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“Once the storm is over, you won’t remember how you made it through, how you managed to
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When you come out of the storm, you won’t be the same person who walked in. That’s what this

storm’s all about.”
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Abstract

In recent times, there has been a resurgence of interest in not only revisiting the

Moon but also establishing a lasting and sustainable human presence there. Numer-

ous agencies and private corporations, gearing up for future lunar missions, have

established key goals involve both scientific exploration and the emerging lunar

economy. These objectives include carrying out scientific experiments, harvesting

and utilizing lunar resources on-site, and examining potential methods of using the

Moon as an efficient launchpad to go further into the Solar System. In facilitating

these lunar missions, robotics emerges as the main disruptive technology. It can

allow the execution of various mission-critical activities in harsh environments,

ensuring mission success without jeopardizing human safety.

This thesis addresses the challenge presented by the limited resolution of lu-

nar data and the overwhelming amount of non-processed information provided

by the different remote sensing missions. Robotic operations on the Moon require

tremendous precision in the mission planning phase. For this purpose, the remote

sensing data collected by various satellites must be processed and relayed to the

mission planning teams in the highest possible resolution and in an easily under-

standable and digested format. To address this issue, the research presented on this

thesis adopts a Machine Learning (ML) approach to enhance and process lunar data

gathered by different satellite sensors, providing more detailed and comprehensive

insights into the lunar surface, which is crucial for future robotic mission planning.

ML provides the necessary tools to efficiently handle and analyze vast volumes of

data, a critical aspect in deriving meaningful results, reaching valid conclusions,

and deepening our understanding of the subject under study. In this thesis, the

author suggests two distinct methods for enhancing and increasing the resolution

of lunar images to facilitate improved robot navigation on the lunar surface. The

first method involves creating a training dataset using a digital analog environment

and utilizing multiple frames of the same location for image enhancement. The

second approach proposes a unique architecture that utilizes a single capture

from the lunar surface for resolution upscaling, accompanied by an uncertainty

estimation of the process. Lastly, a thermophysical analysis of the lunar surface is

conducted, which involves processing lunar thermal data in the search for recent

asteroid impacts on the lunar surface.
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I Introduction

In recent years, the Moon has captured the attention of both space agencies and private

companies, as they seek to conduct various activities on its surface. The Moon’s prox-

imity to Earth compared to other celestial bodies in our solar system makes it an ideal

location for diverse tasks such as planetary scientific research, in-situ space resource

utilization, and even the establishment of a remote base for human activities, which

can provide highly valuable insights for future human missions in other extraterres-

trial locations such as Mars. NASA’s ARTEMIS program (Smith et al., 2020) exemplifies

international collaboration in achieving complex objectives and further expanding the

limits of space missions.

Future lunar missions hold significant importance for several reasons. The Moon’s

unique environment provides an opportunity for researchers to test equipment and

conduct experiments under conditions unachievable on Earth. This testing ground is

crucial for advancing our understanding of how technology and materials behave in

extreme environments, such as those encountered in deep space exploration. It also

allows for the development and refinement of technologies necessary for sustaining hu-

man life during long-duration space missions. By establishing infrastructure and refin-

ing the techniques needed for lunar landings, resource extraction, and habitation, space

agencies can apply these lessons to more ambitious missions. The Moon’s proximity to

Earth makes it an ideal location for testing these technologies and strategies that will be

required for venturing further into our solar system. It could also function as a logistical

hub for deep space missions. The lower gravity and lack of atmosphere make it more

energy-efficient to launch spacecraft from the lunar surface than from Earth. In addition,

resources such as water ice, which can be converted into rocket fuel, have been detected

5



on the Moon, particularly in crater regions where the Sun never reaches. Lunar missions

can also offer valuable information about the formation and development of our solar

system. The Moon’s surface has remained relatively unchanged for billions of years,

acting as a time capsule for the early history of our celestial neighborhood. By studying

lunar samples and geological features of its surface, researchers can learn more about

the processes that led to the formation of Earth and other planets, potentially unveiling

new information about the origins of life. Robotics has emerged as a fundamental en-

abler of lunar research in the current era of space exploration. Operating in the harsh

and unpredictable conditions of the lunar surface, robotic technologies provide a means

to conduct detailed and continuous study without risking human life. Uncrewed lunar

rovers, for instance, can traverse various terrains, capturing high-resolution imagery

and collecting valuable geological samples. These samples can be analyzed onboard

using integrated laboratory instruments or returned to Earth for more extensive study.

Moreover, robotic technologies are instrumental in identifying and assessing in-situ re-

sources, such as lunar water ice, which is pivotal for future sustainable human presence

on the Moon. They can also carry out intricate tasks like setting up infrastructure for

future crewed missions, including habitats, power systems, and communication equip-

ment. The evolution of robotics, therefore, plays a critical role in accelerating our un-

derstanding of the Moon, paving the way for the next phase of lunar exploration.

To ensure the success of the lunar missions, it is crucial to possess accurate knowledge

of the intended landing sites. During the mission planning phase, data from extraterres-

trial locations is collected and analyzed to comprehend the conditions under which the

mission will be executed. Remote sensing is a key technology that enables the study of

distant locations with extreme environments, without the need for direct physical pres-

ence. It involves using satellites and other spacecraft equipped with sensors to collect

data on the target location. These sensors can include cameras, spectrometers, radar

systems, and more, each designed to gather specific types of information. The satellite

may be placed in a low lunar orbit or a more distant orbit, depending on the objectives

and requirements of the mission. The choice of orbit affects factors such as data resolu-

tion, coverage, and the frequency with which the satellite passes over a particular area.

Researchers on the ground then process and analyze the data to create detailed maps,

identify potential landing sites, and understand the composition and characteristics of



the lunar surface. This information is crucial for planning mission trajectories, design-

ing landers and rovers, and determining the best locations for experiments and resource

extraction.

1 Remote sensing for the Moon

The Moon has a rich history of orbiters sent for study and analysis purposes since 1959,

with Luna, Lunar Orbiter, Surveyor, and Apollo being examples of early lunar obser-

vation missions. In recent years, with the resurgence of interest in space exploration,

national agencies from various countries have started investing in research and prepara-

tion for lunar missions. Japan Aerospace Exploration Agency (JAXA) launched Kaguya

(Kato et al., 2010), its second lunar orbiter, in 2007. This mission placed a primary satel-

lite 100 km above the Moon’s surface, accompanied by two smaller orbiters in polar

orbit, each equipped with different instruments. Kaguya’s objective was to gather data

to enhance understanding of the Moon’s history and develop the necessary technol-

ogy for future lunar exploration. India Space Research Organization (ISRO) developed

the Chandrayaan (Goswami and Annadurai, 2009 and Sundararajan, 2018) program

over the past decade, which includes two lunar orbiters launched in 2008 and 2019.

The first mission aimed to create a 3D topography of the lunar surface, while the sec-

ond one sought to study variations in surface composition and determine the location

and abundance of lunar water. China National Space Administration (CNSA) launched

Chang’e 1 (Ouyang et al., 2010) and 2 (Zhao et al., 2011) in 2007 and 2010 respectively,

with the goal of mapping the Moon and analyzing its regolith chemical composition.

