Evaporation; Generalized Finite Difference Method; GFDM; Mass- and heat-transfer; MESHFREE; Multi-phase; Water; Computational Mechanics; Civil and Structural Engineering; Numerical Analysis; Modeling and Simulation; Fluid Flow and Transfer Processes; Computational Mathematics
Abstract :
[en] In this paper, a new model for the below-boiling point evaporation process with a meshfree collocation method is developed. In order to capture the phase change process, two different approaches are proposed: multi-phase and single-phase. First, a multi-phase approach is considered, where a novel mass transfer model assumes that the diffusion driven by the vapor concentration gradient in the air phase near the interface is the primary driving force for the mass transfer between phases as both the liquid water and air/vapor phases are simulated. Then, a water-only single-phase approach is also proposed, in which only the liquid water phase is simulated. For this, appropriate free surface boundary conditions are developed based on the convective mass transfer theory to model evaporation and incorporate airflow effects without explicitly simulating the air phase. In order to validate the proposed models, a series of experiments with varying air temperature, relative humidity, and airflow rate is conducted. The numerical results show a good agreement with the evaporation rate measured in the experiments. The multi-phase simulations agree better with the experiments, while the single-phase simulations also produce good results with a much lower computational effort.
Disciplines :
Engineering, computing & technology: Multidisciplinary, general & others
Author, co-author :
Lee, JungHoon ; Technical University of Munich, TUM School of Engineering and Design, Department of Energy and Process Engineering, Institute of Plant and Process Technology, Garching, Germany
Bäder, Dirk; AUDI AG, Ingolstadt, Germany
Rehfeldt, Sebastian; Technical University of Munich, TUM School of Engineering and Design, Department of Energy and Process Engineering, Institute of Plant and Process Technology, Garching, Germany
Eisenträger, Almut; Fraunhofer Institute for Industrial Mathematics ITWM, Kaiserslautern, Germany
Kuhnert, Jörg; Fraunhofer Institute for Industrial Mathematics ITWM, Kaiserslautern, Germany
Michel, Isabel; Fraunhofer Institute for Industrial Mathematics ITWM, Kaiserslautern, Germany
SUCHDE, Pratik ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Engineering (DoE) ; Fraunhofer Institute for Industrial Mathematics ITWM, Kaiserslautern, Germany
Klein, Harald; Technical University of Munich, TUM School of Engineering and Design, Department of Energy and Process Engineering, Institute of Plant and Process Technology, Garching, Germany
External co-authors :
yes
Language :
English
Title :
Modeling evaporation with a meshfree collocation approach
Publication date :
30 May 2023
Journal title :
Computational Particle Mechanics
ISSN :
2196-4378
eISSN :
2196-4386
Publisher :
Springer Science and Business Media Deutschland GmbH
JungHoon Lee, Sebastian Rehfeldt, Almut Eisenträger, Jörg Kuhnert, Isabel Michel, and Harald Klein would like to acknowledge funding and support from AUDI AG for the large majority of this project. JungHoon Lee would like to thank the colleagues of the corrosion protection and water management department of AUDI AG for their help and support. Pratik Suchde would like to acknowledge support from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Actions grant agreement No. 892761.
