Eprint diffusé en premier sur ORBilu (E-prints, Working papers et Carnets de recherche)
The FEniCS Project on AWS Graviton3
HABERA, Michal; HALE, Jack
2023
 

Documents


Texte intégral
habera-hale-aws-fenics-sc23.pdf
Preprint Auteur (291.04 kB) Licence Creative Commons - Attribution
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Résumé :
[en] We show initial performance results executing the FEniCS Project finite element software on Amazon Web Services (AWS) c7g instances with Graviton3 processors. Graviton3 processors are based on the ARM64 instruction set and provide Scalable Vector Extensions (SVE) for single instruction, multiple data (SIMD) operations. The c7g instances include a fast Elastic Fabric Adaptor (EFA) interconnect for low-latency high-bandwidth Message Passing Interface (MPI) based parallel communication. Comparing clang 15 and GCC 12 series compilers for compiling a high-order elasticity finite element kernel our results show that GCC emitted more vectorised loops with variable width SVE instructions than clang. The runtime performance of the GCC compiled kernel was 20% faster than the clang compiled kernel. We also tested multi-node weak scalability of a Poisson solver on the EFA interconnect up to 512 MPI processes. We find that overall performance and weak scalability of the AWS provisioned cluster is similar to a dedicated AMD EPYC x86-64 HPC installed at the University of Luxembourg.
Centre de recherche :
ULHPC - University of Luxembourg: High Performance Computing
Disciplines :
Sciences informatiques
Mathématiques
Auteur, co-auteur :
HABERA, Michal ;  University of Luxembourg
HALE, Jack  ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Engineering (DoE)
Langue du document :
Anglais
Titre :
The FEniCS Project on AWS Graviton3
Date de publication/diffusion :
14 novembre 2023
Version :
Preprint for distribution at Supercomputing' 23
Focus Area :
Computational Sciences
Projet FnR :
FNR17205623 - Constraint Aware Optimization Of Topology In Design-for-additive-manufacturing, 2022 (01/11/2022-31/10/2024) - Michal Habera
Organisme subsidiant :
Amazon
Subventionnement (détails) :
This project has received compute resources from Amazon Web Services (AWS) through the first and second University of Luxembourg/AWS collaborative Graviton3 call.
Commentaire :
This research was funded in whole, or in part, by the National Research Fund (FNR), grant reference COAT/17205623. For the purpose of open access, and in fulfillment of the obligations arising from the grant agreement, the author has applied a Creative Commons Attribution 4.0 International (CC BY 4.0) license to any Author Accepted Manuscript version arising from this submission.
Disponible sur ORBilu :
depuis le 14 novembre 2023

Statistiques


Nombre de vues
158 (dont 8 Unilu)
Nombre de téléchargements
196 (dont 5 Unilu)

Bibliographie


Publications similaires



Contacter ORBilu