These missions represent some of the most well-known examples of remote sensing for

the Moon, allowing various space agencies to gain a better understanding of the lu-

nar surface, its composition, and the requirements for continued robotic and human

exploration. NASA’s Lunar Reconnaissance Orbiter (LRO), the mission responsible for

providing the largest publicly available dataset of the Moon’s surface was launched in

2009. The LRO satellite carried seven different instruments and sensors into lunar orbit

for a one-year exploration mission. Its primary objective was to scout the lunar surface

for high-value resources and potential landing sites to support future human presence

on the Moon. Following this initial phase, a two-year scientific mission began, studying

aspects ranging from the history of the solar system to the mineralogy and geology of



the lunar surface. Since then, the satellite’s orbit has been adjusted to minimize fuel

consumption, and the scientific mission has been extended five times. As a summary,

the following table contains the different lunar orbiters throughout the history of space

missions:

Table I.1: Remote sensing lunar missions

Name Year Country Description

Luna 3 1959 URSS First satellite to return images of the far side of the Moon

Luna 10 1966 URSS First spacecraft to orbit the Moon

Luna 12 1966 URSS Photography mission

Lunar Orbiter 2 1966 USA Photographic mapping mission

Lunar Orbiter 3 1967 USA Photographic mapping mission

Lunar Orbiter 4 1967 USA Photographic mapping mission

Explorer 35 1967 USA Study of interplanetary plasma and magnetic fields

Lunar Orbiter 5 1967 USA Photographic survey

Luna 14 1968 URSS Tested communication from lunar orbit

Luna 22 1974 URSS Study of magnetic fields

Clementine 1994 USA Lunar observation and imaging at various wavelengths

Lunar Prospector 1998 USA Mapping of lunar surface composition

SMART-1 2003 EU Photographic mapping mission

THEMIS-ARTEMIS 2007 USA Magnetospheric research

Kaguya 2007 Japan Study lunar surface environment

Chang’e 1 2007 China Obtaining 3D images of lunar geological structures

Chandrayaan-1 2008 India Surveying the lunar surface

LRO 2009 USA Detailed mapping and resource localization

Chang’e 2 2010 China Photographic mapping mission

GRAIL 2011 USA Gravitational field mapping of the Moon

LADEE 2013 USA Lunar exosphere analysis

Chang’e 3 2013 China Photographic mapping mission

Chang’e 4 2014 China Photographic mapping mission

Queqiao 2018 China Communication experiments from lunar orbit

Chandrayaan-2 2019 India Lunar topography and mineralogy study

Danuri 2022 South Korea Lunar resources survey



Figure I.1: NASA’s Lunar Reconnaissance Orbiter satellite. Source: NASA

1.1. Lunar science

NASA’s LRO mission (Fig. I.1) has built since 2009 the most complete collection of

lunar data so far thanks to the following seven instruments that have been analyzing

the surface since then:

• Cosmic Ray Telescope for the Effects of Radiation (CRaTER): Evaluates the

global lunar radiation environment and assesses the biological impact of cosmic

radiation by using a "human tissue-equivalent" plastic to simulate human expo-

sure (Schwadron et al., 2012).

• Diviner Lunar Radiometer (DLRE): Collects thermal data of the lunar surface,

enabling the creation of detailed day and night surface temperature models. This

data also offers insights into ice deposits at the Moon’s poles, surface composition,

and subsurface temperatures (Bandfield et al., 2011a).

• Lyman Alpha Mapping Project (LAMP): Maps the lunar surface in the far ul-

traviolet spectrum, aiding in the search for surface ice and frost in polar regions.

Additionally, it captures images of permanently shadowed regions (PSRs) that are



illuminated only by starlight, which cannot be imaged by the main camera instru-

ment (Gladstone et al., 2010b).

• Lunar Exploration Neutron Detector (LEND): Detects the presence of hydrogen

and hydrogen-bearing compounds on the lunar surface, providing information

for the search for water ice on the Moon’s surface and supplying space radiation

data to better prepare for future human exploration missions (Mitrofanov et al.,

2010a).

• Lunar Orbiter Laser Altimeter (LOLA): Measures the altitude of the lunar sur-

face at each measured point, helping to analyze landing site slopes and surface

roughness. This data can also be used to generate 3D maps of the Moon, offering

valuable information for studying PSRs (Smith et al., 2017).

• Lunar Reconnaissance Orbiter Camera (LROC): Captures high-resolution black

and white images of the lunar surface, covering nearly the entire lunar surface

except for PSRs, where optical information cannot be retrieved due to the inherent

environmental lighting conditions (Robinson et al., 2010).

• Mini-RF technology: Supplies additional information on the presence of water

ice in the lunar poles and serves as a testing ground for future communication

technology demonstrations (Nozette et al., 2010).

The data is accessible through NASA’s archive, the Planetary Data System (PDS). This

extensive repository contains information not only about the Moon but also about Mars

and other celestial bodies studied through remote sensing missions. Other space agen-

cies, such as JAXA and ISRO, have also contributed to this enormous archive with data

from missions like Kaguya and Chandrayaan-1. As a result, the PDS holds a vast array

of datasets for planetary science research, with the LRO mission being one of the most

significant contributors concerning the Moon.

To visually explore these lunar datasets, the Quickmap tool can be utilized. This ap-

plication enables users to overlay data maps on top of an image mosaic of the lunar

surface, which was captured using the LRO Camera instrument. Quickmap allows for

the examination of all available data products in PDS for specific coordinates or regions

and facilitates downloading the selected content. This makes it an invaluable resource

https://pds.jpl.nasa.gov
https://quickmap.lroc.asu.edu/


for researchers and enthusiasts alike, providing easy access to a wealth of lunar data.

Researchers utilize this information to deepen their understanding of the history of our

solar system, including Earth. They also examine potential space resources present on

the lunar surface. Additionally, space agencies are using this data to meticulously plan

for future robotic and human lunar missions, such as those outlined in the Artemis pro-

gram. These endeavors underscore the significance of analyzing lunar data for various

purposes, from enhancing our scientific knowledge of the Moon to readying ourselves

for future space exploration. An example of these utilities can be seen in figure I.2,

where the South Pole’s PSRs are highlighted. The following subsections offers a concise

overview of some of the most prominent aspects of lunar research.

1.1.1. Lunar terrain

The research of lunar terrain, this is, its topography and geomorphology, is a preva-

lent area of lunar science. Missions like the LRO, Kaguya, and Clementine (Spudis et

al., 1994) have employed various instruments dedicated to mapping and terrain analy-

sis. For instance, between 2009 and 2016, LRO’s Lunar Orbiter Laser Altimeter (LOLA)

gathered a remarkable 7 billion measurements of the lunar surface using its laser, sup-

plying data on altitude, surface roughness, slope, and even topographic information

about polar craters and permanently shadowed regions. The LRO Camera instrument

has also significantly contributed to the geomorphological analysis of the lunar surface,

with a dataset currently comprising over 2 million images. Stereo images from different

locations have been utilized to create terrain maps (Tran et al., 2010), and multi-view

shape-from-shading techniques have been applied to lunar data to enhance and op-

timize terrain models derived from stereo image pairs (Alexandrov and Beyer, 2018).

These efforts showcase the extensive and diverse information that can be acquired by

studying lunar terrain. Generating lunar surface roughness maps is another vital aspect

of lunar science. The global surface slopes and roughness map obtained from LOLA

data has yielded valuable insights into the distinct properties of lunar soil between the

highlands and mare regions (Rosenburg et al., 2011). This information is crucial for mis-

sion planning, as it offers a better comprehension of the environment in which future

lunar missions will operate. Moreover, the Moon’s lack of atmosphere, geological activ-

ity, and erosional processes (beyond asteroid impacts) means that surface information

is critical for understanding the history of the solar system. The lunar surface serves as



Figure I.2: NASA’s Lunar Reconnaissance Orbiter map of the PSRs in the South Pole. Source: NASA
Quickmap

an ancient archive of past Solar System activity, making the study of this information

essential to understand our origins and the formation of our planet. The surface radi-

ance gathered by LRO’s Diviner instrument has also been employed to create roughness

maps and analyze various properties of the regolith (Bandfield et al., 2015). These ef-

forts emphasize the importance of understanding the properties of the lunar surface for

both mission planning and scientific exploration.



1.1.2. Lunar regolith

Lunar regolith, the layer of loose, fragmented material that covers the solid bedrock of

the Moon’s surface, presents significant potential for a variety of uses in future lunar

exploration. This material, comprised by fragments of rock, breccias, isolated mineral

grains and impact melts of varied compositions as well as agglutinates developed by

space weathering., is an abundant resource that can be harnessed for various appli-

cations. Firstly, lunar regolith can be used as a raw material for construction on the

Moon. With advancements in 3D printing technology, it is conceivable to use regolith

to construct habitats and other infrastructure, thereby reducing the need to transport

heavy materials from Earth. Furthermore, regolith may be processed to extract useful

elements, such as oxygen, silicon, and various metals, which can support life support

systems and fuel production for lunar bases or deep space missions. Additionally, the

scientific study of lunar regolith can offer valuable insights into the Moon’s geological

history and the broader history of our solar system. As such, lunar regolith holds a

pivotal role in enabling sustainable human presence and exploration activities on the

Moon. One particularly vital aspect of regolith study involves the analysis of its ther-

mophysical properties (Vasavada et al., 2012a). By examining the radiance emitted by

the lunar surface during both day and night cycles, scientists have determined the com-

position of regolith across the Moon. Diviner data was employed to create a global

thermophysical model of the Moon (Hayne et al., 2017), mapping the thermal conduc-

tivity, thermal inertia, and heat capacity of the lunar soil. This model was further refined

through studying near-surface regolith around the equator (Vasavada et al., 2012b). The

surface temperatures of the regolith also offer insight into rock abundance (Bandfield et

al., 2011b), which is connected to both the age of craters and the thickness of the regolith.