Blázquez JF, Maestre I, Gallero FG et al (2017) A new practical cfd-based methodology to calculate the evaporation rate in indoor swimming pools. Energy Build 149:133–141. 10.1016/j.enbuild.2017.05.023 DOI: 10.1016/j.enbuild.2017.05.023
Brown DL, Cortez R, Minion ML (2001) Accurate projection methods for the incompressible Navier–Stokes equations. J Comput Phys 168(2):464–499. 10.1006/jcph.2001.6715 DOI: 10.1006/jcph.2001.6715
Buck AL (1981) New equations for computing vapor pressure and enhancement factor. J Appl Meteorol Climatol 20:1527–1532. 10.1175/1520-0450(1981)020<1527:NEFCVP>2.0.CO;2 DOI: 10.1175/1520-0450(1981)020<1527:NEFCVP>2.0.CO;2
Çengel YA (2002) Heat transfer: a practical approach, 2nd edn. McGraw-Hill Education, New York
Çengel YA, Ghajar AJ (2014) Heat and mass transfer: fundamental and application, 5th edn. McGraw-Hill Education, New York
Chen X, Wang X, Chen PG et al (2018) Determination of diffusion coefficient in droplet evaporation experiment using response surface method. Microgravity Sci Technol 30:675–682. 10.1007/s12217-018-9645-2 DOI: 10.1007/s12217-018-9645-2
Chorin AJ (1968) Numerical solution of the Navier-Stokes equations. Math Comput 22(104):745–762. 10.2307/2004575 DOI: 10.2307/2004575
Demel D, Schütz T, Kölzer C et al (2021) Anwendungen für mehrphasen-cfd am fahrzeugexterieur. Forsch Ingenieurwes 85:679–690. 10.1007/s10010-021-00480-z DOI: 10.1007/s10010-021-00480-z
Drumm C, Tiwari S, Kuhnert J et al (2008) Finite pointset method for simulation of the liquid–liquid flow field in an extractor. Comput Chem Eng 32(12):2946–2957. 10.1016/j.compchemeng.2008.03.009 DOI: 10.1016/j.compchemeng.2008.03.009
Fan CM, Chu CN, Šarler B et al (2018) Numerical solutions of waves-current interactions by generalized finite difference method. Eng Anal Bound Elements 100:150–163. 10.1016/j.enganabound.2018.01.010 DOI: 10.1016/j.enganabound.2018.01.010
Fasshauer GE, Zhang JG (2007) On choosing “optimal“ shape parameters for rbf approximation. Numer Algorithms 45:345–368. 10.1007/s11075-007-9072-8 DOI: 10.1007/s11075-007-9072-8
Fraunhofer Society (2022) MESHFREE. https://www.meshfree.eu
Gallero FJG, Maestre I, Blázquez JF et al (2020) Enhanced cfd-based approach to calculate the evaporation rate in swimming pools. Sci Technol Built Environ 27:524–532. 10.1080/23744731.2020.1868219 DOI: 10.1080/23744731.2020.1868219
Gavete L, Ureña F, Benito J, et al (2017) Solving second order non-linear elliptic partial differential equations using generalized finite difference method. J Comput Appl Math 318:378–387. 10.1016/j.cam.2016.07.025, http://www.sciencedirect.com/science/article/pii/S0377042716303442, computational and Mathematical Methods in Science and Engineering CMMSE-2015
Gingold RA, Monaghan JJ (1977) Smoothed particle hydrodynamics: theory and application to non-spherical stars. Mon Notices Royal Astron Soc 181:375–389. 10.1093/mnras/181.3.375 DOI: 10.1093/mnras/181.3.375
Hickey C, Raspet R, Slaton W (2000) Effects of thermal diffusion on sound attenuation in evaporating and condensing gas-vapor mixtures in tubes. J Acoust Soc Am 107:1126. 10.1121/1.428403 DOI: 10.1121/1.428403
Hilbrunner F (2005) Ein beitrag zur feuchtekompensation von präzisionsmeßgeräten. PhD thesis, Technische Universität Ilmenau
Hisatake K, Tanaka S, Aizawa Y (1993) Evaporation rate of water in a vessel. J Appl Phys 73:7395. 10.1063/1.354031 DOI: 10.1063/1.354031
Hisatake K, Fukuda M, Kimura J et al (1995) Experimental and theoretical study of evaporation of water in a vessel. J Appl Phys 77:6664. 10.1063/1.359079 DOI: 10.1063/1.359079
