22:1515-1530. doi:10.1093/BIB/BBAA257
Du X, Sun S, Hu C, Yao Y, Yan Y, Zhang Y. DeepPPI: boosting prediction of protein-protein interactions with deep neural networks. J Chem Inf Model. 2017;57:1499-1510. doi:10.1021/ACS.JCIM.7B00028/SUPPL_FILE/CI7B00028_SI_001.ZIP
Shomorony I, Cirulli ET, Huang L, et al. An unsupervised learning approach to identify novel signatures of health and disease from multimodal data. Genome Med. 2020;12:1-14. doi:10.1186/S13073-019-0705-Z/FIGURES/5
Foote IF, Jacobs BM, Mathlin G, et al. The shared genetic architecture of modifiable risk for Alzheimer's disease: a genomic structural equation modelling study. Neurobiol Aging. 2022;117:222-235. doi:10.1016/J.NEUROBIOLAGING.2022.02.016
Kong X, Jiang X, Zhang B, Yuan J, Ge Z. Latent variable models in the era of industrial big data: extension and beyond. Annu Rev Control. 2022;54:167-199. doi:10.1016/J.ARCONTROL.2022.09.005
Kopf A, Claassen M. Latent representation learning in biology and translational medicine. Patterns. 2021;2:100198. doi:10.1016/J.PATTER.2021.100198
Selbæk G. Dementia risk: time matters. Lancet Public Health. 2021;6:e85-e86. doi:10.1016/S2468-2667(21)00010-4
Kuźma E, Hannon E, Zhou A, et al. Which risk factors causally influence dementia? A systematic review of Mendelian randomization studies. J Alzheimers Dis. 2018;64:181-193. doi:10.3233/JAD-180013
Seblova D, Fischer M, Fors S, et al. Does prolonged education causally affect dementia risk when adult socioeconomic status is not altered? A Swedish Natural Experiment in 1.3 million individuals. Am J Epidemiol. 2021;190:817-826. doi:10.1093/AJE/KWAA255
Johnson JCS, Marshall CR, Weil RS, Bamiou DE, Hardy CJD, Warren JD. Hearing and dementia: from ears to brain. Brain. 2021;144:391-401. doi:10.1093/BRAIN/AWAA429
Carles S, Carrière I, Reppermund S, et al. A cross-national study of depression in preclinical dementia: a COSMIC collaboration study. Alzheimers Dementia. 2020;16:1544-1552. doi:10.1002/ALZ.12149
Anderson EL, Howe LD, Wade KH, et al. Education, intelligence and Alzheimer's disease: evidence from a multivariable two-sample Mendelian randomization study. Int J Epidemiol. 2020;49:1163-1172. doi:10.1093/IJE/DYZ280
Desai R, John A, Saunders R, et al. Examining the Lancet Commission risk factors for dementia using Mendelian randomisation. BMJ Mental Health. 2023;26:e300555. doi:10.1136/BMJMENT-2022-300555
Luo J, Thomassen JQ, Bellenguez C, et al. Genetic associations between modifiable risk factors and Alzheimer disease. JAMA Netw Open. 2023;6:e2313734-e2313734. doi:10.1001/JAMANETWORKOPEN.2023.13734
Deckers K, Cadar D, van Boxtel MPJ, Verhey FRJ, Steptoe A, Köhler S. Modifiable risk factors explain socioeconomic inequalities in dementia risk: evidence from a population-based prospective cohort study. J Alzheimer's Dis. 2019;71:549-557. doi:10.3233/JAD-190541
Fritz MS, MacKinnon DP. Required sample size to detect the mediated effect. Psychol Sci. 2016;18:233-239. doi:10.1111/J.1467-9280.2007.01882.X
Nath T, Caffo B, Wager T, Lindquist MA. A machine learning based approach towards high-dimensional mediation analysis. Neuroimage. 2023;268:119843. doi:10.1016/J.NEUROIMAGE.2022.119843
Farbmacher H, Huber M, Laffers L, Langen H, Spindler M. Causal mediation analysis with double machine learning. Econom J. 2022;25:277-300. doi:10.1093/ECTJ/UTAC003