The mini-RF data from the LRO has also been utilized in preliminary investigations, re-

vealing that regolith fines in polar craters contain low metal abundance (Heggy et al.,

2020).

1.1.3. Water presence

Lastly, it is important to highlight the significance of water, an essential element for fu-

ture human missions to the Moon. In extraterrestrial environments, water is crucial for

maintaining long-term human presence, as it serves as a life support resource and a fuel



source. Therefore, a considerable portion of lunar research is dedicated to discovering

water ice and volatiles on the lunar surface. The availability of an adequate amount of

ice would make certain locations favorable for future missions. The Moon’s polar re-

gions are the primary focus of this search for water, as they are thought to contain large

ice deposits confined in shadowed areas known as Polar Shadowed Regions (PSRs).

These regions are among the coldest in the entire solar system, having not received sun-

light for millions of years. In the event of a comet impact, water ice from the asteroid

could combine with the lunar soil rather than sublimating (Li et al., 2018), due to the

absence of an atmosphere.

In the last decade, a variety of remote sensing instruments have been employed to de-

tect water ice on the lunar surface. ISRO’s Chandrayaan-1 mission aimed its Mini-SAR

instrument at the North pole (Spudis et al., 2010), while the Chandrayaan-2 mission tar-

geted the South pole (Kumar et al., 2022). The Lunar Crater Observation and Sensing

Satellite (LCROSS) mission (Colaprete et al., 2012), under the Lunar Reconnaissance Or-

biter (LRO), unveiled the presence of water ice on the lunar surface through an impact

event (Colaprete et al., 2010). The LRO also carries additional sensors, such as the Mini-

RF radar, which analyzed the surface properties of polar craters and found anomalous

regions indicating the existence of water ice deposits (Spudis et al., 2013). Data gathered

after the LCROSS impact on the lunar surface estimated the hydrogen concentration in

the Cabeus crater impact site, corresponding to 0.5-4.0% water ice by weight (Gladstone

et al., 2010a; Mitrofanov et al., 2010b), depending on the thickness of the dry regolith

layer.

2 Machine Learning

2.1. Super Resolution

Image super-resolution (SR) (Van Ouwerkerk, 2006; Yue et al., 2016) is a crucial cat-

egory of image processing techniques within computer vision and image processing.

It refers to the technique for recovering high-resolution (HR) images from their low-

resolution (LR) counterparts. This process finds widespread practical real world appli-

cations across various domains, including medical imaging, remote sensing, and face

recognition.



In medical imaging (Mahapatra et al., 2019; Zhang et al., 2018), SR techniques aid in

enhancing the clarity and level of detail in medical scans, enabling more accurate di-

agnoses and treatment planning. Remote sensing applications benefit from SR by im-

proving the resolution of satellite or aerial imagery (Dong et al., 2020; Yang et al., 2015),

leading to better analyses and informed decision-making in areas like agriculture, en-

vironmental monitoring, and disaster management. Moreover, SR also proves invalu-

able in face recognition techniques (Jiang et al., 2016; Qin and Li, 2020), where it helps

sharpen facial features and improve identification accuracy, thereby contributing to se-

curity and authentication systems.

As the demand for higher-quality visual data continues to grow across multiple indus-

tries, image super-resolution remains a critical field of research, with ongoing advance-

ments in deep learning and AI-powered approaches revolutionizing its capabilities. The

ever-expanding real-world applications of SR underline its importance and significance

in the realm of computer vision and image processing.

Super-resolution techniques can be broadly classified into two categories based on the

number of input LR images: single image super-resolution (SISR) and multi-frame

super-resolution (MFSR). In the case of MFSR (Farsiu et al., 2004; Huang et al., 2015),

the goal is to reconstruct a clean, sharp, and often higher-resolution output image from

multiple degraded and noisy input images of a scene. By recursively fusing the in-

formation from different input images, MFSR approaches excel at reconstructing finer

details that are not attainable from a single image alone.

In contrast, SISR (Chen et al., 2022; Yang et al., 2019) is more widely popular due to its

higher efficiency. However, SISR have significant challenges as it deals with an inher-

ently ill-posed problem. A specific low-resolution (LR) input can correspond to mul-

tiple potential high-resolution (HR) images, making the HR space (often representing

the natural image space) intractable to map the LR input accurately. SISR methods face

two primary drawbacks: firstly, the ambiguity in defining the mapping between the LR

and HR space, and secondly, the difficulty in establishing a complex high-dimensional

mapping using vast amounts of raw data.

Recently, deep learning-based SR methods (Deudon et al., 2020; Ledig et al., 2017; Lim

et al., 2017) have shown remarkable progress by capitalizing on their ability to extract

powerful high-level abstractions that bridge the gap between the LR and HR space.



These advanced techniques have achieved significant improvements in both quantita-

tive performance and visual quality of the output images.

2.2. Normalizing Flow

In the domains of statistics and machine learning, a fundamental objective has been

to model probability distributions based on samples drawn from those distributions.

This task falls under unsupervised learning and is commonly referred to as generative

modeling. Its significance lies in the abundance of unlabelled data compared to labelled

data. Various applications leverage this approach, including density estimation, outlier

detection, prior construction, and dataset summarization.

One notable family of generative models that offers tractable distributions with efficient

and precise sampling and density evaluation is known as Normalizing Flows (NF, Ho

et al., 2019; Rezende and Mohamed, 2015; Winkler et al., 2019). A Normalizing Flow

involves transforming a simple probability distribution (e.g., a standard normal) into

a more complex distribution through a sequence of invertible and differentiable map-

pings. This method offers a powerful mechanism to create new families of distributions.

It begins with choosing an initial density and then chaining together a set of parame-

terized, invertible, and differentiable transformations. This results in a new density

that can be efficiently sampled from (by sampling from the initial density and applying

the transformations), and the density at a specific sample (i.e., the likelihood) can be

computed as described above. The Normalizing Flow approach, allows to effectively

construct and work with sophisticated distributions, offering flexibility in represent-

ing various complex data patterns. The ability to efficiently sample from and evaluate

the density of these distributions makes Normalizing Flows an attractive and practical

choice for generative modeling tasks.

3 Objectives and contributions

Lunar remote sensing data serves as a crucial tool for gaining insights across a wide

array of scientific fields. Thanks to the collected data, researchers have been able to

deepen their understanding of the Solar System’s history, pinpoint potential sources of

water ice for future human missions, and identify safe landing sites on the Moon. To



effectively process and analyze this data, tools such as the Ames Stereo Pipeline (ASP)

and Integrated Software for Imaging Spectrometers (ISIS) play a vital role. They are

used to generate valuable products like Digital Elevation Maps (DEMs) and calibrated

images. However, despite the abundance and diversity of available data, challenges re-

main. Data can sometimes be insufficient or inaccurate for specific tasks, or overwhelm-

ing and difficult to manage due to its volume. This is where Artificial Intelligence (AI)

enters the picture. AI holds the potential to revolutionize the way we process remote

sensing data by automating the analysis of massive amounts of information, leading

to accelerated progress in scientific research and a deeper understanding of various

topics. Moreover, AI can be used to improve and enhance existing data. Consider-

ing that the only alternative to obtaining more accurate data through remote sensing

is to launch new satellites with more advanced instruments and sensors, AI offers a

more cost-effective and efficient approach. AI techniques, such as Machine Learning

and Deep Learning, can be employed to identify patterns and correlations in the data,

enabling more accurate predictions and analysis. For instance, AI algorithms can be

used to automatically classify terrain features, detect changes in the lunar surface over

time, and identify potential resources. Furthermore, AI can assist in mitigating issues

with data quality by filling gaps or correcting inconsistencies in the data, ultimately im-

proving the overall reliability of the information. By integrating AI into the processing

and analysis of lunar remote sensing data, scientists can overcome many of the current

challenges, leading to more accurate and efficient research outcomes. As a result, this

will enable a better understanding of the Moon, and pave the way for more advanced

and successful future missions, both robotic and human.

