human; mouse; neuroscience; representational similarity analysis; statistical inference; toolbox; Calcium, Dietary; Humans; Generalization, Psychological; Neural Networks, Computer; Big Data; Neurosciences; Neuroscience (all); Biochemistry, Genetics and Molecular Biology (all); Immunology and Microbiology (all); General Immunology and Microbiology; General Biochemistry, Genetics and Molecular Biology; General Medicine; General Neuroscience
Résumé :
[en] Neuroscience has recently made much progress, expanding the complexity of both neural activity measurements and brain-computational models. However, we lack robust methods for connecting theory and experiment by evaluating our new big models with our new big data. Here, we introduce new inference methods enabling researchers to evaluate and compare models based on the accuracy of their predictions of representational geometries: A good model should accurately predict the distances among the neural population representations (e.g. of a set of stimuli). Our inference methods combine novel 2-factor extensions of crossvalidation (to prevent overfitting to either subjects or conditions from inflating our estimates of model accuracy) and bootstrapping (to enable inferential model comparison with simultaneous generalization to both new subjects and new conditions). We validate the inference methods on data where the ground-truth model is known, by simulating data with deep neural networks and by resampling of calcium-imaging and functional MRI data. Results demonstrate that the methods are valid and conclusions generalize correctly. These data analysis methods are available in an open-source Python toolbox (rsatoolbox.readthedocs.io).
Disciplines :
Neurosciences & comportement
Auteur, co-auteur :
SCHÜTT, Heiko ; University of Luxembourg ; Zuckerman Institute, Columbia University, New York, United States
Kipnis, Alexander D; Zuckerman Institute, Columbia University, New York, United States
Diedrichsen, Jörn ; Western University, London, Canada
Kriegeskorte, Nikolaus ; Zuckerman Institute, Columbia University, New York, United States
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Statistical inference on representational geometries.
Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, Corrado GS, Davis A, Dean J, Devin M, Ghemawat S, Goodfellow I, Harp A, Irving G, Isard M, Jia Y, Jozefowicz R, Kaiser L, Kudlur M, Levenberg J. 2015. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. arXiv. https://arxiv.org/abs/1603.04467
Abbott J, Ye T, Krenek K, Gertner RS, Ban S, Kim Y, Qin L, Wu W, Park H, Ham D. 2020. A nanoelectrode array for obtaining intracellular recordings from thousands of connected neurons. Nature Biomedical Engineering 4:232–241. DOI: https://doi.org/10.1038/s41551-019-0455-7, PMID: 31548592
Abraham A, Pedregosa F, Eickenberg M, Gervais P, Mueller A, Kossaifi J, Gramfort A, Thirion B, Varoquaux G. 2014. Machine learning for neuroimaging with scikit-learn. Frontiers in Neuroinformatics 8:14. DOI: https://doi. org/10.3389/fninf.2014.00014, PMID: 24600388
Ali A, Meilă M. 2012. Experiments with Kemeny ranking: What works when? Mathematical Social Sciences 64:28–40. DOI: https://doi.org/10.1016/j.mathsocsci.2011.08.008
Allefeld C, Görgen K, Haynes JD. 2016. Valid population inference for information-based imaging: From the second-level t-test to prevalence inference. NeuroImage 141:378–392. DOI: https://doi.org/10.1016/j. neuroimage.2016.07.040, PMID: 27450073
Allen EJ, St-Yves G, Wu Y, Breedlove JL, Dowdle LT, Caron B, Pestilli F, Charest I, Hutchinson JB, Naselaris T, Kay K. 2021. A Massive 7T fMRI Dataset to Bridge Cognitive and Computational Neuroscience. bioRxiv. DOI: https://doi.org/10.1101/2021.02.22.432340
