Alet, F., Weng, E., Lozano-Pérez, T., and Kaelbling, L. P. Neural relational inference with fast modular meta-learning. In Advances in Neural Information Processing Systems (NeurIPS), volume 32, pp. 11804-11815, 2019.
Ash, J. T., Zhang, C., Krishnamurthy, A., Langford, J., and Agarwal, A. Deep batch active learning by diverse, uncertain gradient lower bounds. In Proceedings of the 8th International Conference on Learning Representations (ICLR), 2020.
Barrett, A. B. Exploration of synergistic and redundant information sharing in static and dynamical gaussian systems. Physical Review E, 91(5):052802, 2015.
Belghazi, M. I., Baratin, A., Rajeshwar, S., Ozair, S., Bengio, Y., Courville, A., and Hjelm, D. Mutual information neural estimation. In Proceedings of the 35th International Conference on Machine Learning (ICML), pp. 531-540. PMLR, 2018.
Biase, F. H., Cao, X., and Zhong, S. Cell fate inclination within 2-cell and 4-cell mouse embryos revealed by single-cell RNA sequencing. Genome Research, 24(11): 1787-1796, 2014.
Brasó, G. and Leal-Taixé, L. Learning a neural solver for multiple object tracking. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6247-6257, 2020.
Cang, Z. and Nie, Q. Inferring spatial and signaling relationships between cells from single cell transcriptomic data. Nature Communications, 11(1):1-13, 2020.
Chan, T. E., Stumpf, M. P., and Babtie, A. C. Gene regulatory network inference from single-cell data using multivariate information measures. Cell Systems, 5(3): 251-267.e3, 2017.
Chen, S., Wang, J., and Li, G. Neural relational inference with efficient message passing mechanisms. In Proceedings of the 35th AAAI Conference on Artificial Intelligence (AAAI), pp. 7055-7063, 2021.
Cowen-Rivers, A., Lyu, W., Tutunov, R., Wang, Z., Grosnit, A., Griffiths, R.-R., Maravel, A., Hao, J., Wang, J., Peters, J., and Bou Ammar, H. Hebo: Pushing the limits of sample-efficient hyperparameter optimisation. Journal of Artificial Intelligence Research, 74, 07 2022.
Eriksson, D., Pearce, M., Gardner, J., Turner, R. D., and Poloczek, M. Scalable global optimization via local Bayesian optimization. In Advances in Neural Information Processing Systems (NeurIPS), volume 32, 2019.
Gal, Y., Islam, R., and Ghahramani, Z. Deep bayesian active learning with image data. In Proceedings of the 34th International Conference on Machine Learning (ICML), pp. 1183-1192. PMLR, 2017.
Gentile, C., Wang, Z., and Zhang, T. Achieving minimax rates in pool-based batch active learning. In Proceedings of the 39th International Conference on Machine Learning (ICML), pp. 7339-7367. PMLR, 2022.
Graber, C. and Schwing, A. G. Dynamic neural relational inference for forecasting trajectories. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, pp. 4383-4392, 2020.
Ha, S. and Jeong, H. Unraveling hidden interactions in complex systems with deep learning. Scientific Reports, 11(1):1-13, 2021.
Hjelm, R. D., Fedorov, A., Lavoie-Marchildon, S., Grewal, K., Bachman, P., Trischler, A., and Bengio, Y. Learning deep representations by mutual information estimation and maximization. In Proceddings of the 7th International Conference on Learning Representations (ICLR), 2019.
Hossain, H. M. S. and Roy, N. Active deep learning for activity recognition with context aware annotator selection. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (KDD), pp. 1862-1870. ACM, 2019.
Irwin, M. and Wang, Z. Dynamic Systems Modeling, pp. 1-12. John Wiley & Sons, Ltd, 2017.
Ivanovic, B. and Pavone, M. The Trajectron: Probabilistic multi-agent trajectory modeling with dynamic spatiotemporal graphs. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 2375-2384, 2019.
Jang, E., Gu, S., and Poole, B. Categorical reparameterization with gumbel-softmax. In Proceedings of the 5th International Conference on Learning Representations (ICLR), 2017.