Demnitz N, Anatürk M, Allan C, et al. Association of trajectories of depressive symptoms with vascular risk, cognitive function and adverse brain outcomes: the Whitehall II MRI sub-study. J Psychiatr Res. 2020;131:85-93. doi:10.1016/J.JPSYCHIRES.2020.09.005
Lane CA, Barnes J, Nicholas JM, et al. Associations between blood pressure across adulthood and late-life brain structure and pathology in the neuroscience substudy of the 1946 British birth cohort (Insight 46): an epidemiological study. Lancet Neurol. 2019;18:942-952. doi:10.1016/S1474-4422(19)30228-5
Ford E, Curlewis K, Squires E, Griffiths LJ, Stewart R, Jones KH. The potential of research drawing on clinical free text to bring benefits to patients in the United Kingdom: a systematic review of the literature. Front Digit Health. 2021;3:606599. doi:10.3389/FDGTH.2021.606599
Jensen PB, Jensen LJ, Brunak S. Mining electronic health records: towards better research applications and clinical care. Nat Rev Genet. 2012;13:395-405. doi:10.1038/nrg3208
Auger SD, Jacobs BM, Dobson R, Marshall CR, Noyce AJ. Big data, machine learning and artificial intelligence: a neurologist's guide. Pract Neurol. 2021;21:4-11. doi:10.1136/PRACTNEUROL-2020-002688
Vaci N, Liu Q, Kormilitzin A, et al. Natural language processing for structuring clinical text data on depression using UK-CRIS. Evid Based Ment Health. 2020;23:21-26. doi:10.1136/EBMENTAL-2019-300134
Li R, Wang X, Lawler K, Garg S, Bai Q, Alty J. Applications of Artificial Intelligence to aid detection of dementia: a narrative review on current capabilities and future directions. J Biomed Inform [Internet]. 2022;127:104030.
Khodabandehloo E, Riboni D. Collaborative trajectory mining in smart-homes to support early diagnosis of cognitive decline. IEEE Trans Emerg Top Comput. 2021;9:1194-1205. doi:10.1109/TETC.2020.2975071
Chen JH, Asch SM. Machine learning and prediction in medicine—beyond the peak of inflated expectations. N Engl J Med. 2017;376:2507. doi:10.1056/NEJMP1702071
Bi XA, Hu X, Wu H, Wang Y. Multimodal data analysis of Alzheimer's disease based on clustering evolutionary random forest. IEEE J Biomed Health Inform. 2020;24:2973-2983. doi:10.1109/JBHI.2020.2973324
Venugopalan J, Tong L, Hassanzadeh HR, Wang MD. Multimodal deep learning models for early detection of Alzheimer's disease stage. Sci Rep. 2021;11:1-13. doi:10.1038/s41598-020-74399-w
Pekkala T, Hall A, Lötjönen J, et al. Development of a late-life dementia prediction index with supervised machine learning in the population-based CAIDE study. J Alzheimers Dis. 2017;55:1055-1067. doi:10.3233/JAD-160560
Zhou T, Thung KH, Zhu X, Shen D. Effective feature learning and fusion of multimodality data using stage-wise deep neural network for dementia diagnosis. Hum Brain Mapp. 2019;40:1001-1016. doi:10.1002/HBM.24428
El-Sappagh S, Alonso JM, Islam SMR, Sultan AM, Kwak KS. A multilayer multimodal detection and prediction model based on explainable artificial intelligence for Alzheimer's disease. Sci Rep. 2021;11:1-26. doi:10.1038/s41598-021-82098-3
Amann J, Blasimme A, Vayena E, Frey D, Madai VI. Explainability for artificial intelligence in healthcare: a multidisciplinary perspective. BMC Med Inform Decis Mak. 2020;20:1-9. doi:10.1186/S12911-020-01332-6
Qiu S, Joshi PS, Miller MI, et al. Development and validation of an interpretable deep learning framework for Alzheimer's disease classification. Brain. 2020;143:1920-1933. doi:10.1093/BRAIN/AWAA137
