Thèse de doctorat (Mémoires et thèses)
LUNAR REMOTE SENSING DATA ENHANCEMENT FOR PRECISE ROBOTIC MISSION PLANNING
DELGADO CENTENO, José Ignacio
2023
 

Documents


Texte intégral
PhD_thesis (3).pdf
Postprint Éditeur (16.36 MB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Remote sensing; Planetary science; Space Robotics
Résumé :
[en] In recent times, there has been a resurgence of interest in not only revisiting the Moon but also establishing a lasting and sustainable human presence there. Numer- ous agencies and private corporations, gearing up for future lunar missions, have established key goals involve both scientific exploration and the emerging lunar economy. These objectives include carrying out scientific experiments, harvesting and utilizing lunar resources on-site, and examining potential methods of using the Moon as an efficient launchpad to go further into the Solar System. In facilitating these lunar missions, robotics emerges as the main disruptive technology. It can allow the execution of various mission-critical activities in harsh environments, ensuring mission success without jeopardizing human safety. This thesis addresses the challenge presented by the limited resolution of lu- nar data and the overwhelming amount of non-processed information provided by the different remote sensing missions. Robotic operations on the Moon require tremendous precision in the mission planning phase. For this purpose, the remote sensing data collected by various satellites must be processed and relayed to the mission planning teams in the highest possible resolution and in an easily under- standable and digested format. To address this issue, the research presented on this thesis adopts a Machine Learning (ML) approach to enhance and process lunar data gathered by different satellite sensors, providing more detailed and comprehensive insights into the lunar surface, which is crucial for future robotic mission planning. ML provides the necessary tools to efficiently handle and analyze vast volumes of data, a critical aspect in deriving meaningful results, reaching valid conclusions, and deepening our understanding of the subject under study. In this thesis, the author suggests two distinct methods for enhancing and increasing the resolution of lunar images to facilitate improved robot navigation on the lunar surface. The first method involves creating a training dataset using a digital analog environment and utilizing multiple frames of the same location for image enhancement. The second approach proposes a unique architecture that utilizes a single capture from the lunar surface for resolution upscaling, accompanied by an uncertainty estimation of the process. Lastly, a thermophysical analysis of the lunar surface is conducted, which involves processing lunar thermal data in the search for recent asteroid impacts on the lunar surface.
Disciplines :
Ingénierie aérospatiale
Auteur, co-auteur :
DELGADO CENTENO, José Ignacio ;  University of Luxembourg > Faculty of Science, Technology and Medecine (FSTM)
Langue du document :
Anglais
Titre :
LUNAR REMOTE SENSING DATA ENHANCEMENT FOR PRECISE ROBOTIC MISSION PLANNING
Date de soutenance :
07 juillet 2023
Institution :
Unilu - University of Luxembourg, Luxembourg
Intitulé du diplôme :
DOCTEUR DE L’UNIVERSITÉ DU LUXEMBOURG EN INFORMATIQUE
Focus Area :
Computational Sciences
Disponible sur ORBilu :
depuis le 06 septembre 2023

Statistiques


Nombre de vues
130 (dont 3 Unilu)
Nombre de téléchargements
242 (dont 7 Unilu)

Bibliographie


Publications similaires



Contacter ORBilu