adverse drug reaction; epilepsy; genome wide association study; polygenic risk score; retina; Neuroscience (all); General Neuroscience
Abstract :
[en] [en] BACKGROUND: The anti-seizure medication vigabatrin (VGB) is effective for controlling seizures, especially infantile spasms. However, use is limited by VGB-associated visual field loss (VAVFL). The mechanisms by which VGB causes VAVFL remains unknown. Average peripapillary retinal nerve fibre layer (ppRNFL) thickness correlates with the degree of visual field loss (measured by mean radial degrees). Duration of VGB exposure, maximum daily VGB dose, and male sex are associated with ppRNFL thinning. Here we test the hypothesis that common genetic variation is a predictor of ppRNFL thinning in VGB exposed individuals. Identifying pharmacogenomic predictors of ppRNFL thinning in VGB exposed individuals could potentially enable safe prescribing of VGB and broader use of a highly effective drug.
METHODS: Optical coherence topography (OCT) and GWAS data were processed from VGB-exposed individuals (n = 71) recruited through the EpiPGX Consortium. We conducted quantitative GWAS analyses for the following OCT measurements: (1) average ppRNFL, (2) inferior quadrant, (3) nasal quadrant, (4) superior quadrant, (5) temporal quadrant, (6) inferior nasal sector, (7) nasal inferior sector, (8) superior nasal sector, and (9) nasal superior sector. Using the summary statistics from the GWAS analyses we conducted gene-based testing using VEGAS2. We conducted nine different PRS analyses using the OCT measurements. To determine if VGB-exposed individuals were predisposed to having a thinner RNFL, we calculated their polygenic burden for retinal thickness. PRS alleles for retinal thickness were calculated using published summary statistics from a large-scale GWAS of inner retinal morphology using the OCT images of UK Biobank participants.
RESULTS: The GWAS analyses did not identify a significant association after correction for multiple testing. Similarly, the gene-based and PRS analyses did not reveal a significant association that survived multiple testing.
CONCLUSION: We set out to identify common genetic predictors for VGB induced ppRNFL thinning. Results suggest that large-effect common genetic predictors are unlikely to exist for ppRNFL thinning (as a marker of VAVFL). Sample size was a limitation of this study. However, further recruitment is a challenge as VGB is rarely used today because of this adverse reaction. Rare variants may be predictors of this adverse drug reaction and were not studied here.
Research center :
Luxembourg Centre for Systems Biomedicine (LCSB): Bioinformatics Core (R. Schneider Group)
Disciplines :
Genetics & genetic processes
Author, co-author :
Boothman, Isabelle; School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland ; The SFI Futureneuro Research Centre, Royal College of Surgeons in Ireland, Dublin, Ireland ; The SFI Centre for Research Training in Genomics Data Science, Galway, Ireland
Clayton, Lisa M; Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom ; Chalfont Centre for Epilepsy, Bucks, United Kingdom
McCormack, Mark; School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
Driscoll, Alexandra McKibben; School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
Stevelink, Remi; Department of Genetics, University Medical Center Utrecht, Utrecht, Netherlands