Thung K-H, Yap P-T, Shen D. Multi-stage diagnosis of Alzheimer's Disease with incomplete multimodal data via multi-task deep learning. Deep Learn Med Image Anal Multimodal Learn Clin Decis Support (2017). 2017;10553LNCS:160-168. doi:10.1007/978-3-319-67558-9_19
Bauermeister S, Orton C, Thompson S, et al. The Dementias Platform UK (DPUK) Data Portal. Eur J Epidemiol. 2020;35:601-611. doi:10.1007/S10654-020-00633-4/TABLES/1
Floridi L, Taddeo M. What is data ethics? Philos Trans Royal Soc A. 2016;374:20160360. doi:10.1098/RSTA.2016.0360
Lundberg SM, Nair B, Vavilala MS, et al. Explainable machine-learning predictions for the prevention of hypoxaemia during surgery. Nat Biomed Eng. 2018;2:749-760. doi:10.1038/s41551-018-0304-0
Alaa AM, van der Schaar M. Prognostication and risk factors for cystic fibrosis via automated machine learning. Sci Rep. 2018;8:11242. doi:10.1038/S41598-018-29523-2
Weng SF, Reps J, Kai J, Garibaldi JM, Qureshi N. Can machine-learning improve cardiovascular risk prediction using routine clinical data? PLoS One. 2017;12:e0174944. doi:10.1371/JOURNAL.PONE.0174944
Alaa AM, Bolton T, Di Angelantonio E, Rudd JHF, van der Schaar M. Cardiovascular disease risk prediction using automated machine learning: a prospective study of 423,604 UK Biobank participants. PLoS One. 2019;14:e0213653. doi:10.1371/JOURNAL.PONE.0213653
Kessler RC, Hwang I, Hoffmire CA, et al. Developing a practical suicide risk prediction model for targeting high-risk patients in the Veterans health Administration. Int J Methods Psychiatr Res. 2017;26(3):e1575. doi:10.1002/MPR.1575
Borchert RJ, Azevedo T, Badhwar AP, et al. Artificial intelligence for diagnostic and prognostic neuroimaging in dementia: A systematic review. Alzheimer's Dement. 2023;1-20. doi:10.1002/alz.13412
Peddinti G, Cobb J, Yengo L, et al. Early metabolic markers identify potential targets for the prevention of type 2 diabetes. Diabetologia. 2017;60:1740-1750. doi:10.1007/S00125-017-4325-0
Leist AK, Klee M, Kim JH, et al. Mapping of machine learning approaches for description, prediction, and causal inference in the social and health sciences. Sci Adv. 2022;8(42):eabk1942. doi:10.1126/sciadv.abk1942
Bodnar LM, Cartus AR, Kirkpatrick SI, et al. Machine learning as a strategy to account for dietary synergy: an illustration based on dietary intake and adverse pregnancy outcomes. Am J Clin Nutr. 2020;111:1235-1243. doi:10.1093/AJCN/NQAA027
Misawa D, Fukuyoshi J, Sengoku S. Cancer prevention using machine learning, nudge theory and social impact bond. Int J Environ Res Public Health. 2020;17:790. doi:10.3390/IJERPH17030790
Torous J, Larsen ME, Depp C, et al. Smartphones, sensors, and machine learning to advance real-time prediction and interventions for suicide prevention: a review of current progress and next steps. Curr Psychiatry Rep. 2018;20:1-6. doi:10.1007/S11920-018-0914-Y
Delgadillo J, Gonzalez Salas Duhne P. Targeted prescription of cognitive-behavioral therapy versus person-centered counseling for depression using a machine learning approach. J Consult Clin Psychol. 2020;88:14-24. doi:10.1037/CCP0000476
Hu L, Gu C. Estimation of causal effects of multiple treatments in healthcare database studies with rare outcomes. Health Serv Outcomes Res Methodol. 2021;21:287-308.
