Login
EN
[EN] English
[FR] Français
Login
EN
[EN] English
[FR] Français
Give us feedback
Search and explore
Search
Explore ORBilu
Open Science
Open Science
Open Access
Research Data Management
Definitions
OS Working group
Webinars
Statistics
Help
User Guide
FAQ
Publication list
Document types
Reporting
Training
ORCID
About
About ORBilu
Deposit Mandate
ORBilu team
Impact and visibility
About statistics
About metrics
OAI-PMH
Project history
Legal Information
Data protection
Legal notices
Back
Home
Detailed Reference
Download
Doctoral thesis (Dissertations and theses)
ML-based data-entry automation and data anomaly detection to support data quality assurance
BELGACEM, Hichem
2023
Permalink
https://hdl.handle.net/10993/57433
Files (1)
Send to
Details
Statistics
Bibliography
Similar publications
Files
Full Text
Thesis_HB.pdf
Author postprint (1.77 MB)
Download
All documents in ORBilu are protected by a
user license
.
Send to
RIS
BibTex
APA
Chicago
Permalink
X
Linkedin
copy to clipboard
copied
Details
Keywords :
Form filling, Data entry forms, Machine Learning, Software data quality, User interfaces
Abstract :
[en]
Data playsacentralroleinmodernsoftwaresystems,whichare very oftenpoweredbymachinelearning(ML)andusedincriticaldo- mains ofourdailylives,suchasfinance,health,andtransportation. However,theeffectivenessofML-intensivesoftwareapplicationshighly depends onthequalityofthedata.Dataqualityisaffectedbydata anomalies; dataentryerrorsareoneofthemainsourcesofanomalies. The goalofthisthesisistodevelopapproachestoensuredataquality by preventingdataentryerrorsduringtheform-fillingprocessandby checking theofflinedatasavedindatabases. The maincontributionsofthisthesisare: 1. LAFF, anapproachtoautomaticallysuggestpossiblevaluesofcat- egorical fieldsindataentryforms. 2. LACQUER, anapproachtoautomaticallyrelaxthecompleteness requirementofdataentryformsbydecidingwhenafieldshould be optionalbasedonthefilledfieldsandhistoricalinputinstances. 3. LAFF-AD, anapproachtoautomaticallydetectdataanomaliesin categorical columnsinofflinedatasets. LAFF andLACQUERfocusmainlyonpreventingdataentryerrors during theform-fillingprocess.Bothapproachescanbeintegratedinto data entryapplicationsasefficientandeffectivestrategiestoassistthe user duringtheform-fillingprocess.LAFF-ADcanbeusedofflineon existing suspiciousdatatoeffectivelydetectanomaliesincategorical data. In addition,weperformedanextensiveevaluationofthethreeap- proaches,assessingtheireffectivenessandefficiency,usingreal-world datasets.
Disciplines :
Computer science
Author, co-author :
BELGACEM, Hichem
;
University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SVV
Language :
English
Title :
ML-based data-entry automation and data anomaly detection to support data quality assurance
Defense date :
15 September 2023
Institution :
Unilu - University of Luxembourg [The Faculty of Sciences, Technology and Medicine], Luxembourg, Luxembourg
Degree :
Docteur en Informatique (DIP_DOC_0006_B)
Promotor :
BIANCULLI, Domenico
;
University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SVV
President :
BRIAND, Lionel
;
University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SVV
Jury member :
Boytsov, Andrey
SHIN, Seung Yeob
;
University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SVV
Baresi, Luciano;
Politecnico Di Milano
Available on ORBilu :
since 20 November 2023
Statistics
Number of views
150 (19 by Unilu)
Number of downloads
187 (5 by Unilu)
More statistics
Bibliography
Similar publications
Contact ORBilu