Avants BB, Epstein CL, Grossman M, Gee JC. 2008. Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain. Medical Image Analysis 12:26–41. DOI: https://doi.org/10.1016/j.media.2007.06.004, PMID: 17659998
Averbeck BB, Latham PE, Pouget A. 2006. Neural correlations, population coding and computation. Nature Reviews. Neuroscience 7:358–366. DOI: https://doi.org/10.1038/nrn1888, PMID: 16760916
Baillet S. 2017. Magnetoencephalography for brain electrophysiology and imaging. Nature Neuroscience 20:327–339. DOI: https://doi.org/10.1038/nn.4504, PMID: 28230841
Bandettini PA, Huber L, Finn ES. 2021. Challenges and opportunities of mesoscopic brain mapping with fMRI. Current Opinion in Behavioral Sciences 40:189–200. DOI: https://doi.org/10.1016/j.cobeha.2021.06.002
Behzadi Y, Restom K, Liau J, Liu TT. 2007. A component based noise correction method (CompCor) for BOLD and perfusion based fMRI. NeuroImage 37:90–101. DOI: https://doi.org/10.1016/j.neuroimage.2007.04.042, PMID: 17560126
Bodurka J, Ye F, Petridou N, Murphy K, Bandettini PA. 2007. Mapping the MRI voxel volume in which thermal noise matches physiological noise—Implications for fMRI. NeuroImage 34:542–549. DOI: https://doi.org/10. 1016/j.neuroimage.2006.09.039
Cadena SA, Denfield GH, Walker EY, Gatys LA, Tolias AS, Bethge M, Ecker AS. 2019a. Deep convolutional models improve predictions of macaque V1 responses to natural images. PLOS Computational Biology 15:e1006897. DOI: https://doi.org/10.1371/journal.pcbi.1006897, PMID: 31013278
Cadena SA, Sinz FH, Muhammad T, Froudarakis E, Cobos E, Walker EY, Reimer J, Bethge M, Tolias AS, Ecker AS. 2019b. How well do deep neural networks trained on object recognition characterize the Mouse visual system?. Advances in Neural Information Processing Systems..
Cai MB, Schuck NW, Pillow JW, Niv Y. 2019. Representational structure or task structure? Bias in neural representational similarity analysis and a Bayesian method for reducing bias. PLOS Computational Biology 15:e1006299. DOI: https://doi.org/10.1371/journal.pcbi.1006299, PMID: 31125335
Carlin JD, Kriegeskorte N. 2017. Adjudicating between face-coding models with individual-face fMRI responses. PLOS Computational Biology 13:e1005604. DOI: https://doi.org/10.1371/journal.pcbi.1005604, PMID: 28746335
Chaimow D, Yacoub E, Uğurbil K, Shmuel A. 2018. Spatial specificity of the functional MRI blood oxygenation response relative to neuronal activity. NeuroImage 164:32–47. DOI: https://doi.org/10.1016/j.neuroimage. 2017.08.077, PMID: 28882632
Chung S, Lee DD, Sompolinsky H. 2018. Classification and geometry of general perceptual manifolds. Physical Review X 8:031003. DOI: https://doi.org/10.1103/PhysRevX.8.031003
Chung S, Abbott LF. 2021. Neural population geometry: An approach for understanding biological and artificial neural networks. Current Opinion in Neurobiology 70:137–144. DOI: https://doi.org/10.1016/j.conb.2021.10. 010
Cichy RM, Pantazis D, Oliva A. 2014. Resolving human object recognition in space and time. Nature Neuroscience 17:455–462. DOI: https://doi.org/10.1038/nn.3635, PMID: 24464044
Cichy RM, Khosla A, Pantazis D, Torralba A, Oliva A. 2016. Comparison of deep neural networks to spatio-temporal cortical dynamics of human visual object recognition reveals hierarchical correspondence. Scientific Reports 6:27755. DOI: https://doi.org/10.1038/srep27755, PMID: 27282108
Cichy RM, Roig G, Andonian A, Dwivedi K, Lahner B, Lascelles A, Mohsenzadeh Y, Ramakrishnan K, Oliva A. 2019. The Algonauts Project: A Platform for Communication between the Sciences of Biological and Artificial Intelligence. 2019 Conference on Cognitive Computational Neuroscience.. DOI: https://doi.org/10.32470/ CCN.2019.1018-0