Moloney, Patrick; School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
KRAUSE, Roland ; University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Bioinformatics Core
Kunz, Wolfram S; Division of Neurochemistry, Department of Epileptology, University Bonn Medical Center, Bonn, Germany
Peter, Sarah; Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
O'Brien, Terence J; Departments of Neuroscience and Neurology, Central Clinical School, The Alfred Hospital, Monash University, Melbourne, VIC, Australia
Sills, Graeme J; School of Life Sciences, University of Glasgow, Glasgow, United Kingdom
de Haan, Gerrit-Jan; Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, Netherlands
Zara, Federico; "IRCCS"G. Gaslini" Institute, Genova, Italy ; Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genova, Italy
Koeleman, Bobby P; Department of Genetics, University Medical Center Utrecht, Utrecht, Netherlands
Depondt, Chantal; Department of Neurology, Hôpital Erasme, Hôpital Universitaire de Bruxelles, Université Libre de Bruxelles, Brussels, Belgium
Marson, Anthony G; Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, United Kingdom
Craig, John; Department of Neurology, Royal Victoria Hospital, Belfast Health and Social Care Trust, Belfast, United Kingdom
Johnson, Michael R; Division of Brain Sciences, Imperial College Faculty of Medicine, London, United Kingdom
Striano, Pasquale; "IRCCS"G. Gaslini" Institute, Genova, Italy ; Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genova, Italy
Lerche, Holger; Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
Furney, Simon J; Genomic Oncology Research Group, Deptartment of Physiology and Medical Physics, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
Delanty, Norman; School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
Consortium EpiPGX
Sisodiya, Sanjay M; Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom ; Chalfont Centre for Epilepsy, Bucks, United Kingdom
Cavalleri, Gianpiero L; School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland ; The SFI Futureneuro Research Centre, Royal College of Surgeons in Ireland, Dublin, Ireland ; The SFI Centre for Research Training in Genomics Data Science, Galway, Ireland
FP7 - 279062 - EPIPGX - Epilepsy Pharmacogenomics: delivering biomarkers for clinical use
Funders :
Union Européenne
Funding text :
This work was supported by a grant from the European Commission (7th Framework Programme Grant 279062, EpiPGX) and in part by a research grant from Science Foundation Ireland (SFI) under grant numbers 16/RC/3948 and co-funded under the European Regional Development Fund and by FutureNeuro industry partners and by Science Foundation Ireland through the SFI Centre for Research Training in Genomics Data Science under grant number 18/CRT/6214. Research supported by PNRR-MUR-M4C2 PE0000006 Research Program “MNESYS”—A multiscale integrated approach to the study of the nervous system in health and disease. IRCCS ‘G. Gaslini’ is a member of ERN-Epicare. This work was also supported by the Epilepsy Society, United Kingdom.
Alfano G. Kruczek P. M. Shah A. Z. Kramarz B. Jeffery G. Zelhof A. C. et al. (2016). EYS is a protein associated with the ciliary Axoneme in rods and cones. PLoS One 11:e0166397. doi: 10.1371/journal.pone.0166397, PMID: 27846257