Mahase E. FDA approves controversial Alzheimer's drug despite uncertainty over effectiveness. BMJ. 2021;373:n1462. doi:10.1136/BMJ.N1462
Servick K. Alzheimer's drug approved despite murky results. Science. 2021;372:1141. doi:10.1126/SCIENCE.372.6547.1141
Liu KY, Schneider LS, Howard R. The need to show minimum clinically important differences in Alzheimer's disease trials. Lancet Psychiatry. 2021;8:1013-1016. doi:10.1016/S2215-0366(21)00197-8
Mahase E. Alzheimer's disease: FDA approves lecanemab amid cost and safety concerns. BMJ. 2023;380:p73. doi:10.1136/BMJ.P73
Lance. Lecanemab for Alzheimer's disease: tempering hype and hope. Lancet. 2022;400:1899. doi:10.1016/S0140-6736(22)02480-1
Cummings J, Zhou Y, Lee G, Zhong K, Fonseca J, Cheng F. Alzheimer's disease drug development pipeline: 2023. Alzheimers Dement. TRCI. 2023;9:e12385. doi:10.1002/TRC2.12385
Nelson ME, Jester DJ, Petkus AJ, Andel R. Cognitive reserve, Alzheimer's neuropathology, and risk of dementia: a systematic review and meta-analysis. Neuropsychol Rev. 2021;31:233-250. doi:10.1007/S11065-021-09478-4
Shannon OM, Ranson JM, Gregory S, et al. Mediterranean diet adherence is associated with lower dementia risk, independent of genetic predisposition: findings from the UK Biobank prospective cohort study. BMC Med. 2023;21:81. doi:10.1186/S12916-023-02772-3/FIGURES/3
Jurcau A. The role of natural antioxidants in the prevention of dementia-where do we stand and future perspectives. Nutrients. 2021;13:1-22. doi:10.3390/NU13020282
Griñán-Ferré C, Bellver-Sanchis A, Izquierdo V, et al. The pleiotropic neuroprotective effects of resveratrol in cognitive decline and Alzheimer's disease pathology: from antioxidant to epigenetic therapy. Ageing Res Rev. 2021;67:101271. doi:10.1016/J.ARR.2021.101271
Littlejohns TJ, Kos K, Henley WE, Kuźma E, Llewellyn DJ. Vitamin D and Dementia. J Prev Alzheimers Dis. 2016;3:43-52. doi:10.14283/JPAD.2015.68
Kuźma E, Soni M, Littlejohns TJ, et al. Vitamin D and memory decline: two population-based prospective studies. J Alzheimers Dis. 2016;50:1099-1108. doi:10.3233/JAD-150811
Whitty E, Mansour H, Aguirre E, et al. Efficacy of lifestyle and psychosocial interventions in reducing cognitive decline in older people: systematic review. Ageing Res Rev. 2020;62:101113. doi:10.1016/J.ARR.2020.101113
Lissek V, Suchan B. Preventing dementia? Interventional approaches in mild cognitive impairment. Neurosci Biobehav Rev. 2021;122:143-164. doi:10.1016/J.NEUBIOREV.2020.12.022
Rosenberg A, Ngandu T, Rusanen M, et al. Multidomain lifestyle intervention benefits a large elderly population at risk for cognitive decline and dementia regardless of baseline characteristics: the FINGER trial. Alzheimers Dement. 2018;14:263-270. doi:10.1016/J.JALZ.2017.09.006
Kivipelto M, Mangialasche F, Snyder HM, et al. World-Wide FINGERS Network: a global approach to risk reduction and prevention of dementia. Alzheimers Dement. 2020;16:1078-1094. doi:10.1002/ALZ.12123
Clark LT, Watkins L, Piña IL, et al. Increasing diversity in clinical trials: overcoming critical barriers. Curr Probl Cardiol. 2019;44:148-172. doi:10.1016/J.CPCARDIOL.2018.11.002
Soofi H. Ethical aspects of facilitating the recruitment of people with dementia for clinical trials: a call for further debate. Br J Clin Pharmacol. 2022;88:22-26. doi:10.1111/BCP.14968