In this regard, this thesis focused on answering two main research questions: what

methods can be employed to obtain scientific insights from the vast quantities of lunar

data available and how can we refine and enhance the already collected lunar data while

maintaining its scientific validity.

3.1. What methods can be employed to obtain scientific insights

from the vast quantities of lunar data available?

Typically, the enormous volume (on the order of terabytes) of lunar datasets makes ex-

tracting scientific conclusions a complex task, due to the considerable number of entries



in the data collection and the need for manual analysis of the information for validation.

This complexity arises from several factors, such as the high dimensionality of the data,

the diverse nature of measurements acquired by various instruments and the scale of

the datasets. Moreover, the validation process often involves the expertise of domain

specialists, who must carefully study the data to obtain scientific conclusions, which is

a rather time-consuming and slow task. As a result, it is essential to develop efficient

methods and tools that can effectively handle, process, and analyze these vast quanti-

ties of lunar data. Ultimately, the goal is to maximize the scientific value and insights

derived from the available data, thereby advancing our understanding of the Moon and

its history, geology, and potential for future exploration and utilization.

3.2. How can we refine and enhance already collected lunar data

while maintaining its scientific validity?

When it comes to obtaining higher resolution data in extraterrestrial environments,

there are two main options. The first alternative is to design, construct, and launch a

new satellite equipped with advanced instrumentation. This new data would offer im-

proved resolution, leading to increased precision in mission planning. However, this

solution would necessitate substantial time and financial investments, making it a chal-

lenging endeavor. Additionally, it would take years to build a remote sensing dataset

as extensive as NASA’s LRO, for instance. It is worth noting that in-orbit satellites

could also obtain more accurate data by approaching closer to the lunar surface, but

this would come at the cost of expending fuel and dramatically reducing the mission

duration, rendering it non-viable.

3.3. Thesis overview

The aim of this thesis was to emphasize the practical aspects of research, demonstrating

how ML research can be applied to actual planetary science issues and the advantages

that researchers can gain through its implementation. The primary contributions of this

thesis involve exploring the potential of ML architectures in lunar science applications,

improving the existing dataset to offer higher resolution data with scientific assurances,

and processing vast volumes of data to obtain scientific results in a more efficient way,

addressing the two research questions outlined in Section 3. This work has contributed



being one of the first exploring the topic of lunar data enhancement using DL-based

architectures and showcasing potential benefits of efficient ML application alternatives

to current methods used by planetary science researchers.

The thesis proposes utilizing deep learning-based techniques for direct lunar data en-

hancement, providing a more practical alternative to deploying satellites with better in-

strumentation into orbit and allowing for direct application to the vast archives of data

already gathered. These methods have the potential to significantly improve data res-

olution, yielding higher quality and more detailed versions. As data processing tasks,

they require only computational resources, which is a considerable reduction in the fi-

nancial and time investments compared to launching new space missions. This thesis

additionally proposes two distinct machine learning-based approaches to derive scien-

tific conclusions from the largest dataset in the LRO collection, the thermal measure-

ments gathered by the Diviner instrument. Through the development of these archi-

tectures here introduced, this thesis demonstrates a comprehensive pipeline that goes

from raw thermal point measurements to lunar surface analysis results.

The structure of this work follows a cumulative thesis format. After a thorough intro-

duction, which covers the state of the art, research questions, and thesis contributions,

the relevant publications that were produced as part of the PhD are presented in chap-

ters 2, 3 and 4. A list of all the publications relevant to this research is provided in the

Appendix. Subsequently, the author’s individual contributions to the included research

papers are discussed.
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Enhancing Lunar Reconnaissance Orbiter Images
via Multi-Frame Super Resolution for Future

Robotic Space Missions
J. I. Delgado-Centeno , P. J. Sanchez-Cuevas , C. Martinez, and M.A. Olivares-Mendez

Abstract—This paper presents a novel application of a Multi-
frame Super Resolution (MFSR) method for lunar surface imagery
called Lunar HighRes-net (L-HRN). In this work, we adapted
and used NASA’s Lunar Reconnaissance Orbiter (LRO) image
database to train the Deep Learning architecture for image su-
per resolution. Additionally, we also gathered an artificial image
dataset from our virtual Moon to improve the amount of input data
in the neural network training process. The network’s architecture
follows a standard MFSR algorithm that was enhanced for this
specific use case. The proposed MFSR method has been evaluated
using the well-known peak signal-to-noise ratio (PSNR) metric
against other generic super-resolution methods of the state of the
art. This work aims to improve environmental knowledge about the
lunar surface to enhance future autonomous robots capabilities on
the surface of the Moon.

Index Terms—Space robotics and automation: aerial and field
robotics.

I. INTRODUCTION

S PACE applications are currently attracting the interest of
several agencies and companies such as NASA, ESA,

SpaceX and Blue Origin. They are investing a lot of resources
in new missions [1]–[4] and exploitation plans. These missions
present a wide variety of objectives and challenges, such as the
study of the geological composition of celestial bodies and the
study of life’s presence at some point in the history of Mars,
among others. In most cases, they involve robotic systems to
perform in-situ and remote-sensing operations to avoid putting
at risk human life or integrity. Two recent examples are the
Perseverance rover [5] for Mars exploration and the Volatile
Investigating Polar Exploration Rover (VIPER) [6] which will
operate on the lunar surface. Particularly, Perseverance rover [5],
has a crucial role in the NASA’s Mars 2020 mission [2]. It
counts with a wide variety of sensors to monitor and study the
red planet’s environmental conditions, evaluate signs of life and
gather data to prepare human exploration in Mars. The VIPER
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Fig. 1. Super resolution methods applied to NASA’s LRO mission lunar
surface images. (a) Bicubic, (b) ESDR, (c) Lunar HighRes-net (this work), and
(d) Ground Truth. The images are presented in color map to perceive better the
difference between the results of each super resolution method.

rover [6] will explore the South Pole of the Moon and gather
data about water-ice concentration in this region.

Nowadays, autonomous space missions heavily rely on the
perception of the local environment. Moreover, it is well known
that the conditions where rovers navigate are varied and harsh,
and the success of the mission is ligated to have solid prior
planning. Then, it is crucial to have a good understanding of the
issues that a rover can face while performing its mission, such as
the type of obstacles, slopes, and craters in the way of the robot.

In this sense, it is clear that having good models of the surface
becomes necessary to select the landing site and optimally pre-
plan the mission. This is a crucial part while defining a mission
because, although the robot has onboard sensors to avoid dealing
with unexpected situations, the chances of success are doubtful.
Moreover, considering the limited endurance of these rovers due
to extreme environmental conditions, it is vital to minimize this
kind of reactivity actions. Fig 1 shows one specific result of
this work applying image super resolution (SR) to lunar images.
The authors identify this technique as a promising tool that can
improve decision-making in future missions.

Pre-landing information is mostly obtained through remote
sensing missions like NASA’s Lunar Reconnaissance Orbiter
(LRO) [7] and ISRO’s Chandrayaan-2 [8]. The first one is a
mission with the sole purpose of mapping the lunar surface by
using satellite instrumentation, providing an almost complete
lunar map. In contrast, the second one is a lunar exploration
mission consisting of a lunar orbiter, a lander and a rover. In this

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
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case, the orbiter analyzed the surface area prior to landing the
rest of the mission’s components with a high-resolution camera.