Ben-Menachem E. (2011). Mechanism of action of vigabatrin: correcting misperceptions. Acta Neurol. Scand. Suppl. 124, 5–15. doi: 10.1111/j.1600-0404.2011.01596.x, PMID: 22061176
Biswas A. Yossofzai O. Vincent A. Go C. Widjaja E. (2020). Vigabatrin-related adverse events for the treatment of epileptic spasms: systematic review and meta-analysis. Expert. Rev. Neurother. 20, 1315–1324. doi: 10.1080/14737175.2020.1840356, PMID: 33078964
Bresnahan R. Gianatsi M. Maguire M. J. Tudur Smith C. Marson A. G. (2020). Vigabatrin add-on therapy for drug-resistant focal epilepsy. Cochrane Database Syst. Rev. 7:CD007302. doi: 10.1002/14651858.CD007302.pub3
Cao D. Liu X. Guo X. Cong Y. Huang J. Mao Z. (2009). Investigation of the association between CALCRL polymorphisms and primary angle closure glaucoma. Mol. Vis. 15, 2202–2208. PMID: 19898635
Chan K. Hoon M. Pattnaik B. R. Ver Hoeve J. N. Wahlgren B. Gloe S. et al. (2020). Vigabatrin-induced retinal functional alterations and second-order neuron plasticity in C57BL/6J mice. Invest. Ophthalmol. Vis. Sci. 61:17. doi: 10.1167/iovs.61.2.17, PMID: 32053727
Chiron C. (2016). Stiripentol and vigabatrin current roles in the treatment of epilepsy. Expert. Opin. Pharmacother. 17, 1091–1101. doi: 10.1517/14656566.2016.1161026, PMID: 26933940
Chiron C. Dumas C. Jambaqué I. Mumford J. Dulac O. (1997). Randomized trial comparing vigabatrin and hydrocortisone in infantile spasms due to tuberous sclerosis. Epilepsy Res. 26, 389–395. doi: 10.1016/S0920-1211(96)01006-6, PMID: 9095401
Choi S. W. O'reilly P. F. (2019). PRSice-2: polygenic risk score software for biobank-scale data. Gigascience 8:giz082. doi: 10.1093/gigascience/giz082, PMID: 31307061
Clayton L. M. Devile M. Punte T. De Haan G. J. Sander J. W. Acheson J. F. et al. (2012). Patterns of peripapillary retinal nerve fiber layer thinning in vigabatrin-exposed individuals. Ophthalmology 119, 2152–2160. doi: 10.1016/j.ophtha.2012.05.009, PMID: 22853973
Clayton L. M. Dévilé M. Punte T. Kallis C. De Haan G. J. Sander J. W. et al. (2011). Retinal nerve fiber layer thickness in vigabatrin-exposed patients. Ann. Neurol. 69, 845–854. doi: 10.1002/ana.22266, PMID: 21246602
Clayton L. M. Stern W. M. Newman W. D. Sander J. W. Acheson J. Sisodiya S. M. (2013). Evolution of visual field loss over ten years in individuals taking vigabatrin. Epilepsy Res. 105, 262–271. doi: 10.1016/j.eplepsyres.2013.02.014, PMID: 23541931
Currant H. Hysi P. Fitzgerald T. W. Gharahkhani P. Bonnemaijer P. W. M. Senabouth A. et al. (2021). Genetic variation affects morphological retinal phenotypes extracted from UK biobank optical coherence tomography images. PLoS Genet. 17:e1009497. doi: 10.1371/journal.pgen.1009497, PMID: 33979322
Davies J. A. (1995). Mechanisms of action of antiepileptic drugs. Seizure 4, 267–271. doi: 10.1016/S1059-1311(95)80003-4
Duboc A. Hanoteau N. Simonutti M. Rudolf G. Nehlig A. Sahel J. A. et al. (2004). Vigabatrin, the GABA-transaminase inhibitor, damages cone photoreceptors in rats. Ann. Neurol. 55, 695–705. doi: 10.1002/ana.20081, PMID: 15122710
Eke T. Talbot J. F. Lawden M. C. (1997). Severe persistent visual field constriction associated with vigabatrin. BMJ 314, 180–181. doi: 10.1136/bmj.314.7075.180, PMID: 9022432
EMA (2018). Kigabeq (vigabatrin) an overview of Kigabeq and why it is authorised in the EU. Available at: https://www.ema.europa.eu/en/documents/overview/kigabeq-epar-medicine-overview_en.pdf
