Article (Périodiques scientifiques)
Statistical inference on representational geometries.
SCHÜTT, Heiko; Kipnis, Alexander D; Diedrichsen, Jörn et al.
2023In eLife, 12
Peer reviewed vérifié par ORBi
 

Documents


Texte intégral
Schütt et al. - 2023 - Statistical inference on representational geometri.pdf
Postprint Éditeur (2.58 MB) Licence Creative Commons - Attribution
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
human; mouse; neuroscience; representational similarity analysis; statistical inference; toolbox; Calcium, Dietary; Humans; Generalization, Psychological; Neural Networks, Computer; Big Data; Neurosciences; Neuroscience (all); Biochemistry, Genetics and Molecular Biology (all); Immunology and Microbiology (all); General Immunology and Microbiology; General Biochemistry, Genetics and Molecular Biology; General Medicine; General Neuroscience
Résumé :
[en] Neuroscience has recently made much progress, expanding the complexity of both neural activity measurements and brain-computational models. However, we lack robust methods for connecting theory and experiment by evaluating our new big models with our new big data. Here, we introduce new inference methods enabling researchers to evaluate and compare models based on the accuracy of their predictions of representational geometries: A good model should accurately predict the distances among the neural population representations (e.g. of a set of stimuli). Our inference methods combine novel 2-factor extensions of crossvalidation (to prevent overfitting to either subjects or conditions from inflating our estimates of model accuracy) and bootstrapping (to enable inferential model comparison with simultaneous generalization to both new subjects and new conditions). We validate the inference methods on data where the ground-truth model is known, by simulating data with deep neural networks and by resampling of calcium-imaging and functional MRI data. Results demonstrate that the methods are valid and conclusions generalize correctly. These data analysis methods are available in an open-source Python toolbox (rsatoolbox.readthedocs.io).
Disciplines :
Neurosciences & comportement
Auteur, co-auteur :
SCHÜTT, Heiko  ;  University of Luxembourg ; Zuckerman Institute, Columbia University, New York, United States
Kipnis, Alexander D;  Zuckerman Institute, Columbia University, New York, United States
Diedrichsen, Jörn ;  Western University, London, Canada
Kriegeskorte, Nikolaus ;  Zuckerman Institute, Columbia University, New York, United States
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Statistical inference on representational geometries.
Date de publication/diffusion :
23 août 2023
Titre du périodique :
eLife
eISSN :
2050-084X
Maison d'édition :
eLife Sciences Publications Ltd, England
Volume/Tome :
12
Peer reviewed :
Peer reviewed vérifié par ORBi
Organisme subsidiant :
Deutsche Forschungsgemeinschaft
N° du Fonds :
SCHU 3351/1-1
Disponible sur ORBilu :
depuis le 10 octobre 2023

Statistiques


Nombre de vues
295 (dont 26 Unilu)
Nombre de téléchargements
61 (dont 1 Unilu)

citations Scopus®
 
13
citations Scopus®
sans auto-citations
11
OpenCitations
 
0
citations OpenAlex
 
21

Bibliographie


Publications similaires



Contacter ORBilu