However, there can be complications due to the lack of reso-
lution in the gathered data used with this purpose because it can
potentially omit relevant details that would be vital for the mis-
sion’s design. For example, NASA’s LRO [7] have a resolution
of up to 0.5 meters per pixel in the images obtained through the
Narrow-Angle Camera (NAC). Furthermore, database statistics
show that only a 40 % of the images are this accurate. The rest of
the database presents half or worse (1-5 m/px) resolution, which
could lead to the issues previously mentioned. Unfortunately,
nowadays, the only alternative to improve this data seems to be
the launch of new space missions with better instrumentation
and sensors, which is costly and challenging to accomplish.

Image enhancement research on the field of remote sensing
applied to space bodies has not been widely explored, but in
its equivalent used on Earth imagery, there have been some
improvements in recent years. In [10], [11] and [12] different
methods of Single Image Super-Resolution (SISR) has been
proved and applied to already existing databases. This SISR
process enhances the quality of an image using either tradi-
tional Computer Vision (CV) algorithms or Deep Learning (DL)
architecture, such as Convolutional Neural Networks (CNN)
or Generative Adversarial Networks (GAN). Depending on
the type of input image (RGB, Grayscale, Multispectral), the
network varies, but the algorithms follow similar architectures.
The improvement in the data quality can be obtained without
any new mission and in a much faster manner. It is, therefore,
a profitable and useful technique to be used in space robotics
applications. As an alternative to SISR, another method can be
used to achieve SR using multiple frames from the same image.
This method is called Multi-Frame Super Resolution (MFSR),
and it fuses the information available in each low resolution
frame of a scene to generate a super resolution image. In [18], an
example of this method applied to remote sensing is presented.
A deep neural network is trained to perform the low-to-high
resolution mapping from several remote sensing captures of the
same image.

This work1 aims to solve the lack of image quality problem
by using the DL architecture Lunar HighRes-net. This network
is based on the MFSR architecture of HighRes-net [13] and it
has been applied to the data collected through NASA’s LRO
mission. The selection of this methodology was based on the
study of its equivalent on Earth [10]–[12] that shows that this
type of solutions provides a viable alternative to the launch on
new and costly missions. Due to the importance of precision,
while performing path planning for the missions, a multi-frame
fusion method is employed instead of a single image one. The
use of single captures of a particular region can lead to missing
details as environmental conditions are decisive when gathering
the information. The position of the sun, for example, can lead to
shadow a region with rocks or smaller craters that won’t appear
in the image, potentially causing problems when navigating
these areas during the mission. However, the use of multi-frame

1A video with a summary of our work was published in: https://youtu.be/
3SA7qDRDJxU

captures of a specific area of the surface will provide more details
that will be taken into account while performing SR, as the
images won’t be captured under the same conditions.

The rest of the paper is structured as follows: Section II
presents the different databases created for this work, including
the source and the method used to obtain image datasets suited
for the neural network training. Section III describes Lunar
HighRes-net, the network architecture employed for the lunar
surface MFSR. In Section IV, the results of this work are
shown, both images and the metric used for the evaluation of the
performance of the network. Lastly, in Section V the conclusions
of this work are stated, and future lines of work are presented.

II. MOON’S SURFACE IMAGES

A. NASA’s Lunar Reconnaissance Orbiter

NASA’s LRO [7] mission started in 2009 with the objective
of mapping the Moon to properly plan future space missions,
providing information about craters, landing sites and regions
of interest. Two stereo Narrow-Angle Cameras (NAC) and a
Wide Angle Camera (WAC) performed remote sensing, cap-
turing images of every sector of the Moon and providing three-
dimensional information of the lunar surface thanks to the stereo
image pair. After several years of orbiting the Moon, the mission
was able to almost complete (98.2%) the map of the whole
lunar surface. The regions that remain unmapped are mostly
permanently shadowed areas within deep craters.

B. SpaceR’s Virtual Moon

In the computer vision field, synthetic datasets have been
becoming popular in the last few years. Artificial image datasets
present an alternative to complete image collections for the train-
ing of neural networks. In both [23] [24], examples of the use of
Unreal engine for the creation of virtual worlds and training
scenarios are presented. In fields such as space, real images
are hard to obtain, as the instrumentation used for this purpose
is not easily accessible, and artificial datasets allow to have
well-rounded databases. In [25], a virtual environment with lunar
rocks was developed. This dataset presents an image collection
suited for lunar surface image segmentation. Another example
of these types of space synthetic data collection is introduced
in [26], where a photorealistic simulator was created to train
deep learning solutions for in orbit spacecraft pose estimation.

In order to improve the amount of data that would be used to
train the SR neural network, we created an extra collection of
images generated from a virtual model of the Moon designed
using the graphic engine Unreal Engine 4 [19]. As the software
provides several tools for the alteration of the environment,
the surface of the Virtual Moon can be modified as needed.
They allow the possibility of adding and removing details to the
scene whenever it is needed, which allows obtaining a complete
and well-balanced details-wise dataset. Also, in Unreal Engine
4 aerial images can be taken from the virtual lunar surface
with different resolutions emulating a space remote sensing
mission. Therefore, it can be used as ground truth to evaluate how
the MFSR approach works. Some examples of both SpaceR’s
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Fig. 2. Examples of the images used to generate the datasets of this work.
(a) SpaceR’s Virtual Moon, (b) NASA’s LRO.

Virtual Moon and NASA’s LRO images are shown in Fig. 2.
Additionally, a diagram of the database creation process done for
this work can be seen in Fig. 3. For the creation of the synthetic
image dataset, a script was developed to emulate the flight of
a satellite taking captures of the Virtual Moon’s surface. After
obtaining 100 images, the illumination conditions were changed
and the script was launched again. This process was repeated
four times and every gathered image was then downgraded and
sliced to obtain the required patches and LR-HR sets for the
training of the neural network.

C. Esa’s Proba-V

The datasets used in this work follow the structure of the one
used in [13], where an MFSR was developed to enhance the
satellite images of the Earth of ESA’s PROBA-V database [14].
PROBA-V was obtained by taking captures of the Earth’s surface
with an orbiting satellite. To every region of interest present in
the dataset correspond at least 9 low resolution and one high
resolution images. During this mission, a satellite captured low
resolution (300 m/px) and high resolution (100 m/px) images
from the surface of the Earth. Thus, each region captured in the
database has one high and several low resolution images of the
area due to the capture frequency set for the on-board sensors.
Those images are also accompanied by metadata which provides

Fig. 3. Database creation diagram. The process can be described as: 1. Image
acquisition (from LRO database and direct captures from the Virtual Moon), 2.
color intensity variation to emulate different lighting conditions and 3. different
downgrade methods applied for the resizing to obtain LR image sets for each
scene.

much more details of every region, as the atmospheric and
environmental conditions in which the low resolution images
are taken are different.

The images from ESA’s PROBA-V missions were taken from
74 different regions of the Earth at different points in time by the
satellites of the said mission. The database is comprised of 1450
scenes, which are split into 1160 scenes for training and 290
scenes for testing. Each scene is represented by one grayscale
HR image, with a 100 meters per pixel resolution and 9 to 20
grayscale LR images, with a resolution of 300 meters per pixel.
The size of the images is 384 × 384 pixels for the HR ones and
128 × 128 pixels for the rest. Also, each image has associated a
clearance map that indicates the area of the image that should not
be processed by the neural network, as it is covered by clouds.

D. Datasets Adaptation

In this work, we prepared an equivalent to ESA’s PROBA-V
dataset using NASA’s LRO and Virtual Moon images 2 for
MFSR. In the case of the Virtual Moon, the illumination settings
of the environment where modified to obtain 5 captures of the
same scene with different illumination. In the case of LRO’s
images, the intensity of the pixel was modified to simulate the
illumination change. Then, the same procedure was followed for
both types of images. First, the original images were sliced in
patches of 384x384 pixels, the considered ground truth. Then,
the high resolution images were downscaled to generate low
resolution (128 × 128 pixels) versions of them. By applying
different interpolation methods, such as bicubic, bilinear and
nearest neighbour, among others, every region of the lunar sur-
face captured selected for the training of the network would have
a ground truth and 20 low resolution images. This downgrade
process allowed to perform MFSR on both lunar surface dataset.