Fahnehjelm K. T. Fischler B. Martin L. Nemeth A. (2011). Occurrence and pattern of ocular disease in children with cholestatic disorders. Acta Ophthalmol. 89, 143–150. doi: 10.1111/j.1755-3768.2009.01671.x, PMID: 20384607
FDA (2020). Sabril, full prescribing information. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/020427s021,022006s023lbl.pdf
Hancock E. Osborne J. P. (1999). Vigabatrin in the treatment of infantile spasms in tuberous sclerosis: literature review. J. Child Neurol. 14, 71–74. doi: 10.1177/088307389901400201, PMID: 10073425
Heim M. K. Gidal B. E. (2012). Vigabatrin-associated retinal damage – potential biochemical mechanisms. Acta Neurol. Scand. 126, 219–228. doi: 10.1111/j.1600-0404.2012.01684.x, PMID: 22632110
Hisama F. M. Mattson R. H. Lee H. H. Felice K. Petroff O. A. C. (2001). GABA and the ornithineδ-aminotransferase gene in vigabatrin-associated visual field defects. Seizure 10, 505–507. doi: 10.1053/seiz.2001.0524, PMID: 11749107
Ho L. T. Y. Osterwald A. Ruf I. Hunziker D. Mattei P. Challa P. et al. (2020). Role of the autotaxin-lysophosphatidic acid axis in glaucoma, aqueous humor drainage and fibrogenic activity. Biochim. Biophys. Acta Mol. Basis Dis. 1866:165560. doi: 10.1016/j.bbadis.2019.165560, PMID: 31648019
Honjo M. Igarashi N. Kurano M. Yatomi Y. Igarashi K. Kano K. et al. (2018). Autotaxin-lysophosphatidic acid pathway in intraocular pressure regulation and Glaucoma subtypes. Invest. Ophthalmol. Vis. Sci. 59, 693–701. doi: 10.1167/iovs.17-23218, PMID: 29392315
Jacob J. N. Hesse G. W. Shashoua V. E. (1990). Synthesis, brain uptake, and pharmacological properties of a glyceryl lipid containing GABA and the GABA-T inhibitor gamma-vinyl-GABA. J. Med. Chem. 33, 733–736. doi: 10.1021/jm00164a042, PMID: 2299639
Jammoul F. Dégardin J. Pain D. Gondouin P. Simonutti M. Dubus E. et al. (2010). Taurine deficiency damages photoreceptors and retinal ganglion cells in vigabatrin-treated neonatal rats. Mol. Cell. Neurosci. 43, 414–421. doi: 10.1016/j.mcn.2010.01.008, PMID: 20132888
Kinirons P. Cavalleri G. L. Singh R. Shahwan A. Acheson J. F. Wood N. W. et al. (2006). A pharmacogenetic exploration of vigabatrin-induced visual field constriction. Epilepsy Res. 70, 144–152. doi: 10.1016/j.eplepsyres.2006.03.012, PMID: 16675198
Kjellström U. Andréasson S. Ponjavic V. (2014). Attenuation of the retinal nerve fibre layer and reduced retinal function assessed by optical coherence tomography and full-field electroretinography in patients exposed to vigabatrin medication. Acta Ophthalmol. 92, 149–157. doi: 10.1111/aos.12030, PMID: 23387307
Kobayashi K. Sinasac D. S. Iijima M. Boright A. P. Begum L. Lee J. R. et al. (1999). The gene mutated in adult-onset type II citrullinaemia encodes a putative mitochondrial carrier protein. Nat. Genet. 22, 159–163. doi: 10.1038/9667, PMID: 10369257
Koike S. Keino-Masu K. Ohto T. Sugiyama F. Takahashi S. Masu M. (2009). Autotaxin/Lysophospholipase D-mediated lysophosphatidic acid signaling is required to form distinctive large lysosomes in the visceral endoderm cells of the mouse yolk sac*. J. Biol. Chem. 284, 33561–33570. doi: 10.1074/jbc.M109.012716, PMID: 19808661
Lawden M. C. Eke T. Degg C. Harding G. F. Wild J. M. (1999). Visual field defects associated with vigabatrin therapy. J. Neurol. Neurosurg. Psychiatry 67, 716–722. doi: 10.1136/jnnp.67.6.716, PMID: 10567485