Johnson, D. D. Learning graphical state transitions. In Proceedings of the 5th International Conference on Learning Representations (ICLR), 2017.
Jozefczuk, S., Klie, S., Catchpole, G., Szymanski, J., Cuadros-Inostroza, A., Steinhauser, D., Selbig, J., and Willmitzer, L. Metabolomic and transcriptomic stress response of Escherichia coli. Molecular Systems Biology, 6(1):364, 2010.
Katok, A. and Hasselblatt, B. Introduction to the Modern Theory of Dynamical Systems. Encyclopedia of Mathematics and its Applications. Cambridge University Press, 1995.
Khanna, S. and Tan, V. Y. F. Economy statistical recurrent units for inferring nonlinear granger causality. In Proceedings of the 8th International Conference on Learning Representations (ICLR), 2020.
Kipf, T., Fetaya, E., Wang, K.-C., Welling, M., and Zemel, R. Neural relational inference for interacting systems. In Proceedings of the 35th International Conference on Machine Learning (ICML), pp. 2688-2697. PMLR, 2018.
Kirsch, A., van Amersfoort, J., and Gal, Y. BatchBALD: Efficient and diverse batch acquisition for deep bayesian active learning. In Advances in Neural Information Processing Systems (NeurIPS), volume 32, pp. 7024-7035, 2019.
Konyushkova, K., Sznitman, R., and Fua, P. Learning active learning from data. In Advances in Neural Information Processing Systems (NIPS), volume 30, pp. 4225-4235, 2017.
Kraskov, A., Stögbauer, H., and Grassberger, P. Estimating mutual information. Physical Review E, 69:066138, 2004.
Kwapień, J. and Drozdz, S. Physical approach to complex systems. Physics Reports, 515(3-4):115-226, 2012.
Li, J., Ma, H., Zhang, Z., Li, J., and Tomizuka, M. Spatiotemporal graph dual-attention network for multi-agent prediction and tracking. IEEE Transactions on Intelligent Transportation Systems, 23(8):10556-10569, 2022.
Li, Y., Vinyals, O., Dyer, C., Pascanu, R., and Battaglia, P. W. Learning deep generative models of graphs. arXiv preprint arXiv:1803.03324, 2018.
Lizier, J. T., Flecker, B., and Williams, P. L. Towards a synergy-based approach to measuring information modification. In Proceedings of the 2013 IEEE Symposium on Artificial Life (ALife), pp. 43-51. IEEE, 2013.
Löwe, S., Madras, D., Shilling, R. Z., and Welling, M. Amortized causal discovery: Learning to infer causal graphs from time-series data. In Proceedings of the 1st Conference on Causal Learning and Reasoning (CLeaR), pp. 509-525. PMLR, 2022.
Makkeh, A., Theis, D. O., and Vicente, R. Broja-2pid: A robust estimator for bivariate partial information decomposition. Entropy, 20(4):271, 2018.
Marbach, D., Costello, J. C., Küffner, R., Vega, N. M., Prill, R. J., Camacho, D. M., Allison, K. R., Kellis, M., Collins, J. J., and Stolovitzky, G. Wisdom of crowds for robust gene network inference. Nature Methods, 9(8):796-804, 2012.
Matsumoto, H., Kiryu, H., Furusawa, C., Ko, M. S., Ko, S. B., Gouda, N., Hayashi, T., and Nikaido, I. SCODE: an efficient regulatory network inference algorithm from single-cell RNA-Seq during differentiation. Bioinformatics, 33(15):2314-2321, 2017.
McGill, W. Multivariate information transmission. Transactions of the IRE Professional Group on Information Theory, 4(4):93-111, 1954.
Pakman, A., Nejatbakhsh, A., Gilboa, D., Makkeh, A., Mazzucato, L., Wibral, M., and Schneidman, E. Estimating the unique information of continuous variables. In Advances in Neural Information Processing Systems (NeurIPS), volume 34, 2021.
Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., and Chintala, S. PyTorch: An imperative style, high-performance deep learning library. In Advances in Neural Information Processing Systems (NeurIPS), volume 33, pp. 8024-8035, 2019.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12:2825-2830, 2011.
