
The FEniCS Project on AWS Graviton3

Michal Habera 1,2 and Jack S. Hale 2

Abstract. We show initial performance results executing the FEniCS Project finite

element software on Amazon Web Services (AWS) c7g instances with Graviton3

processors. Graviton3 processors are based on the ARM64 instruction set and pro-

vide Scalable Vector Extensions (SVE) for single instruction, multiple data (SIMD)

operations. The c7g instances include a fast Elastic Fabric Adaptor (EFA) inter-

connect for low-latency high-bandwidth Message Passing Interface (MPI) based

parallel communication. Comparing clang 15 and GCC 12 series compilers for

compiling a high-order elasticity finite element kernel our results show that GCC

emitted more vectorised loops with variable width SVE instructions than clang.

The runtime performance of the GCC compiled kernel was 20 % faster than the

clang compiled kernel. We also tested multi-node weak scalability of a Poisson

solver on the EFA interconnect up to 512 MPI processes. We find that overall

performance and weak scalability of the AWS provisioned cluster is similar to a

dedicated AMD EPYC x86-64 HPC installed at the University of Luxembourg.

1. Introduction

The FEniCS Project has been used to write finite element solvers for prob-
lems arising in all fields that involve the solution of partial differential equations,
including mathematics, biology, physics, engineering, geophysics and mechanics.

A key enabling technology in the FEniCS Project is the use of automatic code
generation (compilation) to reduce the tedious and error-prone work associated
with building a finite element solver for a given problem. The user is able to ex-
press their finite element problem in a high-level domain specific language and
have it automatically translated into a low-level C kernel that computes the finite
element tensor on any given cell of the problem mesh. An important aspect for
achieving good runtime performance is the ability of the C compiler to produce
highly efficient assembly code from the C kernel. In order to take advantage of the
single instruction multiple data (SIMD) capabilities of modern CPUs the compiler
should emit assembly code with appropriate intrinsics using automatic vectorisa-
tion.

The FEniCS Project also supports parallel execution using the Message Pass-
ing Interface (MPI). The finite element mesh is partitioned between MPI processes
and each process is responsible for assembling contributions from its own parti-
tion of the mesh. Communication between is then required to ensure a consistent
representation of the finite element linear system across processes.

1: Rafinex Sarl, 2: University of Luxembourg.

1

https://fenicsproject.org/


2 M. HABERA AND J. S. HALE

Aion node AWS c7g instance

Processor
2 x (AMD Epyc ROME 7H12,

64 cores @ 2.6 GHz)

1 x (Graviton3,

64 cores @ 2.6 GHz)

Architecture x86_64, Zen 2 (AVX2) ARMv8.5, Neoverse V1 (SVE)

Memory

256 GB DDR4

3200 MT/s = 25.6 GB/s

8 NUMA nodes

128 GB DDR5

4800 MT/s = 38.4 GB/s

Unified Memory Access (no NUMA)

Total mem. bandwidth 2 x 200 GB/s 1 x 300 GB/s

Table 1. Configuration of the Aion nodes (University of Luxem-
bourg HPC) and AWS c7g (Amazon) instances.

AWS Graviton3-based instances aim to provide a cost effective compute re-
sources, particularly for scientific computing and machine-learning applications.
Particularly appealing for running scientific computing codes such as the FEniCS
Project are Graviton3’s support for Scalable Vector Extension (SVE) instructions
and inclusion of Elastic Fabric Adaptor (EFA) interconnect for high-bandwidth low-
latency communications between instances.

In this report we show results that aim to answer the following questions:

(1) Do the latest compilers automatically emit ARM SIMD instructions (Scal-
able Vector Extensions (SVE) and/or Neon) when compiling the gener-
ated C finite element kernels, and what is the runtime performance of
the compiled finite element kernels?

(2) Does a Poisson solver implemented using the FEniCS Project scale when
running with MPI-based distributed memory parallelism across the AWS
Elastic Fabric Adapter?

2. Results

In this section we present benchmark results. AWS c7g instances are com-
pared to Aion computing instances available at the University of Luxembourg HPC
facilities [7]. These instances have different hardware configuration, see Table 1.
The purpose of the comparison to ascertain an ARM-based cloud compute cluster
can be broadly competitive with a relatively modern x86-64 cluster.

The FEniCS Project components are written in a mixture of Python, modern-
style C++20 and ANSI C. All computationally intensive parts (core data structures
and algorithms for finite element linear system assembly) of DOLFINx are written
in C++20 or ANSI C.