Cichy RM, Dwivedi K, Lahner B, Lascelles A, Iamshchinina P, Graumann M, Andonian A, Murty NAR, Kay K, Roig G, Oliva A. 2021. The Algonauts Project 2021 Challenge: How the Human Brain Makes Sense of a World in Motion. arXiv. https://arxiv.org/abs/2104.13714 DOI: https://doi.org/10.48550/ARXIV.2104.13714
Connolly AC, Guntupalli JS, Gors J, Hanke M, Halchenko YO, Wu YC, Abdi H, Haxby JV. 2012. The representation of biological classes in the human brain. The Journal of Neuroscience 32:2608–2618. DOI: https://doi.org/10.1523/JNEUROSCI.5547-11.2012, PMID: 22357845
Cox RW, Hyde JS. 1997. Software tools for analysis and visualization of fMRI data. NMR in Biomedicine 10:171– 178. DOI: https://doi.org/10.1002/(sici)1099-1492(199706/08)10:4/5<171::aid-nbm453>3.0.co;2-l, PMID: 9430344
Craik A, He Y, Contreras-Vidal JL. 2019. Deep learning for electroencephalogram (EEG) classification tasks: A review. Journal of Neural Engineering 16:031001. DOI: https://doi.org/10.1088/1741-2552/ab0ab5, PMID: 30808014
de Vries SEJ, Lecoq JA, Buice MA, Groblewski PA, Ocker GK, Oliver M, Feng D, Cain N, Ledochowitsch P, Millman D, Roll K, Garrett M, Keenan T, Kuan L, Mihalas S, Olsen S, Thompson C, Wakeman W, Waters J, Williams D, et al. 2020. A large-scale standardized physiological survey reveals functional organization of the mouse visual cortex. Nature Neuroscience 23:138–151. DOI: https://doi.org/10.1038/s41593-019-0550-9, PMID: 31844315
Diedrichsen J, Kriegeskorte N. 2017. Representational models: A common framework for understanding encoding, pattern-component, and representational-similarity analysis. PLOS Computational Biology 13:e1005508. DOI: https://doi.org/10.1371/journal.pcbi.1005508, PMID: 28437426
Diedrichsen J, Yokoi A, Arbuckle SA. 2018. Pattern component modeling: A flexible approach for understanding the representational structure of brain activity patterns. NeuroImage 180:119–133. DOI: https://doi.org/10. 1016/j.neuroimage.2017.08.051, PMID: 28843540
Diedrichsen J, Berlot E, Mur M, Schütt HH, Shahbazi M, Kriegeskorte N. 2020. Comparing representational geometries using whitened unbiased-distance-matrix similarity. Neurons, Behavior, Data Analysis, and Theory 5:27664. DOI: https://doi.org/10.51628/001c.27664
Dumoulin SO, Wandell BA. 2008. Population receptive field estimates in human visual cortex. NeuroImage 39:647–660. DOI: https://doi.org/10.1016/j.neuroimage.2007.09.034, PMID: 17977024
Edelman S. 1998. Representation is representation of similarities. The Behavioral and Brain Sciences 21:449–467. DOI: https://doi.org/10.1017/s0140525x98001253, PMID: 10097019
Edelman S, Grill-Spector K, Kushnir T, Malach R. 1998. Toward direct visualization of the internal shape representation space by fMRI. Psychobiology 26:309–321. DOI: https://doi.org/10.3758/BF03330618
Efron B, Tibshirani RJ. 1994.. An Introduction to the Bootstrap CRC press. DOI: https://doi.org/10.1201/ 9780429246593
Ejaz N, Hamada M, Diedrichsen J. 2015. Hand use predicts the structure of representations in sensorimotor cortex. Nature Neuroscience 18:1034–1040. DOI: https://doi.org/10.1038/nn.4038, PMID: 26030847
Esteban O, Markiewicz CJ, Blair RW, Moodie CA, Isik AI, Erramuzpe A, Kent JD, Goncalves M, DuPre E, Snyder M, Oya H, Ghosh SS, Wright J, Durnez J, Poldrack RA, Gorgolewski KJ. 2019. fMRIPrep: a robust preprocessing pipeline for functional MRI. Nature Methods 16:111–116. DOI: https://doi.org/10.1038/ s41592-018-0235-4, PMID: 30532080
Fonov V, Evans A, McKinstry R, Almli C, Collins D. 2009. Unbiased nonlinear average age-appropriate brain templates from birth to adulthood. NeuroImage 47:S102. DOI: https://doi.org/10.1016/S1053-8119(09) 70884-5
