Communication publiée dans un ouvrage (Colloques, congrès, conférences scientifiques et actes)
Constraint Model for the Satellite Image Mosaic Selection Problem
COMBARRO SIMON, Manuel; TALBOT, Pierre; DANOY, Grégoire et al.
2023In Yap, Roland H. C. Yap (Ed.) 29th International Conference on Principles and Practice of Constraint Programming, CP 2023
Peer reviewed Dataset
 

Documents


Texte intégral
A_Constraint_Programming_Model_for_the_Satellite_Image_Selection_Problem.pdf
Postprint Auteur (4.88 MB) Licence Creative Commons - Attribution
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
constraint modeling; polygon covering; satellite imaging; set covering; constraint programming
Résumé :
[en] Satellite imagery solutions are widely used to study and monitor different regions of the Earth. However, a single satellite image can cover only a limited area. In cases where a larger area of interest is studied, several images must be stitched together to create a single larger image, called a mosaic, that can cover the area. Today, with the increasing number of satellite images available for commercial use, selecting the images to build the mosaic is challenging, especially when the user wants to optimize one or more parameters, such as the total cost and the cloud coverage percentage in the mosaic. More precisely, for this problem the input is an area of interest, several satellite images intersecting the area, a list of requirements relative to the image and the mosaic, such as cloud coverage percentage, image resolution, and a list of objectives to optimize. We contribute to the constraint and mixed integer lineal programming formulation of this new problem, which we call the satellite image mosaic selection problem, which is a multi-objective extension of the polygon cover problem. We propose a dataset of realistic and challenging instances, where the images were captured by the satellite constellations SPOT, Pléiades and Pléiades Neo. We evaluate and compare the two proposed models and show their efficiency for large instances, up to 200 images.
Centre de recherche :
ULHPC - University of Luxembourg: High Performance Computing
Disciplines :
Sciences informatiques
Auteur, co-auteur :
COMBARRO SIMON, Manuel  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > PCOG
TALBOT, Pierre  ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Computer Science (DCS) ; Interdisciplinary Centre for Security, Reliability and Trust (SnT), Luxembourg
DANOY, Grégoire  ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Computer Science (DCS)
Musial, Jedrzej;  Poznan University of Technology, Poland
ALSWAITTI, Mohammed  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > PCOG ; Interdisciplinary Centre for Security, Reliability and Trust (SnT), Luxembourg
BOUVRY, Pascal ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Computer Science (DCS) ; Interdisciplinary Centre for Security, Reliability and Trust (SnT), Luxembourg
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Constraint Model for the Satellite Image Mosaic Selection Problem
Date de publication/diffusion :
septembre 2023
Nom de la manifestation :
The 29th International Conference on Principles and Practice of Constraint Programming
Lieu de la manifestation :
Toronto, Can
Date de la manifestation :
27-08-2023 => 31-08-2023
Manifestation à portée :
International
Titre de l'ouvrage principal :
29th International Conference on Principles and Practice of Constraint Programming, CP 2023
Editeur scientifique :
Yap, Roland H. C. Yap
Maison d'édition :
Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing
ISBN/EAN :
978-3-9597730-0-3
Peer reviewed :
Peer reviewed
Focus Area :
Computational Sciences
Objectif de développement durable (ODD) :
9. Industrie, innovation et infrastructure
Projet FnR :
FNR16101289 - A Concurrent Model Of Computation For Trustworthy Gpu Programming, 2021 (01/01/2022-31/12/2024) - Pascal Bouvry
FNR17395419 - Space Data Brokering Optimization System, 2022 (01/01/2023-31/12/2025) - Pascal Bouvry
FNR17043604 - A Satellite Data Marketplace Model With Data Lake Storage, 2022 (01/03/2022-31/10/2025) - Manuel Combarro Simon
Organisme subsidiant :
FNR - Fonds National de la Recherche
N° du Fonds :
17043604; C21/IS/16101289; C22/IS/17395419
Subventionnement (détails) :
Pierre Talbot: This work is supported by the FNR – COMOC Project, ref. C21/IS/16101289. Jedrzej Musial: This work is funded by the FNR – PolLux program under the SERENITY Project, ref. C22/IS/17395419. Funding Manuel Combarro Simón: This work is partially funded by the Luxembourg National Research Fund (FNR) – ASTRAL Project, ref. 17043604, and by the joint research programme UL/SnT-ILNAS on Technical Standardization for Trustworthy ICT, Aerospace, and Construction.
Jeu de données :
Disponible sur ORBilu :
depuis le 27 octobre 2023

Statistiques


Nombre de vues
210 (dont 28 Unilu)
Nombre de téléchargements
103 (dont 7 Unilu)

citations Scopus®
 
2
citations Scopus®
sans auto-citations
1
citations OpenAlex
 
2

Bibliographie


Publications similaires



Contacter ORBilu