We built the FEniCS Project with the Spack package manager using GCC
12.2.0. We setup Spack to use a version of OpenMPI provided by AWS which
includes the appropriate libfabric with support for the EFA interconnect. For the
finite element kernel benchmarks we also built LLVM/clang 15.0.7 for the purpose
of comparing the performance against assembly code generatedwith GCC 12.2.0.

2.1. Memory bandwidth. Low-order finite element methods are typically
memory bandwidth constrained as the time taken to load and store data from
main memory (e.g. the mesh geometry) dominates the time taken to compute
the finite element cell tensor itself. Understanding the memory bandwidth char-
acteristics of a processor is therefore important for ensuring optimal performance.



THE FENICS PROJECT ON AWS GRAVITON3 3

0 25 50 75 100 125

Num. processes

100

200

300

400
B

an
dw

id
th

 [G
B

/s
]

Graviton3 c7g 1x64

Aion, 1x128

(a) Single-node.

0 20 40 60

Num. processes

0

500

1000

1500

B
an

dw
id

th
 [G

B
/s

]

Graviton3 c7g 8x8

Aion, 8x8

(b) Multi-node.

Figure 1. STREAM benchmark.

STREAM and STREAM MPI [6, 5] are the industry standard benchmarks for
measuring sustainedmemory bandwidth performance. It estimatesmemory band-
width from memory intense operations (copy, scale, add) on large arrays. In Fig-
ure 1a results for the copy operation for single-node benchmark are shown. For
the single-node benchmark theoretical peak memory bandwidth of 400GBs−1 for
Aion and 300GBs−1 for AWS c7g are reached within 80 %, which is considered
a reasonable outcome of the STREAM benchmark. Bandwidth saturation is ob-
served around 20 % of the node utilisation. Both curves show different character-
istics of the saturation point due to different memory access configuration. On the
Aion instances there are 8 non-unified memory access (NUMA) nodes of 16 cores
each, while AWS c7g was setup with unified memory access.

In terms of multi-node scalability, low utilisation (8 processes on 8 nodes each)
helps to escape the bandwidth limitations as expected, see Figure 1b.

2.2. Finite element kernels. In order to measure the performance of a stan-
dard FEniCS user finite element code we used the Local Finite Element Operator
Benchmarks repository [2]. The benchmark measures execution time for local fi-
nite element kernel generated by the FEniCS Form Compiler (FFCx), [3]. Two
types of kernels were generated for the purpose of this paper. Matrix-free three-
dimensional elasticity kernel represents a finite element discretisation of the action
of elasticity (stiffness) operator with spatially varying material property κ(x), i.e.

vi =
∑
j

Aijwj =
∑
j

wj

∫
K

κ(x)sym(∇φi) : sym(∇φj)dx,(1)

where K is a fixed reference tetrahedron and wj ∈ Rn is a fixed, prescribed vec-
tor. The generated kernel assembles a double precision vector vi ∈ Rn, where
n = 30 for second-order discretization (low-order) and n = 84 for sixth-order dis-
cretization (high-order). Low-order kernels are expected to be memory bandwidth
limited, while high-order kernels have higher arithmetic intesity. In addition, the
matrix-free version requires fewer copy operations in comparison to the assembly
of a matrix, increasing the ratio of floating-point operations to memory loads and
stores. Consequently for the higher-order kernels there is the scope for significant
performance increases if the compiler can automatically emit SIMD instructions.



4 M. HABERA AND J. S. HALE

Compiler Aion AWS c7g

Ofast, native, vectorized gcc 12.2.0

-Ofast

-march=znver2

-mtune=znver2

-Ofast

-mcpu=neoverse-v1

clang 15.0.7

-Ofast

-march=znver2

-mtune=znver2

-Ofast

-mcpu=neoverse-v1

Ofast, native, no vec. gcc 12.2.0

-Ofast

-march=znver2

-mtune=znver2

-fno-tree-vectorize

-Ofast

-mcpu=neoverse-v1

-fno-tree-vectorize

clang 15.0.7

-Ofast

-march=znver2

-mtune=znver2

-fno-slp-vectorize

-fno-vectorize

-Ofast

-mcpu=neoverse-v1

-fno-slp-vectorize

-fno-vectorize

O2, no vec. gcc 12.2.0
-O2

-fno-tree-vectorize

-O2

-fno-tree-vectorize

clang 15.0.7

-O2

-fno-slp-vectorize

-fno-vectorize

-O2

-fno-slp-vectorize

-fno-vectorize

Table 2. Compiler versions and compilation flags used for finite
element kernel benchmarks.