Freeman JB, Stolier RM, Brooks JA, Stillerman BS. 2018. The neural representational geometry of social perception. Current Opinion in Psychology 24:83–91. DOI: https://doi.org/10.1016/j.copsyc.2018.10.003, PMID: 30388494
Friston KJ, Diedrichsen J, Holmes E, Zeidman P. 2019. Variational representational similarity analysis. NeuroImage 201:115986. DOI: https://doi.org/10.1016/j.neuroimage.2019.06.064, PMID: 31255808
Glasser MF, Coalson TS, Robinson EC, Hacker CD, Harwell J, Yacoub E, Ugurbil K, Andersson J, Beckmann CF, Jenkinson M, Smith SM, Van Essen DC. 2016. A multi-modal parcellation of human cerebral cortex. Nature 536:171–178. DOI: https://doi.org/10.1038/nature18933, PMID: 27437579
Gorgolewski K, Burns CD, Madison C, Clark D, Halchenko YO, Waskom ML, Ghosh SS. 2011. Nipype: a flexible, lightweight and extensible neuroimaging data processing framework in python. Frontiers in Neuroinformatics 5:13. DOI: https://doi.org/10.3389/fninf.2011.00013, PMID: 21897815
Gorgolewski KJ, Esteban O, Markiewicz CJ, Ziegler E, Ellis DG, Notter MP, Jarecka D, Johnson H, Burns C, Manhães-Savio A, Hamalainen C, Yvernault B, Salo T, Jordan K, Goncalves M, Waskom M, Clark D, Wong J, Loney F, Modat M. 2018. Nipype. Zenodo. https://doi.org/10.5281/zenodo.596855DOI: https://doi. org/10.5281/zenodo.596855
Greve DN, Fischl B. 2009. Accurate and robust brain image alignment using boundary-based registration. NeuroImage 48:63–72. DOI: https://doi.org/10.1016/j.neuroimage.2009.06.060
Guo Z, Wang L, Ji B, Xi Y, Yang B, Liu J. Flexible, Multi-Shank Stacked Array for High-Density Omini-Directional Intracortical Recording. 2021 IEEE 34th International Conference on Micro Electro Mechanical Systems (MEMS). 2021., 540–543. DOI: https://doi.org/10.1109/MEMS51782.2021.9375160
Hebart MN, Görgen K, Haynes JD. 2014. The Decoding Toolbox (TDT): a versatile software package for multivariate analyses of functional imaging data. Frontiers in Neuroinformatics 8:88. DOI: https://doi.org/10. 3389/fninf.2014.00088, PMID: 25610393
Horikawa T, Kamitani Y. 2017. Generic decoding of seen and imagined objects using hierarchical visual features. Nature Communications 8:15037. DOI: https://doi.org/10.1038/ncomms15037, PMID: 28530228
Jenkinson M, Bannister P, Brady M, Smith S. 2002. Improved optimization for the robust and accurate linear registration and motion correction of brain images. NeuroImage 17:825–841. DOI: https://doi.org/10.1016/ s1053-8119(02)91132-8, PMID: 12377157
Jozwik KM, Kriegeskorte N, Mur M. 2016. Visual features as stepping stones toward semantics: Explaining object similarity in IT and perception with non-negative least squares. Neuropsychologia 83:201–226. DOI: https://doi.org/10.1016/j.neuropsychologia.2015.10.023, PMID: 26493748
Jun JJ, Steinmetz NA, Siegle JH, Denman DJ, Bauza M, Barbarits B, Lee AK, Anastassiou CA, Andrei A, Aydın Ç, Barbic M, Blanche TJ, Bonin V, Couto J, Dutta B, Gratiy SL, Gutnisky DA, Häusser M, Karsh B, Ledochowitsch P, et al. 2017. Fully integrated silicon probes for high-density recording of neural activity. Nature 551:232–236. DOI: https://doi.org/10.1038/nature24636, PMID: 29120427
Kay KN, Naselaris T, Prenger RJ, Gallant JL. 2008. Identifying natural images from human brain activity. Nature 452:352–355. DOI: https://doi.org/10.1038/nature06713, PMID: 18322462
Kell AJE, Yamins DLK, Shook EN, Norman-Haignere SV, McDermott JH. 2018. A task-optimized neural network replicates human auditory behavior, predicts brain responses, and reveals a cortical processing hierarchy. Neuron 98:630–644. DOI: https://doi.org/10.1016/j.neuron.2018.03.044, PMID: 29681533
Kemeny JG. 1959. Mathematics without numbers. Daedalus 88:577–591.