Lawthom C. Smith P. E. M. Wild J. M. (2009). Nasal retinal nerve Fiber layer attenuation: a biomarker for Vigabatrin toxicity. Ophthalmology 116, 565–571. doi: 10.1016/j.ophtha.2008.09.047, PMID: 19168223
Liu J. Z. Mcrae A. F. Nyholt D. R. Medland S. E. Wray N. R. Brown K. M. et al. (2010). A versatile gene-based test for genome-wide association studies. Am. J. Hum. Genet. 87, 139–145. doi: 10.1016/j.ajhg.2010.06.009, PMID: 20598278
Maguire M. J. A. H. K. A. W. J. M. A. H. J. L. A. M. A. G. (2010). Prevalence of visual field loss following exposure to vigabatrin therapy: a systematic review. Epilepsia 51, 2423–2431. doi: 10.1111/j.1528-1167.2010.02772.x, PMID: 21070215
Marchini J. Howie B. Myers S. Mcvean G. Donnelly P. (2007). A new multipoint method for genome-wide association studies by imputation of genotypes. Nat. Genet. 39, 906–913. doi: 10.1038/ng2088, PMID: 17572673
Marino R. Jr. Rasmussen T. (1968). Visual field changes after temporal lobectomy in man. Neurology 18, 825–835. doi: 10.1212/WNL.18.9.825, PMID: 5693676
Mccormack M. Gui H. Ingason A. Speed D. Wright G. E. B. Zhang E. J. et al. (2018). Genetic variation in CFH predicts phenytoin-induced maculopapular exanthema in European-descent patients. Neurology 90, e332–e341. doi: 10.1212/WNL.0000000000004853, PMID: 29288229
Mcguigan D. B. Heon E. Cideciyan A. V. Ratnapriya R. Lu M. Sumaroka A. et al. (2017). EYS mutations causing autosomal recessive retinitis Pigmentosa: changes of retinal structure and function with disease progression. Genes 8:178. doi: 10.3390/genes8070178
Messchaert M. Haer-Wigman L. Khan M. I. Cremers F. P. M. Collin R. W. J. (2018). EYS mutation update: in silico assessment of 271 reported and 26 novel variants in patients with retinitis pigmentosa. Hum. Mutat. 39, 177–186. doi: 10.1002/humu.23371, PMID: 29159838
Messer R. Knupp K. G. (2020). Infantile spasms: opportunities to improve care. Semin. Neurol. 40, 236–245. doi: 10.1055/s-0040-1705121, PMID: 32143232
Mishra A. Macgregor S. (2015). VEGAS2: software for more flexible gene-based testing. Twin Res. Hum. Genet. 18, 86–91. doi: 10.1017/thg.2014.79, PMID: 25518859
Moseng L. Sæter M. Mørch-Johnsen G. H. Hoff J. M. Gajda A. Brodtkorb E. et al. (2011). Retinal nerve fibre layer attenuation: clinical indicator for vigabatrin toxicity. Acta Ophthalmol. 89, 452–458. doi: 10.1111/j.1755-3768.2010.02077.x, PMID: 21251242
Nguyen M.-H. T. Nguyen A.-H. P. Ngo D.-N. Nguyen P.-M. T. Tang H.-S. Giang H. et al. (2023). The mutation spectrum of SLC25A13 gene in citrin deficiency: identification of novel mutations in Vietnamese pediatric cohort with neonatal intrahepatic cholestasis. J. Hum. Genet. 68, 305–312. doi: 10.1038/s10038-022-01112-2, PMID: 36599957
Nousiainen I. Mantyjarvi M. Kalviainen R. (2001). No reversion in vigabatrin-associated visual field defects. Neurology 57, 1916–1917. doi: 10.1212/WNL.57.10.1916, PMID: 11723291
Paul S. R. Krauss G. L. Miller N. R. Medura M. T. Miller T. A. Johnson M. A. (2001). Visual function is stable in patients who continue long-term vigabatrin therapy: implications for clinical decision making. Epilepsia 42, 525–530. doi: 10.1046/j.1528-1157.2001.49299.x, PMID: 11440348
Perrakis A. Moolenaar W. H. (2014). Autotaxin: structure-function and signaling. J. Lipid Res. 55, 1010–1018. doi: 10.1194/jlr.R046391, PMID: 24548887