Whiteley WN, Anand S, Bangdiwala SI, et al. Are large simple trials for dementia prevention possible? Age Ageing. 2020;49:154-160. doi:10.1093/AGEING/AFZ152
Indorewalla KK, O'Connor MK, Budson AE, Guess DiTerlizzi C, Jackson J. Modifiable barriers for recruitment and retention of older adults participants from underrepresented minorities in Alzheimer's disease research. J Alzheimers Dis. 2021;80:927-940. doi:10.3233/JAD-201081
Gilmore-Bykovskyi AL, Jin Y, Gleason C, et al. Recruitment and retention of underrepresented populations in Alzheimer's disease research: a systematic review. Alzheimers Dement (N Y). 2019;5:751-770. doi:10.1016/J.TRCI.2019.09.018
Hawe P, Potvin L. What is population health intervention research? Can J Public Health. 2009;100:I8. doi:10.1007/BF03405503
Coley N, Andrieu S, Gardette V, et al. Dementia prevention: methodological explanations for inconsistent results. Epidemiol Rev. 2008;30:35-66. doi:10.1093/EPIREV/MXN010
Power R, Prado-Cabrero A, Mulcahy R, Howard A, Nolan JM. The role of nutrition for the aging population: implications for cognition and Alzheimer's disease. Annu Rev Food Sci Technol. 2019;10:619-639. doi:10.1146/ANNUREV-FOOD-030216-030125
Burgos N, Colliot O. Machine learning for classification and prediction of brain diseases: recent advances and upcoming challenges. Curr Opin Neurol. 2020;33:439-450. doi:10.1097/WCO.0000000000000838
Graham SA, Lee EE, Jeste DV, et al. Artificial intelligence approaches to predicting and detecting cognitive decline in older adults: a conceptual review. Psychiatry Res. 2020;284:112732. doi:10.1016/J.PSYCHRES.2019.112732
Clarke N, Foltz P, Garrard P. How to do things with (thousands of) words: computational approaches to discourse analysis in Alzheimer's disease. Cortex. 2020;129:446-463. doi:10.1016/J.CORTEX.2020.05.001
Thabtah F, Peebles D, Retzler J, Hathurusingha C. Dementia medical screening using mobile applications: a systematic review with a new mapping model. J Biomed Inform. 2020;111:103573. doi:10.1016/J.JBI.2020.103573
Battista P, Salvatore C, Berlingeri M, Cerasa A, Castiglioni I. Artificial intelligence and neuropsychological measures: the case of Alzheimer's disease. Neurosci Biobehav Rev. 2020;114:211-228. doi:10.1016/J.NEUBIOREV.2020.04.026
Danso SO, Muniz-Terrera G, Luz S, Ritchie C, (GloDePP) on behalf of the GDPP. Application of big data and artificial intelligence technologies to dementia prevention research: an opportunity for low-and-middle-income countries. J Glob Health. 2019;9:20322. doi:10.7189/JOGH.09.020322
Koychev I, Lawson J, Chessell T, et al. Deep and Frequent Phenotyping study protocol: an observational study in prodromal Alzheimer's disease. BMJ Open. 2019;9:e024498. doi:10.1136/BMJOPEN-2018-024498
Chen PH, Lien CW, Wu WC, Lee LS, Shaw JS. Gait-based machine learning for classifying patients with different types of mild cognitive impairment. J Med Syst. 2020;44. doi:10.1007/S10916-020-01578-7
Yamada Y, Shinkawa K, Kobayashi M, et al. Combining multimodal behavioral data of gait, speech, and drawing for classification of Alzheimer's disease and mild cognitive impairment. J Alzheimers Dis. 2021;84:315-327. doi:10.3233/JAD-210684
Ballard C, Aarsland D, Cummings J, et al. Drug repositioning and repurposing for Alzheimer disease. Nat Rev Neurol. 2020;16:661-673. doi:10.1038/S41582-020-0397-4