Khaligh-Razavi SM, Kriegeskorte N. 2014. Deep supervised, but not unsupervised, models may explain IT cortical representation. PLOS Computational Biology 10:e1003915. DOI: https://doi.org/10.1371/journal.pcbi. 1003915, PMID: 25375136
Khaligh-Razavi SM, Henriksson L, Kay K, Kriegeskorte N. 2017. Fixed versus mixed RSA: Explaining visual representations by fixed and mixed feature sets from shallow and deep computational models. Journal of Mathematical Psychology 76:184–197. DOI: https://doi.org/10.1016/j.jmp.2016.10.007, PMID: 28298702
Kietzmann TC, Spoerer CJ, Sörensen LKA, Cichy RM, Hauk O, Kriegeskorte N. 2019. Recurrence is required to capture the representational dynamics of the human visual system. PNAS 116:21854–21863. DOI: https://doi. org/10.1073/pnas.1905544116
Kipnis A. 2023. Fmri-simulations. 2fd77d1. Github. https://github.com/adkipnis/fmri-simulations
Klein A, Ghosh SS, Bao FS, Giard J, Häme Y, Stavsky E, Lee N, Rossa B, Reuter M, Chaibub Neto E, Keshavan A. 2017. Mindboggling morphometry of human brains. PLOS Computational Biology 13:e1005350. DOI: https:// doi.org/10.1371/journal.pcbi.1005350, PMID: 28231282
Konkle T, Alvarez GA. 2022. A self-supervised domain-general learning framework for human ventral stream representation. Nature Communications 13:491. DOI: https://doi.org/10.1038/s41467-022-28091-4, PMID: 35078981
Kornblith S, Norouzi M, Lee H, Hinton G. 2019. Similarity of Neural Network Representations Revisited. Proceedings of the 36th International Conference on Machine Learning..
Kriegeskorte N, Goebel R, Bandettini P. 2006. Information-based functional brain mapping. PNAS 103:3863– 3868. DOI: https://doi.org/10.1073/pnas.0600244103
Kriegeskorte N, Formisano E, Sorger B, Goebel R. 2007. Individual faces elicit distinct response patterns in human anterior temporal cortex. PNAS 104:20600–20605. DOI: https://doi.org/10.1073/pnas.0705654104
Kriegeskorte N, Mur M, Bandettini PA. 2008a. Representational similarity analysis-connecting the branches of systems neuroscience. Frontiers in Systems Neuroscience 2:4. DOI: https://doi.org/10.3389/neuro.06.004.2008, PMID: 19104670
Kriegeskorte N, Mur M, Ruff DA, Kiani R, Bodurka J, Esteky H, Tanaka K, Bandettini PA. 2008b. Matching categorical object representations in inferior temporal cortex of man and monkey. Neuron 60:1126–1141. DOI: https://doi.org/10.1016/j.neuron.2008.10.043, PMID: 19109916
Kriegeskorte N, Mur M. 2012. Inverse MDS: Inferring dissimilarity structure from multiple item arrangements. Frontiers in Psychology 3:245. DOI: https://doi.org/10.3389/fpsyg.2012.00245, PMID: 22848204
Kriegeskorte N, Kievit RA. 2013. Representational geometry: integrating cognition, computation, and the brain. Trends in Cognitive Sciences 17:401–412. DOI: https://doi.org/10.1016/j.tics.2013.06.007
Kriegeskorte N. 2015. Deep neural networks: A new framework for modeling biological vision and brain information processing. Annual Review of Vision Science 1:417–446. DOI: https://doi.org/10.1146/annurev- vision-082114-035447, PMID: 28532370
Kriegeskorte N, Diedrichsen J. 2016. Inferring brain-computational mechanisms with models of activity measurements. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 371:20160278. DOI: https://doi.org/10.1098/rstb.2016.0278, PMID: 27574316
Kriegeskorte N, Douglas PK. 2018. Cognitive computational neuroscience. Nature Neuroscience 21:1148–1160. DOI: https://doi.org/10.1038/s41593-018-0210-5