Different compilers and compiler options were used to assess the performance
differences on the AWS c7g instances, see Table 2.

Results for kernel benchmarks are included in Figure 2 and Figure 3. Low-
order kernels show no dependence on compiler setup. On the other hand, AWS
c7g shows 1.3x speed-up over Aion due to higher memory bandwidth for a single
process (DDR5 vs. DDR4).

High-order kernels, which are expected to benefit from compiler optimiza-
tion, show this trend clearly. GCC 12.2.0 has the most consistent performance
for both tested instances. Both Clang and GCC auto-vectorizers perform well,
producing a noticeable speed-up (> 2x) in the most optimized setting. Clang
15.0.7 appears to deliver sub-optimal loop auto-vectorization compared to GCC
12.2.0. Optimization reports (-Rpass=loop-vectorize for Clang and -fopt-
info-vec-optimized) revealed that GCCmanaged to produce Scalable Vector
Extensions (SVE) with variable width for three loops in the generated kernel, while
Clang produced only one. The other two loops were vectorized, but using fixed
vectorization width of two.

2.3. Parallel scalability. Results for the parallel scalability were produced us-
ing performance test codes for FEniCSx [8] built against DOLFINx 0.6.0 and PETSc
3.18 [1].

The Poisson equation solver benchmark consists of the following measured
steps:

(1) Create mesh. Create a unit cube mesh and discretise using linear tetra-
hedral cells. Partition the mesh with Parmetis partitioner and distribute.
Compute cell-to-edge connectivities.



THE FENICS PROJECT ON AWS GRAVITON3 5

Ofast, native,
 vectorized

Ofast, native,
 no vec.

O2, no vec.
0.000

0.025

0.050

0.075

0.100

0.125
tim

e 
[s

]
1.39x 1.27x 1.31x

AWS c7g

Aion

(a) Clang 15.0.7.

Ofast, native,
 vectorized

Ofast, native,
 no vec.

O2, no vec.
0.000

0.025

0.050

0.075

0.100

0.125

tim
e 

[s
]

1.13x
1.21x 1.35x

AWS c7g

Aion

(b) GCC 12.2.0.

Figure 2. Low-order Elasticity operator assembly. Relative speed-
up of AWS c7g is included above bars.

Ofast, native,
 vectorized

Ofast, native,
 no vec.

O2, no vec.
0.0

0.5

1.0

1.5

tim
e 

[s
]

0.81x

1.19x

1.44x

AWS c7g

Aion

(a) Clang 15.0.7.

Ofast, native,
 vectorized

Ofast, native,
 no vec.

O2, no vec.
0.0

0.5

1.0

1.5

tim
e 

[s
]

1.06x

1.13x
1.17x

AWS c7g

Aion

(b) GCC 12.2.0.

Figure 3. High-order Elasticity operator assembly. Relative
speed-up of AWS c7g is included above bars.

(2) Create function space. Create scalar-valued, globally continuous, piece-
wise linear function space on the mesh.

(3) Assemble matrix. Execute the local Poisson equation kernel over the
mesh and assemble PETSc MATMPIAIJ (distributed compressed sparse
row) matrix.

(4) Solve. Run Conjugate Gradient (CG) solver with a classical algebraic
multigrid (BoomerAMG [4]) preconditioner.

Weak scaling results (constant workload of approx. 5 × 105 degrees-of-freedom
per process) are shown in Figure 4. Both Aion and AWS c7g show almost constant
times for mesh and function space creation. Moreover, matrix assembly has the
most ideal weak parallel scalability due to the cell-local nature of the assembly
loop and negligible amount of MPI communication during matrix finalisation. The
solution step shows small increase (30 %) for both benchmarked instances.



6 M. HABERA AND J. S. HALE

64 12
8

25
6

51
2

Num. processes

0

5

10

15

20

tim
e 

[s
]

Create
 mesh

Create
 function space

Assemble
 matrix Solve

(a) Aion, 5 × 105 degrees-of-freedom per process, 25 % utilisa-
tion (32 processes per node).

64 12
8

25
6

51
2

Num. processes

0

5

10

15

20

tim
e 

[s
]

Create
 mesh

Create
 function space

Assemble
 matrix Solve

(b) AWS c7g, 5×105 degrees-of-freedom per process, 50 % util-
isation (32 processes per node).