Pushpakom S, Iorio F, Eyers PA, et al. Drug repurposing: progress, challenges and recommendations. Nat Rev Drug Discov. 2018;18:41-58. doi:10.1038/nrd.2018.168
Ding J, Davis-Plourde KL, Sedaghat S, et al. Antihypertensive medications and risk for incident dementia and Alzheimer's disease: a meta-analysis of individual participant data from prospective cohort studies. Lancet Neurol. 2020;19:61-70. doi:10.1016/S1474-4422(19)30393-X
Newby D, Prieto-Alhambra D, Duarte-Salles T, et al. Methotrexate and relative risk of dementia amongst patients with rheumatoid arthritis: a multi-national multi-database case-control study. Alzheimers Res Ther. 2020;12(1):38. doi:10.1186/s13195-020-00606-5
Newby D, Linden AB, Fernandes M, et al. Comparative effect of metformin versus sulfonylureas with dementia and Parkinson's disease risk in US patients over 50 with type 2 diabetes mellitus. BMJ Open Diabetes Res Care. 2022;10:e003036. doi:10.1136/BMJDRC-2022-003036
Yang F, Zhang Q, Ji X, et al. Machine learning applications in drug repurposing. Interdiscip Sci. 2022;1:1-7. doi:10.1007/S12539-021-00487-8/TABLES/1
Rodriguez S, Hug C, Todorov P, et al. Machine learning identifies candidates for drug repurposing in Alzheimer's disease. Nat Commun. 2021;12:1-13. doi:10.1038/s41467-021-21330-0
Liu R, Wei L, Zhang P. A deep learning framework for drug repurposing via emulating clinical trials on real-world patient data. Nat Mach Intell. 2021;3:68-75. doi:10.1038/s42256-020-00276-w
Xu J, Zhang P, Huang Y, et al. Multimodal single-cell/nucleus RNA sequencing data analysis uncovers molecular networks between disease-associated microglia and astrocytes with implications for drug repurposing in Alzheimer's disease. Genome Res. 2021;31:1900-1912. doi:10.1101/GR.272484.120
Fang J, Zhang P, Wang Q, et al. Artificial intelligence framework identifies candidate targets for drug repurposing in Alzheimer's disease. Alzheimers Res Ther. 2022;14:1-23. doi:10.1186/S13195-021-00951-Z/METRICS
Tsuji S, Hase T, Yachie-Kinoshita A, et al. Artificial intelligence-based computational framework for drug-target prioritization and inference of novel repositionable drugs for Alzheimer's disease. Alzheimer's Res Ther. 2021;13:1-15. doi:10.1186/S13195-021-00826-3
Tomlinson A, Furukawa TA, Efthimiou O, et al. Personalise antidepressant treatment for unipolar depression combining individual choices, risks and big data (PETRUSHKA): rationale and protocol. Evid Based Ment Health. 2020;23:52-56. doi:10.1136/EBMENTAL-2019-300118
Liu Q, Vaci N, Koychev I, et al. Personalised treatment for cognitive impairment in dementia: development and validation of an artificial intelligence model. BMC Med. 2022;20:1-12. doi:10.1186/S12916-022-02250-2
Nasief H, Zheng C, Schott D, et al. A machine learning based delta-radiomics process for early prediction of treatment response of pancreatic cancer. Npj Precision Oncol. 2019;3:1-10. doi:10.1038/s41698-019-0096-z
Shayesteh S, Nazari M, Salahshour A, et al. Treatment response prediction using MRI-based pre-, post-, and delta-radiomic features and machine learning algorithms in colorectal cancer. Med Phys. 2021;48:3691-3701. doi:10.1002/MP.14896
Abajian A, Murali N, Savic LJ, et al. Predicting treatment response to intra-arterial therapies for hepatocellular carcinoma with the use of supervised machine learning—an artificial intelligence concept. J Vasc Interv Radiol. 2018;29:850-857. doi:10.1016/J.JVIR.2018.01.769. e1.