Kriegeskorte N, Diedrichsen J. 2019a. Peeling the onion of brain representations. Annual Review of Neuroscience 42:407–432. DOI: https://doi.org/10.1146/annurev-neuro-080317-061906, PMID: 31283895
Kriegeskorte N, Douglas PK. 2019b. Interpreting encoding and decoding models. Current Opinion in Neurobiology 55:167–179. DOI: https://doi.org/10.1016/j.conb.2019.04.002, PMID: 31039527
Kriegeskorte N, Wei XX. 2021. Neural tuning and representational geometry. Nature Reviews. Neuroscience 22:703–718. DOI: https://doi.org/10.1038/s41583-021-00502-3, PMID: 34522043
Krizhevsky A, Sutskever I, Hinton GE. 2012. Imagenet classification with deep convolutional neural networks. Advances in neural information processing systems..
Kubilius J, Schrimpf M, Kar K, Rajalingham R, Hong H, Majaj N, Issa E, Bashivan P, Prescott-Roy J, Schmidt K, Nayebi A, Bear D, Yamins DL, DiCarlo JJ. 2019. Brain-like object recognition with high-performing shallow recurrent Anns. Wallach H, Larochelle H, Beygelzimer A, Alché-Buc F, Fox E, Garnett R (Eds). Advances in Neural Information Processing Systems Curran Associates, Inc. p. 1–12.
Lanczos C. 1964. Evaluation of Noisy Data. Journal of the Society for Industrial and Applied Mathematics Series B Numerical Analysis 1:76–85. DOI: https://doi.org/10.1137/0701007
LeCun Y, Bengio Y, Hinton G. 2015. Deep learning. Nature 521:436–444. DOI: https://doi.org/10.1038/ nature14539, PMID: 26017442
Ledoit O, Wolf M. 2004. Honey, i shrunk the sample covariance matrix. The Journal of Portfolio Management 30:110–119. DOI: https://doi.org/10.3905/jpm.2004.110
Mehrer J, Kietzmann TC, Kriegeskorte N. Deep neural networks trained on ecologically relevant categories better explain human IT. Conference on Cognitive Computational Neuroscience. 2017;.
Mehrer J, Spoerer CJ, Jones EC, Kriegeskorte N, Kietzmann TC. 2021. An ecologically motivated image dataset for deep learning yields better models of human vision. PNAS 118:e2011417118. DOI: https://doi.org/10. 1073/pnas.2011417118, PMID: 33593900
Naselaris T, Kay KN, Nishimoto S, Gallant JL. 2011. Encoding and decoding in fMRI. NeuroImage 56:400–410. DOI: https://doi.org/10.1016/j.neuroimage.2010.07.073, PMID: 20691790
Nili H, Wingfield C, Walther A, Su L, Marslen-Wilson W, Kriegeskorte N. 2014. A toolbox for representational similarity analysis. PLOS Computational Biology 10:e1003553. DOI: https://doi.org/10.1371/journal.pcbi. 1003553, PMID: 24743308
Nili H, Walther A, Alink A, Kriegeskorte N. 2020. Inferring exemplar discriminability in brain representations. PLOS ONE 15:e0232551. DOI: https://doi.org/10.1371/journal.pone.0232551, PMID: 32520962
Norman KA, Polyn SM, Detre GJ, Haxby JV. 2006. Beyond mind-reading: multi-voxel pattern analysis of fMRI data. Trends in Cognitive Sciences 10:424–430. DOI: https://doi.org/10.1016/j.tics.2006.07.005
Parvizi J, Kastner S. 2018. Promises and limitations of human intracranial electroencephalography. Nature Neuroscience 21:474–483. DOI: https://doi.org/10.1038/s41593-018-0108-2, PMID: 29507407
Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen T, Lin Z, Gimelshein N, Antiga L, Desmaison A, Kopf A, Yang E, DeVito Z, Raison M, Tejani A, Chilamkurthy S, Steiner B, Fang L, Bai J. 2019. Pytorch: an imperative style, high-performance deep learning library. et al (Eds). Advances in Neural Information Processing System Curran Associates, Inc. p. 8024–8035.
