ARGoS simulator; evolutionary algorithm; formation control; surrogate model; swarm robotics; UAV; Materials Science (all); Instrumentation; Engineering (all); Process Chemistry and Technology; Computer Science Applications; Fluid Flow and Transfer Processes; General Engineering; General Materials Science; HPC
Abstract :
[en] Optimising a swarm of many robots can be computationally demanding, especially when accurate simulations are required to evaluate the proposed robot configurations. Consequentially, the size of the instances and swarms must be limited, reducing the number of problems that can be addressed. In this article, we study the viability of using surrogate models based on Gaussian processes and artificial neural networks as predictors of the robots’ behaviour when arranged in formations surrounding a central point of interest. We have trained the surrogate models and tested them in terms of accuracy and execution time on five different case studies comprising three, five, ten, fifteen, and thirty robots. Then, the best performing predictors combined with ARGoS simulations have been used to obtain optimal configurations for the robot swarm by using our proposed hybrid evolutionary algorithm, based on a genetic algorithm and a local search. Finally, the best swarm configurations obtained have been tested on a number of unseen scenarios comprising different initial robot positions to evaluate the robustness and stability of the achieved robot formations. The best performing predictors exhibited speed increases of up to 3604 with respect to the ARGoS simulations. The optimisation algorithm converged in 91% of runs and stable robot formations were achieved in 79% of the unseen testing scenarios.
Research center :
Interdisciplinary Centre for Security, Reliability and Trust (SnT) > PCOG - Parallel Computing & Optimization Group ULHPC - University of Luxembourg: High Performance Computing
Disciplines :
Computer science
Author, co-author :
STOLFI ROSSO, Daniel ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > PCOG
DANOY, Grégoire ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Computer Science (DCS)
External co-authors :
no
Language :
English
Title :
Optimising Robot Swarm Formations by Using Surrogate Models and Simulations
Publication date :
May 2023
Journal title :
Applied Sciences
eISSN :
2076-3417
Publisher :
MDPI
Special issue title :
Swarm Intelligence and Swarm Robotics: Latest Advances and Prospects
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Brust M.R. Danoy G. Stolfi D.H. Bouvry P. Swarm-based counter UAV defense system Discov. Internet Things 2021 1 2 10.1007/s43926-021-00002-x
Chung S.J. Ahsun U. Slotine J.J.E. Application of Synchronization to Formation Flying Spacecraft: Lagrangian Approach J. Guid. Control. Dyn. 2009 32 512 526 10.2514/1.37261
Cardona G.A. Calderon J.M. Robot Swarm Navigation and Victim Detection Using Rendezvous Consensus in Search and Rescue Operations Appl. Sci. 2019 9 1702 10.3390/app9081702
Saeedi S. Trentini M. Seto M. Li H. Multiple-Robot Simultaneous Localization and Mapping: A Review J. Field Robot. 2015 33 3 46 10.1002/rob.21620
Hauri S. Alonso-Mora J. Breitenmoser A. Siegwart R. Beardsley P. Multi-Robot Formation Control via a Real-Time Drawing Interface Field and Service Robotics: Results of the 8th International Conference Yoshida K. Tadokoro S. Springer Berlin/Heidelberg, Germany 2014 175 189 10.1007/978-3-642-40686-7_12
Pinciroli C. Trianni V. O’Grady R. Pini G. Brutschy A. Brambilla M. Mathews N. Ferrante E. Di Caro G. Ducatelle F. et al. ARGoS: A modular, parallel, multi-engine simulator for multi-robot systems Swarm Intell. 2012 6 271 295 10.1007/s11721-012-0072-5
Stolfi D.H. Danoy G. An Evolutionary Algorithm to Optimise a Distributed UAV Swarm Formation System Appl. Sci. 2022 12 10218 10.3390/app122010218
Shahriari B. Swersky K. Wang Z. Adams R.P. de Freitas N. Taking the Human Out of the Loop: A Review of Bayesian Optimization Proc. IEEE 2016 104 148 175 10.1109/JPROC.2015.2494218
Ong Y.S. Nair P.B. Keane A.J. Evolutionary Optimization of Computationally Expensive Problems via Surrogate Modeling AIAA J. 2003 41 687 696 10.2514/2.1999
Yelten M.B. Zhu T. Koziel S. Franzon P.D. Steer M.B. Demystifying Surrogate Modeling for Circuits and Systems IEEE Circuits Syst. Mag. 2012 12 45 63 10.1109/MCAS.2011.2181095
Cheng S. Prentice I.C. Huang Y. Jin Y. Guo Y.K. Arcucci R. Data-driven surrogate model with latent data assimilation: Application to wildfire forecasting J. Comput. Phys. 2022 464 111302 10.1016/j.jcp.2022.111302
Poggi C. Rossetti M. Bernardini G. Iemma U. Andolfi C. Milano C. Gennaretti M. Surrogate models for predicting noise emission and aerodynamic performance of propellers Aerosp. Sci. Technol. 2022 125 107016 10.1016/j.ast.2021.107016