Croce P, Ricci L, Pulitano P, et al. Machine learning for predicting levetiracetam treatment response in temporal lobe epilepsy. Clin Neurophysiol. 2021;132:3035-3042. doi:10.1016/J.CLINPH.2021.08.024
Ambrosen KS, Skjerbæk MW, Foldager J, et al. A machine-learning framework for robust and reliable prediction of short- and long-term treatment response in initially antipsychotic-naïve schizophrenia patients based on multimodal neuropsychiatric data. Transl Psychiatry. 2020;10:1-13. doi:10.1038/s41398-020-00962-8
Mooney SJ, Keil AP, Westreich DJ. Thirteen questions about using machine learning in causal research (you won't believe the answer to number 10!). Am J Epidemiol. 2021;190:1476. doi:10.1093/AJE/KWAB047
Lecca P. Machine learning for causal inference in biological networks: perspectives of this challenge. Front Bioinform. 2021;1:746712. doi:10.3389/FBINF.2021.746712
Besser LM, Brenowitz WD, Meyer OL, Hoermann S, Renne J. Methods to address self-selection and reverse causation in studies of neighborhood environments and brain health. Int J Environ Res Public Health. 2021;18:6484. doi:10.3390/IJERPH18126484
Sanchez P, Voisey JP, Xia T, Watson HI, O'Neil AQ, Tsaftaris SA. Causal machine learning for healthcare and precision medicine. R Soc Open Sci. 2022;9(8). doi:10.1098/RSOS.220638
Blakely T, Lynch J, Simons K, Bentley R, Rose S. Reflection on modern methods: when worlds collide—prediction, machine learning and causal inference. Int J Epidemiol. 2020;49:2058. doi:10.1093/IJE/DYZ132
Petersen ML, Van Der Laan MJ. Causal models and learning from data: integrating causal modeling and statistical estimation. Epidemiology. 2014;25:418. doi:10.1097/EDE.0000000000000078
Prosperi M, Ghosh S, Chen Z, et al. Causal AI with Real World Data: do Statins Protect from Alzheimer's Disease Onset? ACM International Conference Proceeding Series. 2021:296-303. doi:10.1145/3472813.3473206
Richens JG, Lee CM, Johri S. Improving the accuracy of medical diagnosis with causal machine learning. Nat Commun. 2020;11:1-9. doi:10.1038/s41467-020-17419-7
Jawadekar N, Kezios K, Odden MC, et al. Practical guide to honest causal forests for identifying heterogeneous treatment effects. Am J Epidemiol. 2023;192:1155-1165. doi:10.1093/AJE/KWAD043
Andrews RM, Shpitser I, Lopez O, et al. Examining the causal mediating role of brain pathology on the relationship between diabetes and cognitive impairment: the Cardiovascular Health Study. J R Stat Soc Ser A Stat Soc. 2020;183:1705. doi:10.1111/RSSA.12570
Kimura D, Nakatani K, Takeda T, et al. Analysis of causal relationships by structural equation modeling to determine the factors influencing cognitive function in elderly people in Japan. PLoS One. 2015;10:e0117554. doi:10.1371/JOURNAL.PONE.0117554
Yoon CH, Torrance R, Scheinerman N. Machine learning in medicine: should the pursuit of enhanced interpretability be abandoned? J Med Ethics. 2022;48:581-585. doi:10.1136/MEDETHICS-2020-107102
Kolyshkina I, Simoff S. Interpretability of machine learning solutions in public healthcare: the CRISP-ML approach. Front Big Data. 2021;4:18. doi:10.3389/FDATA.2021.660206/BIBTEX