Pedregosa F, Eickenberg M, Ciuciu P, Thirion B, Gramfort A. 2015. Data-driven HRF estimation for encoding and decoding models. NeuroImage 104:209–220. DOI: https://doi.org/10.1016/j.neuroimage.2014.09.060, PMID: 25304775
Power JD, Mitra A, Laumann TO, Snyder AZ, Schlaggar BL, Petersen SE. 2014. Methods to detect, characterize, and remove motion artifact in resting state fMRI. NeuroImage 84:320–341. DOI: https://doi.org/10.1016/j. neuroimage.2013.08.048, PMID: 23994314
Ramírez FM, Cichy RM, Allefeld C, Haynes JD. 2014. The neural code for face orientation in the human fusiform face area. The Journal of Neuroscience 34:12155–12167. DOI: https://doi.org/10.1523/JNEUROSCI.3156-13. 2014, PMID: 25186759
Ritchie JB, Lee Masson H, Bracci S, Op de Beeck HP. 2021. The unreliable influence of multivariate noise normalization on the reliability of neural dissimilarity. NeuroImage 245:118686. DOI: https://doi.org/10.1016/j. neuroimage.2021.118686, PMID: 34728244
Satterthwaite TD, Elliott MA, Gerraty RT, Ruparel K, Loughead J, Calkins ME, Eickhoff SB, Hakonarson H, Gur RC, Gur RE, Wolf DH. 2013. An improved framework for confound regression and filtering for control of motion artifact in the preprocessing of resting-state functional connectivity data. NeuroImage 64:240–256. DOI: https://doi.org/10.1016/j.neuroimage.2012.08.052, PMID: 22926292
Schäfer J, Strimmer K. 2005. A shrinkage approach to large-scale covariance matrix estimation and implications for functional genomics. Statistical Applications in Genetics and Molecular Biology 4:Article32. DOI: https:// doi.org/10.2202/1544-6115.1175, PMID: 16646851
Sejnowski TJ, Churchland PS, Movshon JA. 2014. Putting big data to good use in neuroscience. Nature Neuroscience 17:1440–1441. DOI: https://doi.org/10.1038/nn.3839, PMID: 25349909
Shepard RN, Chipman S. 1970. Second-order isomorphism of internal representations: Shapes of states. Cognitive Psychology 1:1–17. DOI: https://doi.org/10.1016/0010-0285(70)90002-2
Smith SM, Nichols TE. 2018. Statistical challenges in “big data” human neuroimaging. Neuron 97:263–268. DOI: https://doi.org/10.1016/j.neuron.2017.12.018, PMID: 29346749
Steinmetz NA, Koch C, Harris KD, Carandini M. 2018. Challenges and opportunities for large-scale electrophysiology with Neuropixels probes. Current Opinion in Neurobiology 50:92–100. DOI: https://doi.org/ 10.1016/j.conb.2018.01.009, PMID: 29444488
Stevenson IH, Kording KP. 2011. How advances in neural recording affect data analysis. Nature Neuroscience 14:139–142. DOI: https://doi.org/10.1038/nn.2731, PMID: 21270781
Storrs KR, Khaligh-Razavi SM, Kriegeskorte N. 2014. Noise Ceiling on the Crossvalidated Performance of Reweighted Models of Representational Dissimilarity: Addendum to Khaligh-Razavi & Kriegeskorte (2014). bioRxiv. DOI: https://doi.org/10.1101/2020.03.23.003046
Storrs KR, Kietzmann TC, Walther A, Mehrer J, Kriegeskorte N. 2021. Diverse deep neural networks all predict human inferior temporal cortex well, after training and fitting. Journal of Cognitive Neuroscience 33:2044– 2064. DOI: https://doi.org/10.1162/jocn_a_01755, PMID: 34272948
Stringer C, Pachitariu M, Steinmetz N, Carandini M, Harris KD. 2019. High-dimensional geometry of population responses in visual cortex. Nature 571:361–365. DOI: https://doi.org/10.1038/s41586-019-1346-5, PMID: 31243367