Hosseini VR, Chen W, Avazzadeh Z (2014) Numerical solution of fractional telegraph equation by using radial basis functions. Eng Anal Bound Elements 38:31–39. 10.1016/j.enganabound.2013.10.009 DOI: 10.1016/j.enganabound.2013.10.009
Hosseini VR, Koushki M, Zou WN (2022) The meshless approach for solving 2d variable-order time-fractional advection-diffusion equation arising in anomalous transport. Eng Comput 38:2289–2307. 10.1007/s00366-021-01379-7 DOI: 10.1007/s00366-021-01379-7
Incropera FP, DeWitt DP, Bergman TL et al (2006) Fundamentals of heat and mass transfer, 6th edn. John Wiley & Sons, New Jersey
Jefferies A, Kuhnert J, Aschenbrenner L, et al (2015) Finite pointset method for the simulation of a vehicle travelling through a body of water. In: Griebel M, Schweitzer MA (eds) Meshfree Methods for Partial Differential Equations VII. Springer, p 205–221, https://doi.org/10.1007/978-3-319-06898-5_11
Kalinay R (2017) Cfd modelling of horizontal water film evaporation. Master’s thesis, Czech Technical University in Prague
Kraus H, Kuhnert J, Meister A et al (2022) A meshfree point collocation method for elliptic interface problems. Appl Math Modell 113:241–261. 10.1016/j.apm.2022.08.002 DOI: 10.1016/j.apm.2022.08.002
Kuhnert J, Michel I, Mack R (2017) Fluid structure interaction (fsi) in the meshfree finite pointset method (fpm): theory and applications. In: Griebel M, Schweitzer MA (eds) Meshfree Methods for Partial Differential Equations IX. Springer, p 79–92, 10.1007/978-3-030-15119-5_5
Kumar M, Maurya S, Kumar V (2020) Cfd simulation of multiphase droplet evaporation. In: Recent Asian Research on Thermal and Fluid Sciences. Springer Singapore, Singapore, pp 495–503, 10.1007/978-981-15-1892-8_38
Li Z, Heiselberg P (2005) CFD Simulations for Water Evaporation and Airflow Movement in Swimming Baths. Aalborg Universitet
Liszka T, Orkisz J (1980) The finite difference method at arbitrary irregular grids and its application in applied mechanics. Comput Struct 11:83–95. 10.1016/0045-7949(80)90149-2 DOI: 10.1016/0045-7949(80)90149-2
Liu GR, Liu MB (2003) Smoothed particle hydrodynamics: a meshfree particle method. World Scientific, Singapore DOI: 10.1142/5340
Mai-Duy N, Tran-Cong T (2001) Numerical solution of Navier–Stokes equations using multiquadric radial basis function networks. Int J Numer Methods Fluids 37:65–86. 10.1002/fld.165 DOI: 10.1002/fld.165
Makana M, Kumar G, Regin F (2016) Passenger car water wading evaluation using cfd simulation. SAE Tech Paper. 10.4271/2016-28-0072 DOI: 10.4271/2016-28-0072
Meredith KV, Xin Y, Vries J (2011) A numerical model for simulation of thin-film water transport over solid fuel surfaces. Fire Saf Sci 10:415–428. 10.3801/IAFFS.FSS.10-415 DOI: 10.3801/IAFFS.FSS.10-415
Michel I, Seifarth T, Kuhnert J et al (2021) A meshfree generalized finite difference method for solution mining processes. Comput Particle Mech 8:561–574. 10.1007/s40571-020-00353-2 DOI: 10.1007/s40571-020-00353-2
Mongillo M (2011) Choosing basis functions and shape parameters for radial basis function methods. SIAM Undergrad Res Online 4:190–209. 10.1137/11S010840 DOI: 10.1137/11S010840
Ragab R, Wang T (2012) An investigation of liquid droplet evaporation model used in multiphase flow simulation. pp 485–497, 10.1115/IMECE2012-87392
Revie RW (2015) Corrosion and corrosion control: an introduction to corrosion science and engineering, 4th edn. John Wiley & Sons Inc, Hoboken, New Jersey
Roberge PR (2008) Corrosion engineering: principles and practice. Mcgraw-hill Companies, New York