Westermann P. Evins R. Surrogate modelling for sustainable building design—A review Energy Build. 2019 198 170 186 10.1016/j.enbuild.2019.05.057
Asher M.J. Croke B.F.W. Jakeman A.J. Peeters L.J.M. A review of surrogate models and their application to groundwater modeling Water Resour. Res. 2015 51 5957 5973 10.1002/2015WR016967
Alizadeh R. Allen J.K. Mistree F. Managing computational complexity using surrogate models: A critical review Res. Eng. Des. 2020 31 275 298 10.1007/s00163-020-00336-7
Bliek L. A Survey on Sustainable Surrogate-Based Optimisation Sustainability 2022 14 3867 10.3390/su14073867
Rosalie M. Kieffer E. Brust M.R. Danoy G. Bouvry P. Bayesian optimisation to select Rössler system parameters used in Chaotic Ant Colony Optimisation for Coverage J. Comput. Sci. 2020 41 101047 10.1016/j.jocs.2019.101047
do Nascimento R.G. Fricke K. Viana F. Quadcopter Control Optimization through Machine Learning AIAA Scitech 2020 Forum American Institute of Aeronautics and Astronautics Orlando, FL, USA 2020 10.2514/6.2020-1148
Tang Q. Li Y. Deng Z. Chen D. Guo R. Huang H. Optimal shape design of an autonomous underwater vehicle based on multi-objective particle swarm optimization Nat. Comput. 2020 19 733 742 10.1007/s11047-019-09729-7
Lopes H.J. Lima D.A. Evolutionary Tabu Inverted Ant Cellular Automata with Elitist Inertia for swarm robotics as surrogate method in surveillance task using e-Puck architecture Robot. Auton. Syst. 2021 144 103840 10.1016/j.robot.2021.103840
Yue H. Medromi H. Ding H. Bassir D. A novel hybrid drone for multi-propose aerial transportation and its conceptual optimization based on surrogate approach J. Phys. Conf. Ser. 2021 1972 012103 10.1088/1742-6596/1972/1/012103
Chandra R. Tiwari A. Distributed Bayesian optimisation framework for deep neuroevolution Neurocomputing 2022 470 51 65 10.1016/j.neucom.2021.10.045
Spiri Robotics Spiri Mu 2023 Available online: https://spirirobotics.com/ (accessed on 20 April 2023)
Stolfi D.H. Danoy G. Optimising Autonomous Robot Swarm Parameters for Stable Formation Design Proceedings of the Genetic and Evolutionary Computation Conference, GECCO’22 New York, NY, USA 9–13 July 2022 1281 1289 10.1145/3512290.3528709
Cozad A. Sahinidis N.V. Miller D.C. Learning surrogate models for simulation-based optimization AIChE J. 2014 60 2211 2227 10.1002/aic.14418
Seeger M. Gaussian Processes For Machine Learning Int. J. Neural Syst. 2004 14 69 106 10.1142/S0129065704001899 15112367
Piironen J. Gplite: General Purpose Gaussian Process Modelling 2023 Available online: https://cran.r-project.org/package=gplite (accessed on 2 March 2023)
Riedmiller M. Braun H. A direct adaptive method for faster backpropagation learning: The RPROP algorithm Proceedings of the IEEE International Conference on Neural Networks San Francisco, CA, USA 28 March–1 April 1993 Volume 1 586 591 10.1109/ICNN.1993.298623
Fritsch S. Guenther F. Wright M.N. Suling M. Mueller S.M. Neuralnet: Training of Neural Networks 2023 Available online: https://CRAN.R-project.org/package=neuralnet (accessed on 2 March 2023)
Holland J.H. Adaptation in Natural and Artificial Systems The MIT Press Cambridge, MA, USA 1992 228 10.7551/mitpress/1090.001.0001
Talbi E.G. A Unified Taxonomy of Hybrid Metaheuristics with Mathematical Programming, Constraint Programming and Machine Learning Hybrid Metaheuristics Talbi E.G. Springer Berlin/Heidelberg, Germany 2013 3 76 10.1007/978-3-642-30671-6_1
Goldberg D.E. Deb K. A Comparative Analysis of Selection Schemes Used in Genetic Algorithms Found. Genet. Algorithms 1991 1 69 93 10.1016/B978-0-08-050684-5.50008-2
Syswerda G. Uniform Crossover in Genetic Algorithms Proceedings of the Proceedings of the 3rd International Conference on Genetic Algorithms Fairfax, VA, USA 1 June 1989 Morgan Kaufmann Publishers Inc. San Francisco, CA, USA 1989 2 9
Deb K. Multi-Objective Optimization Using Evolutionary Algorithms John Wiley & Sons, Inc. Hoboken, NJ, USA 2001
Lin S. Computer solutions of the traveling salesman problem Bell Syst. Tech. J. 1965 44 2245 2269 10.1002/j.1538-7305.1965.tb04146.x
Benítez-Hidalgo A. Nebro A.J. García-Nieto J. Oregi I. Ser J.D. jMetalPy: A Python framework for multi-objective optimization with metaheuristics Swarm Evol. Comput. 2019 51 100598 10.1016/j.swevo.2019.100598
Varrette S. Bouvry P. Cartiaux H. Georgatos F. Management of an academic HPC cluster: The UL experience Proceedings of the 2014 International Conference on High Performance Computing & Simulation (HPCS) Bologna, Italy 21–25 July 2014 959 967 10.1109/HPCSim.2014.6903792
Similar publications
Sorry the service is unavailable at the moment. Please try again later.