Székely GJ, Rizzo ML, Bakirov NK. 2007. Measuring and testing dependence by correlation of distances. The Annals of Statistics 35:2769–2794. DOI: https://doi.org/10.1214/009053607000000505
Tong F, Pratte MS. 2012. Decoding patterns of human brain activity. Annual Review of Psychology 63:483–509. DOI: https://doi.org/10.1146/annurev-psych-120710-100412, PMID: 21943172
Tustison NJ, Avants BB, Cook PA, Zheng Y, Egan A, Yushkevich PA, Gee JC. 2010. N4ITK: improved N3 bias correction. IEEE Transactions on Medical Imaging 29:1310–1320. DOI: https://doi.org/10.1109/TMI.2010. 2046908, PMID: 20378467
Uğurbil K. 2021. Ultrahigh field and ultrahigh resolution fMRI. Current Opinion in Biomedical Engineering 18:100288. DOI: https://doi.org/10.1016/j.cobme.2021.100288, PMID: 33987482
Walther A, Nili H, Ejaz N, Alink A, Kriegeskorte N, Diedrichsen J. 2016. Reliability of dissimilarity measures for multi-voxel pattern analysis. NeuroImage 137:188–200. DOI: https://doi.org/10.1016/j.neuroimage.2015.12. 012
Wandell BA, Winawer J. 2015. Computational neuroimaging and population receptive fields. Trends in Cognitive Sciences 19:349–357. DOI: https://doi.org/10.1016/j.tics.2015.03.009
Wang T, Xu C. 2020. Three-photon neuronal imaging in deep mouse brain. Optica 7:947. DOI: https://doi.org/ 10.1364/OPTICA.395825, PMID: 32905493
Weldon KB, Olman CA. 2021. Forging a path to mesoscopic imaging success with ultra-high field functional magnetic resonance imaging. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 376:20200040. DOI: https://doi.org/10.1098/rstb.2020.0040, PMID: 33190599
Wu MCK, David SV, Gallant JL. 2006. Complete functional characterization of sensory neurons by system identification. Annual Review of Neuroscience 29:477–505. DOI: https://doi.org/10.1146/annurev.neuro.29. 051605.113024, PMID: 16776594
Xu Y, Vaziri-Pashkam M. 2021. Limits to visual representational correspondence between convolutional neural networks and the human brain. Nature Communications 12:2065. DOI: https://doi.org/10.1038/s41467-021- 22244-7, PMID: 33824315
Xue G, Dong Q, Chen C, Lu Z, Mumford JA, Poldrack RA. 2010. Greater neural pattern similarity across repetitions is associated with better memory. Science 330:97–101. DOI: https://doi.org/10.1126/science. 1193125, PMID: 20829453
Yamins DLK, DiCarlo JJ. 2016. Using goal-driven deep learning models to understand sensory cortex. Nature Neuroscience 19:356–365. DOI: https://doi.org/10.1038/nn.4244, PMID: 26906502
Yarkoni T. 2020. The generalizability crisis. The Behavioral and Brain Sciences 45:1–37. DOI: https://doi.org/10. 1017/S0140525X20001685, PMID: 33342451
Young HP, Levenglick A. 1978. A consistent extension of condorcet’s election principle. SIAM Journal on Applied Mathematics 35:285–300. DOI: https://doi.org/10.1137/0135023
Zhang Y, Brady M, Smith S. 2001. Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Transactions on Medical Imaging 20:45–57. DOI: https://doi.org/10.1109/42.906424, PMID: 11293691
Zhuang C, Yan S, Nayebi A, Schrimpf M, Frank MC, DiCarlo JJ, Yamins DLK. 2021. Unsupervised neural network models of the ventral visual stream. PNAS 118:e2014196118. DOI: https://doi.org/10.1073/pnas.2014196118, PMID: 33431673