2Both of the datasets utilized in this work are published and available to
the public in: https://wwwfr.uni.lu/snt/research/spacer/datasets_tools, in their
respective sections LRO datasets and VirtualMoon.
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Fig. 4. Lunar HighRes-net MFSR diagram adapted from [13]. A set of multiple images of the same scenes are used as input of the network. These images are
fused recursively in pairs in the embedding layer of the network. Finally, upsampling is performed and the SR image is generated.

Following the structure from ESA’s PROBA-V, the 147 sets
of images gathered from the Virtual Moon and the 60 sets from
NASA’s LRO are comprised by one HR grayscale image with a
size of 384 × 384 pixels and 20 artificially downgraded LR
grayscale images with a size of 128 × 128 pixels. The sets
are divided into 135 for training and 12 for testing for the
Virtual Moon database, and 54 for training and 6 for testing
for LRO’s database. The artificial downgrade was done over
the HR images to be able to compare the results of the neural
network when enhancing the resolution of the images x3. This
downgrade was done rescaling the images using traditional CV
interpolations and varying the color intensity of the images by
1%. This process emulates capturing images from the surface
of the Moon at different points in time and with a variety of
boundary conditions.

III. MFSR METHOD

A. Lunar HighRes-Net

Image super resolution methods [15] enhance the resolution
of a single or multiple images using either traditional CV al-
gorithms or DL techniques. In other words, it increases the
perceptual quality and the number of details and features that
appear in one captured scene. Even though the most widespread
technique is SISR, in some cases, MFSR presents a good alter-
native to enhancing images with a lesser amount of details in
the scene, like for instance, space images such as lunar surface
pictures. The main assumption of MFSR is that a set of several
views collectively contain more details than any single image
of the same scene. The work presented in this paper focuses on
the utilization of MFSR with lunar surface satellite imagery, as
the enhancement of the images will provide higher perceptual
quality and resolution. The current satellite images of the lunar
surface or, in general, any celestial body often present a lack
of precision in details about the surface characteristics, and
therefore it can lead to imprecise planning of the space mission.

The neural network presented in this paper, Lunar HighRes-
net follows the same architecture of [13]. It introduces Highres-
net, a model to apply MFSR to remote sensing images of Earth
inside a single spectral band (grayscale). In general, the network
follows an encoder-decoder architecture that can be trained by
using multiple images from the same scene. The input sets

consist of a ground truth image with several lower resolution
versions of it. This type of architectures works by fusing the
information available in the low resolution images of a scene.
The embedding layer of the network consists of a convolutional
layer followed by two PReLU activations. The embedded states
are fused recursively in pairs, reducing by a half its number
each time. The final fused state contains the information of
every view, and it is encoded into a HR state. Finally, this
state is decoded into the resulting SR image. HighRes-net is
paired with another network called Shift-net that would perform
sub-pixel translations in order to align the ground truth and the
super-resolution generated image. This operation ends up max-
imizing their similarities thanks to the sub-pixels shifts, thereby
improving the quality of the results of the image enhancement.
Fig. 4 shows the Lunar HighRes-Net architecture diagram of the
process using the proposed network for MFSR.

The architecture of HighRes-net [13] included a clearance
map to train the network to prevent clouds for interfering with
the process. Thus, the network’s recursive fusion layers would
consider the clouds as a region with no information, while ob-
taining features and details from any of the others low-resolution
captures of the same scene. In this work, we have modified this
network architecture to avoid having this clearance map in the
process and maximize how the dataset is exploited. Apart from
this variation, Lunar HighRes-net follows the same pipeline.
The input and output images of the network are 128 × 128
and 384 × 384 pixels respectively. Thus, the network perform a
three times resolution scaling over the low resolution image set
to produce the SR image. The datasets employed in the training
and testing task have followed the same structure as the one
used ESA’s PROBA-V database originally, as it was stated in
Section II.

B. Validation Metric - PSNR

For the evaluation of this work, the metric Peak Signal-to-
Noise Ratio (PSNR) was used. It is the most used metric for SR
evaluation. It defines the ratio between the maximum power of a
signal and the noise that affects the fidelity of its representation.
When applied to images, it can be easily defined via the Mean
Squared Error (MSE). It can be described also as an objective
metric to measure the quality of the reconstruction of a lossy
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transformation. Given a monochrome image I and its noisy
approximation N , the PSNR can be stated as:

MSE =
1

mn

m−1∑

i=0

n−1∑

j=0

[I(i, j)−N(i, j)]2 (1)

PSNR = 20 · log10(MAXI)− 10 · log10(MSE) (2)

where i and j are pixel’s coordinates and MAX the maximum
intensity pixel value of the image I .

This metric has been widely used in the state of the art for SR
for a long time. In most cases, the average dB values of PSNR
obtained by the latest research works are in the range 30-40 dB.

IV. RESULTS

In this section, we validate the usage of the Lunar HighRes-net
neural network for obtaining SR images of the lunar surface.
To evaluate the performance of the network, the widely used
metric Peak Signal-to-Noise Ratio is used, following most of
the SR works in the literature. Additionally, three different
training input for the network are presented in the section to
perform a comparison among them. Lastly, the results produced
by the network are introduced along with a comparison to other
commonly used image SR methods.

A. Training and Transfer Learning

The training of the network to achieve SR on lunar surface
images was divided into two main steps. First, a base training
was done with ESA’s PROBA-V as input. Then, while having
the weights of this base training, a transfer learning approach
was used to prepare the network to work with lunar images.
Three different trainings were done to test the performance of
the network using different inputs. The different trainings done
over the network are:

1) PROBA-V: ESA’s database was the only one used as
an input for the training. The result trained network is
equivalent to the original HighRes-net.

2) PROBA-V + Virtual Moon: This case includes the pre-
vious training, while performing transfer learning and
training the network with additional image datasets from
the Virtual Moon database.

3) PROBA-V + Virtual Moon + LRO: Finally, this case
includes transfer learning from the previous one as well
with another training with the extra input from the adapted
NASA’s LRO database.

The core training of the network with PROBA-V’s database
was done over 400 epochs, with a batch size of 8. This size
was selected to be able to perform the training on a Nvidia’s
RTX 2080 graphic card. Default hyperparameters for the ADAM
optimizer and the same learning rates showed in [13]. For the
training after the transfer learning with both Virtual Moon and
LRO’s databases, 100 epochs were selected, keeping the batch
size and hyperparameters equal to the first part of the training.

The average values of PSNR, in dB, obtained through the
training with the three different inputs were analyzed to look
for the best results for both Virtual Moon and LRO databases,

TABLE I
AVERAGE PSNR TRAINING RESULTS WITH DIFFERENT INPUT DATASETS

(IN DB)

TABLE II
PSNR VALUES COMPARISON BETWEEN DIFFERENT SR METHODS (IN DB)

concluding that the combination of the three presented datasets
was key to a multipurpose solution for both image collections.

Lunar HighRes-net trained with images from the three
databases presented in this work have been proven to provide the
best results, as it can be seen in Table I. The addition of LRO’s
images to the training does not increase the SR performance of
the network with Virtual Moon’s images. However, it can be
seen how the image enhancement of LRO does improve when
including every type of dataset. It can also be seen how the Lunar
HighRes-net network perform better with lunar surface images
and a complete training than the base HighRes-net.

B. MFSR Results

For the experiments, the test image set defined previously in
the databases was used. They consist of the comparison between
the high resolution ground truth and the super resolution image
generated using the presented network. Lunar HighRes-net has
been evaluated using the images from both the Virtual Moon and
NASA’s LRO defined in Section II with the PSNR metric. These
results have been compared with other SR techniques to validate
that Lunar HighRes-net is a valid approach to lunar surface
image enhancement, and it achieves state of the art scores. The
results of enhancing the input dataset resolution x3 with the
different solutions are presented in the Table II. We used the
well-known open-source computer vision library OpenCV as it
has built-in methods that use networks for image SR that were
evaluated in lunar imagery for reference. For the comparison,
image scaling with bicubic interpolation was used to have a
reference of a SR traditional computer vision method. Addition-
ally, three machine learning methods were used: EDSR [20],
ESPCN [21] and FSRCNN [22]. These networks have been
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Fig. 5. Full image comparison between the different SR methods used in this paper. (a) Bicubic, (b) ESPCN, (c) FSRCNN, (d) EDSR, (e) Lunar HighRes-net,
(f) Ground truth. The size of the figure makes it possible to better appreciate the difference between methods.

proved to provide high detailed SR image solutions for many
applications, such as botanic and zoological imagery. Due to the
wide variety of SR applications where these architectures can
be utilized, they were selected for the comparison in this work.
These implementations were used on the lunar surface imagery,
and the results were evaluated comparing the SR version of the
scene with the ground truth also with the PSNR metric. Fig. 5
presents an example of the results obtained with the different
SR algorithms.