Figure 4. Weak parallel scalability of the Poisson equation solver.

3. Conclusion

Benchmarks for memory bandwidth, local finite element kernels and paral-
lel scalability of Poisson solver were executed on nodes Aion and on AWS c7g
instances.

Memory bandwidth measured using STREAM MPI confirms higher memory
transfer rate of AWS c7g, but superior total bandwidth of 310GBs−1 per Aion
node.

In terms of auto-vectorization capabilities of GCC and clang, both produced
optimized instructions for the targetedmicroarchitectures (Zen 2 for Aion andNeo-
verse V1 for AWS c7g). This observation was confirmed with performance bench-
marks based on local finite element kernels for Elasticity (stiffness) operator for low



THE FENICS PROJECT ON AWS GRAVITON3 7

(memory bound) and high (compute bound) orders. GCC 12.2.0 emitted differ-
ent loop vectorization based on variable width vector instructions (SVE) than clang
15.0.7.

MPI-based distributed memory Poisson equation solver shows good weak
scaling on both instances, with results comparable to the in-house University of
Luxembourg Aion system.

Executing the FEniCS Project on ARM64, and more specifically on the Gravi-
ton3 CPU, has proved to be straightforward. There were no ARM64, or Gravi-
ton3, specific adjustments required. Credit for this can largely be attributed to
the dedicated work of the Open Source community in ensuring that the entire
HPC toolchain is ready for the ARM64 transition, and the engineering work done
by AWS on their Graviton3-based instances.

4. Acknowledgements

This project has received compute resources fromAmazonWeb Services (AWS)
through the first and second University of Luxembourg/AWS collaborative Gravi-
ton3 call.

This research was funded in whole, or in part, by the National Research Fund
(FNR), grant reference COAT/17205623. For the purpose of open access, and
in fulfillment of the obligations arising from the grant agreement, the author has
applied a Creative Commons Attribution 4.0 International (CC BY 4.0) license to
any Author Accepted Manuscript version arising from this submission.

References

[1] Balay, S., Abhyankar, S., Adams, M. F., Benson, S., Brown, J., Brune, P., Buschelman, K., Constan-

tinescu, E. M., Dalcin, L., Dener, A., Eijkhout, V., Faibussowitsch, J., Gropp, W. D., Hapla, V., Isaac,

T., Jolivet, P., Karpeev, D., Kaushik, D., Knepley, M. G., Kong, F., Kruger, S., May, D. A., McInnes,

L. C., Mills, R. T., Mitchell, L., Munson, T., Roman, J. E., Rupp, K., Sanan, P., Sarich, J., Smith, B. F.,

Zampini, S., Zhang, H., Zhang, H., and Zhang, J. PETSc Web page. https://petsc.org/, 2023.

[2] Baratta, I., Richardson, C., Dokken, J. S., and Hermano, A. Local Finite Element Operator Bench-

marks, 2023.

[3] Habera, M., Hale, J. S., Richardson, C., Ring, J., Rognes, M., Sime, N., and Wells, G. N. Fenicsx: A

sustainable future for the fenics project, 2020.

[4] hypre: High performance preconditioners. https://llnl.gov/casc/hypre, https://

github.com/hypre-space/hypre.

[5] McCalpin, J. D. Stream: Sustainable memory bandwidth in high performance computers. Tech.

rep., University of Virginia, Charlottesville, Virginia, 1991-2007. A continually updated technical

report. http://www.cs.virginia.edu/stream/.

[6] McCalpin, J. D. Memory bandwidth and machine balance in current high performance computers.

IEEE Computer Society Technical Committee on Computer Architecture (TCCA) Newsletter (Dec.

1995), 19–25.

[7] Varrette, S., Cartiaux, H., Peter, S., Kieffer, E., Valette, T., andOlloh, A. Management of an Academic

HPC & Research Computing Facility: The ULHPC Experience 2.0. In Proc. of the 6th ACM High

Performance Computing and Cluster Technologies Conf. (HPCCT 2022) (Fuzhou, China, July 2022),

Association for Computing Machinery (ACM).

[8] Wells, G., and Richardson, C. Performance test codes for FEniCSx, 2023.

https://petsc.org/
https://llnl.gov/casc/hypre
https://github.com/hypre-space/hypre
https://github.com/hypre-space/hypre

	1. Introduction
	2. Results
	3. Conclusion
	4. Acknowledgements
	References