Purcell S. Neale B. Todd-Brown K. Thomas L. Ferreira M. A. Bender D. et al. (2007). PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575. doi: 10.1086/519795, PMID: 17701901
R Core Team (2022). R: A language and Environment for statistical computing R foundation for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Available at: https://www.R-project.org
Russell-Eggitt I. M. Mackey D. A. Taylor D. S. I. Timms C. Walker J. W. (2000). Vigabatrin-associated visual field defects in children. Eye 14, 334–339. doi: 10.1038/eye.2000.83, PMID: 11026995
Schubert-Bast S. Strzelczyk A. (2021). Review of the treatment options for epilepsy in tuberous sclerosis complex: towards precision medicine. Ther. Adv. Neurol. Disord. 14:17562864211031100. doi: 10.1177/17562864211031100
Suvannaboon R. Pawestri A. R. Jinda W. Tuekprakhon A. Trinavarat A. Atchaneeyasakul L.-O. (2022). Genotypic and phenotypic profiles of EYS gene-related retinitis pigmentosa: a retrospective study. Sci. Rep. 12:21494. doi: 10.1038/s41598-022-26017-0, PMID: 36513702
Turner S. (2018). Qqman: an R package for visualizing GWAS results using Q-Q and Manhattan plots. J. Open Source Softw. 3:731. doi: 10.21105/joss.00731
Van Lanen R. Hoeberigs M. C. Bauer N. J. C. Haeren R. H. L. Hoogland G. Colon A. et al. (2018). Visual field deficits after epilepsy surgery: a new quantitative scoring method. Acta Neurochir. 160, 1325–1336. doi: 10.1007/s00701-018-3525-9, PMID: 29623432
Vigevano F. Cilio M. R. (1997). Vigabatrin versus ACTH as first-line treatment for infantile spasms: a randomized, prospective study. Epilepsia 38, 1270–1274. doi: 10.1111/j.1528-1157.1997.tb00063.x
Vogel K. R. Ainslie G. R. Schmidt M. A. Wisor J. P. Gibson K. M. (2017). mTOR inhibition mitigates molecular and biochemical alterations of Vigabatrin-induced visual field toxicity in mice. Pediatr. Neurol. 66, 44–52.e1. doi: 10.1016/j.pediatrneurol.2016.09.016, PMID: 27816307
Walters D. Vogel K. R. Brown M. Shi X. Roullet J. B. Gibson K. M. (2020). Transcriptome analysis in mice treated with vigabatrin identifies dysregulation of genes associated with retinal signaling circuitry. Epilepsy Res. 166:106395. doi: 10.1016/j.eplepsyres.2020.106395, PMID: 32679486
Wang Q. P. Jammoul F. Duboc A. Gong J. Simonutti M. Dubus E. et al. (2008). Treatment of epilepsy: the GABA-transaminase inhibitor, vigabatrin, induces neuronal plasticity in the mouse retina. Eur. J. Neurosci. 27, 2177–2187. doi: 10.1111/j.1460-9568.2008.06175.x, PMID: 18412635
Wickham H. (2016). G gplot2: Elegant graphics for data analysis, Springer-Verlag New York.
Wild J. M. Martinez C. Reinshagen G. Harding G. F. (1999). Characteristics of a unique visual field defect attributed to vigabatrin. Epilepsia 40, 1784–1794. doi: 10.1111/j.1528-1157.1999.tb01599.x, PMID: 10612345
Yang L. Fujinami K. Ueno S. Kuniyoshi K. Hayashi T. Kondo M. et al. (2020). Genetic Spectrum of EYS-associated retinal disease in a large Japanese cohort: identification of disease-associated variants with relatively high allele frequency. Sci. Rep. 10:5497. doi: 10.1038/s41598-020-62119-3, PMID: 32218477
Yee J. M. Agulian S. Kocsis J. D. (1998). Vigabatrin enhances promoted release of GABA in neonatal rat optic nerve. Epilepsy Res. 29, 195–200. doi: 10.1016/S0920-1211(97)00086-7, PMID: 9551781