The quality of the generated SR images compared with the
ground truth of the test dataset is evaluated with the PSNR
metric in Table II. The results obtained after performing SR
on lunar images from both LRO and the Virtual Moon datasets
with the different methods are displayed. Bicubic interpolation
is one of the most basic traditional computer vision algorithms
of resolution enhancement, and it is compared as reference
with the rest of the methods. FSRCNN [22], ESPCN [21] and
EDSR [20] are selected as generic methods of deep learning SR
for comparison. Finally, the Lunar HighRes-net column shows
the results of this work, after the training with the combined
remote sensing datasets previously mentioned. The results of
Table II show that Lunar HighRes-net provides the best results
according to the PSNR when compared to the other methods.
Furthermore, a perceptual quality increase can be seen in the
output of the network. Some examples of the output of the
network can be seen in Fig 6 along with one of the input images
and the ground truth. High level features present in these images,
such as rocks or craters, show the easiest to notice resolution
enhancement achieved with Lunar HighRes-net. Even though

Fig. 6. Results from using Lunar HighRes-net on different images of
the databases created for this work. (a), (b), (c) LRO images, (d) Virtual
Moon image. The following link provides a folder with real size images:
https://wwwfr.uni.lu/snt/research/spacer/datasets_tools, in the corresponding
section of Lunar High-ResNet results.
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some of the SR images from the Virtual Moon display a high
PSNR due to the presence of small shadowed regions in the
scene, it can also be seen that the results of the x3 enhancement
achieve similar results to other SR network architectures in the
field of image improvement. As it was mentioned the average
values obtained in the process are similar to the state of the art
in image SR.

V. CONCLUSION

In this work, we presented Lunar HighRes-net, a deep-
learning based Multi-Frame Super Resolution method to en-
hance images of the Moon’s surface. We also introduced and
shared two databases that have been created for the training of the
presented network, one adapted from NASA’s Lunar Reconnais-
sance Orbiter mission imagery and a second one obtained from
a virtual Moon developed in Unreal Engine 4. These databases
are composed of image sets both artificial and real of lunar
surface images. Each set contains one high resolution image
(384 × 384 pixels) and 20 corresponding low resolution images
(128 × 128 pixels) of the same scene. A transfer learning ap-
proach was performed from ESA’s PROBA-V database training.
Training results evidence that the addition of the new datasets
created for this work to the training process of the network
improve the performance of the network. The results obtained
with Lunar HighRes-net achieves state of the art performance
(35-40 dB) according to the results evaluated with the well-
known Peak Signal-to-Noise Ratio for both image datasets. It
also presents a significant quality improvement over other well
known deep learning super-resolution approaches. Future work
in this research line will focus on fine-tuning performed over the
network Lunar HighRes-net. Additionally, new deep-learning
architectures based on Generative Adversarial Networks (GAN)
will be explored for space images super-resolution. These type
of networks achieve better results in some cases of the state
of the art of super-resolution when compared with convolu-
tional architectures. Lastly, it will be studied the estimation of
3-dimensional information from super-resolution stereo image
pairs. This will allow to increase the precision of the elevation
maps of the lunar surface and therefore aid in preparing new
space robotic missions on the Moon.
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Super-Resolution of Lunar Satellite Images for
Enhanced Robotic Traverse Planning

J.I. Delgado-Centeno1, P. Harder, V. Bickel, B. Moseley, F. Kalaitzis, S. Ganju, M.A. Olivares-Mendez

Abstract—Lunar exploration missions require detailed and
accurate planning to ensure their safety. Remote sensing data,
such as optical satellite imagery acquired by lunar orbiters, is
key for the identification of future landing and mission sites.
Here, robot- and astronaut-scale obstacles are the most relevant
to resolve, however, the spatial resolution of the available image
data is often insufficient - particularly in the poorly illuminated
polar regions of the Moon -, leading to uncertainty. This work
shows how a novel single-image Super-Resolution (SR) appli-
cation - ANUBIS, Adversarial Network for Uncertainty Based
Image Super-resolution - can enhance lunar surface imagery by
improving their resolution by a factor of 2, outperforming other
approaches and benchmarks. The enhanced images improve the
reliability and detail of lunar traverse planning and topographic
reconstruction, while providing an estimate of the uncertainty
associated with the enhancement process, vital to ensure mis-
sion planning integrity. This work demonstrates how machine
learning-driven processing can enhance existing data products to
maximize their value for science and exploration of the Moon
and other celestial bodies.

Index Terms—Image Super-resolution, Space robotics, Remote
sensing, Traverse planning.

I. LUNAR MISSIONS AND REMOTE SENSING

Nowadays, the Moon is in the spotlight of numerous com-
panies and space agencies thanks to the benefits to humanity
once these missions begin in earnest. In fact, there are several
new planned missions for the next decade with many different
objectives, including the building of a permanent lunar human
settlement [1], or lunar polar exploration for water prospection
[2] [3]. The historic success of robots in extraterrestrial bodies
reveals that they play a crucial role as an enabling technology
to build the lunar economy. Robots can deal with the harsh
and vast lunar environment better than humans, allowing us
to explore the Moon’s surface without facing any of the
inherent risks of being present at an extraterrestrial location.
Therefore, most of the mentioned missions will involve robotic
operations.

Autonomous robotic missions rely on the knowledge col-
lected prior to the mission about the environment where it
will be performed. Thus, satellites are sent to other celestial
bodies to remotely study and analyze many aspects of the
different locations where the robot will perform its tasks.
A good understanding of these locations is vital to ensure
the success of the mission and the achievement of its end
goal. For the Moon, the biggest publicly available remote
sensing dataset is provided by NASA’s Lunar Reconnaissance
Orbiter(LRO) satellite mission [10], which for the past 13
years has been collecting data with a variety of sensors,

1Correspondence author

including cameras, an altimeter and radiometers. Such remote
sensing data allows to crucially reduce the potential risks that
can cause harm to the mission at the same time that is used
to set realistic goals and targets. However the available data,
for some lunar locations particularly, can be insufficient due
to its inherent environmental conditions. In the case of the
lunar poles for example, which are one of the main upcoming
mission targets, the permanent low lighting conditions won’t
allow to obtain optimal image resolution of these regions.
LRO images taken in these locations can only achieve a 1
meter per pixel resolution, even though the best (nominal)
achievable resolution with the Narrow Angle Camera on board
of the satellite is 0.5 meters per pixel. Furthermore, the scarcer
resolution on satellite images may lead to inaccurate planning
and therefore, an increment of the potential hazards of the
lunar mission.

For the image resolution problem, there are mainly two
alternatives. The first option is to design, build and launch a
new satellite with better instrumentation on board. The newly
acquired data would present better resolution, which would
produce as a result an increment in the mission planning’s
precision. However, this solution would require enormous time
and financial efforts, which makes it challenging. Also, a new
mission would need years until a remote sensing dataset as
rich as NASA’s LRO for example can be built. It is worth
mentioning that in-orbit satellites could also acquire more
precise data by getting closer to the lunar surface at the cost
of spending fuel and reducing drastically the mission duration,
which makes it non-viable.

Alternatively, direct image enhancement using image Super
Resolution (SR) presents a second, much more viable option
that can be directly applied to the huge archives of data already
collected by different remote sensing missions. These com-
puter vision methods take an image and increase its resolution
several times, producing a higher quality and more detailed
version. As an image processing operation, SR can be directly
applied to existing image datasets, potentially improving the
resolution and detail quality of entire existing collections,
with just computational resources as a requirement. Remote
sensing has been paired in research with image SR for many
years. These either fall into Single Image SR (SISR) [4], [5],
or Multi Frame SR (MFSR) [6], [6] techniques depending
on the available information and the quality of the curated
satellite image dataset. In this collection of recent works, deep
learning architectures are state-of-the-art when it comes to
image enhancement.