Meng C, Trinh L, Xu N, Enouen J, Liu Y. Interpretability and fairness evaluation of deep learning models on MIMIC-IV dataset. Sci Reports. 2022;12:1-28. doi:10.1038/s41598-022-11012-2
Saint Y, Aquino J, Carter SM, et al. Practical, epistemic and normative implications of algorithmic bias in healthcare artificial intelligence: a qualitative study of multidisciplinary expert perspectives. J Med Ethics. 2023. doi:10.1136/JME-2022-108850
Mukadam N, Marston L, Lewis G, Mathur R, Rait G, Livingston G. Incidence, age at diagnosis and survival with dementia across ethnic groups in England: a longitudinal study using electronic health records. Alzheimer Dement. 2023;19:1300-1307. doi:10.1002/ALZ.12774
Shiekh SI, Cadogan SL, Lin LY, Mathur R, Smeeth L, Warren-Gash C. Ethnic differences in dementia risk: a systematic review and meta-analysis. J Alzheimers Dis. 2021;80:337-355. doi:10.3233/JAD-201209
Sahin D, Jessen F, Kambeitz J. Algorithmic fairness in biomarker-based machine learning models to predict Alzheimer's dementia in individuals with mild cognitive impairment. Alzheimer Dement. 2022;18:e062125. doi:10.1002/ALZ.062125
Wang R, Chaudhari P, Davatzikos C. Brief Report: bias in machine learning models can be significantly mitigated by careful training: evidence from neuroimaging studies. Proc Natl Acad Sci U S A. 2023;120:2211613120. doi:10.1073/PNAS.2211613120
Nichols JA, Herbert Chan HW, Baker MAB. Machine learning: applications of artificial intelligence to imaging and diagnosis. Biophys Rev. 2019;11:111-118. doi:10.1007/S12551-018-0449-9/FIGURES/4
Mutasa S, Sun S, Ha R. Understanding artificial intelligence based radiology studies: what is overfitting? Clin Imaging. 2020;65:96. doi:10.1016/J.CLINIMAG.2020.04.025
Kelly CJ, Karthikesalingam A, Suleyman M, Corrado G, King D. Key challenges for delivering clinical impact with artificial intelligence. BMC Med. 2019;17:1-9. doi:10.1186/S12916-019-1426-2/PEER-REVIEW
Pellegrini E, Ballerini L, del Hernandez MCV, et al. Machine learning of neuroimaging for assisted diagnosis of cognitive impairment and dementia: a systematic review. Alzheimers Dement (Amst). 2018;10:519-535. doi:10.1016/J.DADM.2018.07.004
Joyce DW, Kormilitzin A, Smith KA, Cipriani A. Explainable artificial intelligence for mental health through transparency and interpretability for understandability. Npj Digital Medicine. 2023;6:1-7. doi:10.1038/s41746-023-00751-9
Lipovetsky S, Conklin M. Analysis of regression in game theory approach. Appl Stoch Models Bus Ind. 2001;17:319-330. doi:10.1002/ASMB.446
Ribeiro MT, Singh S, Guestrin C. “Why Should I Trust You?”: Explaining the predictions of any classifier. NAACL-HLT 2016 – 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Proceedings of the Demonstrations Session 2016:97-101. doi:10.18653/v1/n16-3020
Sarica A, Quattrone A, Quattrone A. Explainable boosting machine for predicting Alzheimer's disease from MRI Hippocampal Subfields. In: Mahmud M, Kaiser MS, Vassanelli S, Dai Q, Zhong N, (eds). Brain Informatics. BI 2021. Lecture Notes in Computer Science (Vol. 12960). Springer, Cham; 2021. doi:10.1007/978-3-030-86993-9_31