Saufi A, Frassoldati A, Faravelli T et al (2019) Dropletsmoke++: a comprehensive multiphase cfd framework for the evaporation of multidimensional fuel droplets. Int J Heat Mass Transf 131:836–853. 10.1016/j.ijheatmasstransfer.2018.11.054 DOI: 10.1016/j.ijheatmasstransfer.2018.11.054
Šarler B (2005) A radial basis function collocation approach in computational fluid dynamics. Comput Model Eng Sci 7(2):185–194. 10.3970/cmes.2005.007.185 DOI: 10.3970/cmes.2005.007.185
Schaschke C (2014) A dictionary of chemical engineering, 1st edn. Oxford University Press, Oxford
Seibold B (2006) M-matrices in meshless finite difference methods. PhD thesis, University of Kaiserslautern, Germany
Singh V, Xu CY (1998) Evaluation and generalization of 13 mass-transfer equations for determining free water evaporation. Hydrol Process 11(3):311–323. 10.1002/(SICI)1099-1085(19970315)11:3<311::AID-HYP446>3.0.CO;2-Y DOI: 10.1002/(SICI)1099-1085(19970315)11:3<311::AID-HYP446>3.0.CO;2-Y
Suchde P (2018) Conservation and accuracy in meshfree generalized finite difference methods. PhD thesis, University of Kaiserslautern, Germany
Suchde P, Kuhnert J (2018) Point cloud movement for fully lagrangian meshfree methods. J Comput Appl Math 340:89–100. 10.1016/j.cam.2018.02.020 DOI: 10.1016/j.cam.2018.02.020
Suchde P, Kuhnert J, Schröder S et al (2017) A flux conserving meshfree method for conservation laws. Int J Numer Methods Eng 112(3):238–256. 10.1002/nme.5511 DOI: 10.1002/nme.5511
Suchde P, Kuhnert J, Tiwari S (2018) On meshfree gfdm solvers for the incompressible Navier–Stokes equations. Comput Fluids 165:1–12. 10.1016/j.compfluid.2018.01.008 DOI: 10.1016/j.compfluid.2018.01.008
Suchde P, Jacquemin T, Davydov O (2022) Point cloud generation for meshfree methods: an overview. Arch Comput Methods Eng 30:1–27. 10.1007/s11831-022-09820-w
Varshney M, Pasunurthi S, Maiti D et al (2021) Cfd method development for simulating water fording for a passenger car. SAE Tech Paper. 10.4271/2021-01-0205 DOI: 10.4271/2021-01-0205
Veltmaat L, Mehrens F, Endres HJ et al (2022) Mesh-free simulations of injection molding processes. Phys Fluids 34(3):033102. 10.1063/5.0085049 DOI: 10.1063/5.0085049
Versteeg HK, Malalasekera W (2007) An introduction to computational fluid dynamics: the finite, vol Method, 2nd edn. McGraw-Hill Education, New York
Vidal-López P, Martin-Gorriz B, Martínez-Alvarez V et al (2012) Cfd simulation of water evaporation in class-a pan with a transient analysis. Acta Horticult 1008:91–96. 10.17660/ActaHortic.2013.1008.11 DOI: 10.17660/ActaHortic.2013.1008.11
Van der Vorst HA (1992) Bi-cgstab: a fast and smoothly converging variant of bi-cg for the solution of nonsymmetric linear systems. SIAM J Sci Stat Comput 13(2):631–644. 10.1137/0913035 DOI: 10.1137/0913035
Wang D, Qiang H, Shi C (2020) A multiphase sph framework for solving the evaporation and combustion process of droplets. Int J Numer Methods Heat Fluid Flow 30:1547–1575. 10.1108/HFF-08-2019-0666 DOI: 10.1108/HFF-08-2019-0666
Wickert D, Prokop G (2021) Simulation of water evaporation under natural conditions—a state-of-the-art overview. Exp Comput Multiphase Flow 3:242–249. 10.1007/s42757-020-0071-5 DOI: 10.1007/s42757-020-0071-5
Wickert D, Hermsdorf F, Prokop G (2020) Analysis of the water management on a full virtual car using computational fluid dynamics. SAE Int J Mater Manf 13(2):175–191. 10.4271/05-13-02-0013 DOI: 10.4271/05-13-02-0013
Yang X, Kong SC (2017) Smoothed particle hydrodynamics method for evaporating multiphase flows. Phys Rev E 96(3):033309. 10.1103/PhysRevE.96.033309 DOI: 10.1103/PhysRevE.96.033309