Pop, R. and Fulop, P. Deep ensemble bayesian active learning: Addressing the mode collapse issue in monte carlo dropout via ensembles. arXiv preprint arXiv:1811.03897, 2018.
Pratapa, A., Jalihal, A. P., Law, J. N., Bharadwaj, A., and Murali, T. Benchmarking algorithms for gene regulatory network inference from single-cell transcriptomic data. Nature Methods, 17(2):147-154, 2020.
Ren, P., Xiao, Y., Chang, X., Huang, P., Li, Z., Gupta, B. B., Chen, X., and Wang, X. A survey of deep active learning. ACM Computing Surveys, 54(9):1-40, 2022.
Schroff, F., Kalenichenko, D., and Philbin, J. FaceNet: A unified embedding for face recognition and clustering. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 815-823, 2015.
Schultz, M. and Joachims, T. Learning a distance metric from relative comparisons. In Advances in Neural Information Processing Systems (NIPS), volume 16, pp. 41-48. MIT Press, 2003.
Settles, B. Active learning literature survey. Technical report, University of Wisconsin-Madison, 2009.
Shi, W. and Yu, Q. Integrating bayesian and discriminative sparse kernel machines for multi-class active learning. In Advances in Neural Information Processing Systems (NeurIPS), volume 32, pp. 2282-2291, 2019.
Siméoni, O., Budnik, M., Avrithis, Y., and Gravier, G. Rethinking deep active learning: Using unlabeled data at model training. In Proceedings of the 25th International Conference on Pattern Recognition (ICPR), pp. 1220-1227. IEEE, 2020.
Székely, G. J. and Rizzo, M. L. Brownian distance covariance. The Annals of Applied Statistics, 3(4):1236-1265, 2009.
Székely, G. J. and Rizzo, M. L. On the uniqueness of distance covariance. Statistics & Probability Letters, 82 (12):2278-2282, 2012.
Székely, G. J. and Rizzo, M. L. Partial distance correlation with methods for dissimilarities. The Annals of Statistics, 42(6):2382-2412, 2014.
Székely, G. J., Rizzo, M. L., and Bakirov, N. K. Measuring and testing dependence by correlation of distances. The Annals of Statistics, 35(6):2769-2794, 2007.
Tank, A., Covert, I., Foti, N., Shojaie, A., and Fox, E. B. Neural granger causality. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(8):4267-4279, 2021.
Tran, T., Do, T., Reid, I. D., and Carneiro, G. Bayesian generative active deep learning. In Proceedings of the 36th International Conference on Machine Learning (ICML), pp. 6295-6304. PMLR, 2019.
Tsubaki, M., Tomii, K., and Sese, J. Compound-protein interaction prediction with end-to-end learning of neural networks for graphs and sequences. Bioinformatics, 35 (2):309-318, 2019.
Wang, A. and Pang, J. Iterative structural inference of directed graphs. In Advances in Neural Information Processing Systems (NeurIPS), volume 35, 2022.
Wang, K., Zhang, D., Li, Y., Zhang, R., and Lin, L. Cost-effective active learning for deep image classification. IEEE Transactions on Circuits and Systems for Video Technology, 27(12):2591-2600, 2016.
Webb, E., Day, B., Andres-Terre, H., and Lió, P. Factorised neural relational inference for multi-interaction systems. arXiv preprints arXiv:1905.08721, 2019.
Williams, P. L. and Beer, R. D. Nonnegative decomposition of multivariate information. arXiv preprint arXiv:1004.2515, 2010.
Wu, T., Breuel, T., Skuhersky, M., and Kautz, J. Discovering nonlinear relations with minimum predictive information regularization. arXiv preprint arXiv:2001.01885, 2020.
Zhdanov, F. Diverse mini-batch active learning. arXiv preprint arXiv:1901.05954, 2019.
Zhen, X., Meng, Z., Chakraborty, R., and Singh, V. On the versatile uses of partial distance correlation in deep learning. arXiv preprint arXiv:2207.09684, 2022.