Regarding planetary missions, SR is a valuable asset in
image enhancement due to the limitations in data transmission
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Fig. 1. (a) Direct comparison between lunar images with different resolutions: LR is Low resolution at 1m/px, SR is the product of our image enhancement
Super-resolution process at 0.5m/px and HR the ground truth image also at 0.5 m/px. (b) Two map projected LRO images of the Kepler crater (latitude: 8.09,
longitude:322) from different satellite orbits (left, center) and their corresponding lunar elevation map (right). The noisy pixels that can be found in the maps
are particular locations whose altitude was not possible to calculate.
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as well. In [7], the authors propose a method that combines
SR and inference suppression to improve the resolution of
sub-surface data acquired with the Shallow Radar on board
NASA’s Mars Orbiter Mission (MRO). Furthermore, in [8] is
shown how the characterisation of dynamic surface changes
on the Martian surface can be enhanced by applying SR
techniques to the image data provided by MRO’s instrument
High-Resolution Imaging Experiment (HiRISE). The closest
method to the work presented in this paper is Lunar HighRes-
net [9], which provides the first approach of lunar image
enhancement with Deep Learning. The HighRes-net MFSR
architecture [6] is utilised to increase the resolution of lunar
surface images provided by NASA’s LRO NAC instrument
in it. However, this approach uses synthetically downsampled
and shifted imagery. Therefore, it is not possible to use
it directly to improve the LRO dataset, as every gathered
image by LRO has different lighting conditions, making an
MFSR approach not directly applicable. Additionally, in [9]
the inherent uncertainty of the output features is not estimated.
This fact presents a limiting factor in the applicability of the
proposed method, as its usage in critical applications such as
lunar robotic missions could introduce unknown errors in the
process and therefore compromise the safety of the planned
robotic task.

This work introduces a Single Image Super-resolution
(SISR) application for enhancing lunar surface images gath-
ered by NASA’s Lunar Reconnaissance Orbiter satellite mis-
sion. The main goal of this application is to showcase the
applicability of these techniques to real lunar data and their
viability in improving lunar robotics traverse planning. Our
method takes a low resolution lunar surface image from
this dataset and super-resolves it, providing a 2× resolution
enhancement using a Machine Learning (ML) based technique.
Due to the ill-posedness of SISR, we include an uncertainty
estimation in our output. Importantly, downstream tasks related
to space robotics missions were employed to validate the
performance of this application and to showcase its potential
reliability. Specifically, we investigate this work’s performance
on obstacle detection and path planning tasks, emulating lunar
mission planning. Lastly, this method was used to produce
Digital Elevation Maps (DEM) of the Moon with enhanced
resolution, which is the most versatile and exploited data prod-
uct in robotic traverse planning for extraterrestrial locations.
The main contributions of this work can be summarized as:

1) A novel application of generative model based SISR
for real lunar surface images, which achieves a 2×
resolution enhancement.

2) Uncertainty estimation along with the enhanced images
by using a deep ensemble of networks to increase the
reliability of the method.

3) Performance validation of the SR method using real
downstream tasks related to lunar robotic missions,
allowing to reliably estimate its performance and ensure
safety by mean of the uncertainty estimation.

4) A proof of concept for the utilisation of image SR to
enhance DEMs of the lunar surface.

This application is called ANUBIS - Adversarial Network for

Uncertainty Based Image Super-resolution.

II. METHODOLOGY AND DATA

A. Lunar surface image dataset

NASA’s Lunar Reconnaissance Orbiter [10], [11] is a
satellite launched in 2009 with the objective of collecting
as much data as possible from the lunar surface. Since its
launch, the satellite has gathered more than 2 million images
using both its Narrow Angle Camera (NAC) and Wide Angle
Camera (WAC) [12]. Mainly, the only surface areas with a
lack of representation by the satellite observations are the
permanently shadowed regions inside polar craters. Due to the
inherent lighting conditions, sunlight never reaches the inside
of different polar craters, causing the lack of visual information
and data in the LRO dataset.

The best available image resolution of LRO’s dataset is pro-
vided by the NAC. This instrument consists of two nominally
identical cameras that capture 12-bit panchromatic optical
images. Each camera consists of a one-dimensional 5064-
pixel CCD oriented perpendicularly to the direction of flight,
providing a 10 µrad field of view. Two-dimensional images
are generated along the satellite’s orbit by capturing multiple
image lines as the spacecraft moves (push-broom scanning).
This means that the spatial resolution of the images depends on
both the spacecraft altitude and the exposure time. Both factors
can vary; typically, the spatial resolution ranges between
0.5 − 2.0 meters per pixel in both the in-line and cross-
line image directions. Additionally, this instrument has two
operational modes: regular and summed mode [13]. When the
camera capture images in regular mode, the full 5064-pixel
array is used to obtain the best possible image resolution.
However, if this regular mode would be used in low light
conditions, the photon count for every pixel of the sensor
would be low and therefore, the collected images rather dark.
As an alternative, the summed mode adds the adjacent pixel
intensity values to produce better quality images, where the
details of the lunar surface can be seen more clearly. This
operational mode comes at the cost of having half of the
maximum achievable resolution with the sensor, which is the
main reason of why for example,in the darker polar regions
the maximum image resolution is 1 meter per pixel for the
lunar surface frames.

B. Data augmentation

This work aims to learn to super-resolve the summed
mode LRO lunar images back to their original regular mode
resolution. To do so, a dataset of Low Resolution (LR, 1m/px)
- High Resolution (HR, 0.5 m/px) image pairs was created
from a collection of LRO NAC images in their Experimental
Data Record (EDR) form, i.e. raw photon count images
without any post-processing (calibration) applied. Deep Neural
Network (DNN) based remote sensing SR requires both LR
and HR data for the training process. In most cases, sufficient
quantities of these matching image pairs are not available due
to the complexity of collecting matching LR - HR pairs that
cover the same location with similar illumination conditions.
Therefore, synthetic downsampling modes are commonly used
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as an alternative to create the necessary datasets for this
matter. The HR images in our dataset are authentic regular
mode images, whilst the LR images are their corresponding
synthetically down-sampled versions obtained using the real
LRO summed mode operation. Many upcoming lunar missions
will be focused on the south pole, where the summed mode
images are predominant. Therefore, the dataset was curated to
represent the real summed mode images taken over the lunar
south pole, with the goal of developing a tool to improve the
quality of the polar region’s data and enhance the information
for the missions. Ground truth regular mode HR images
were selected for this task from the more equatorial lunar
Highland regions, as the South pole is considered a Highland
region as well. Images were also selected such that their
lighting conditions matched the expected lighting conditions
of summed mode images at the South pole. Specifically, only
images that had solar incidence angles between 65 and 90
degrees were finally chosen. In total, 7000 EDR regular mode
images with 0.5 meters per pixel resolution were selected from
the LRO database. Within each selected image, several 32×32
image patches from random locations were extracted. To avoid
the presence of completely dark frames (shadowed regions),
image patches were discarded if their average intensity was
below a certain threshold. This resulted in a total of 220,000
image patch pairs. The summed mode downsampling process
was performed on every patch following the guidelines from
NASA, replicating every step and operation performed at
pixel-level and producing 16x16 pixels (1 meter per pixel
resolution) matching LR patches. 10,000 LR-HR patches pairs
were randomly sub-selected for the test and validation datasets,
and the remaining 200,000 patches formed the training dataset.
To perform a qualitative evaluation of the implemented syn-
thetic downsampling operator, the LRO dataset was scanned
to find a regular-summed image pair that covered the exact
same location and had similar lighting conditions at the capture
moment. A synthetically down-sampled regular mode image
was compared to a real summed mode image (Fig. 2) at a
location where both images happened to overlap, showcasing
the accuracy of the downsampling operation used in this work.
It is worth noting that these types of real LR-HR pairs were
not used in our training data as they are notoriously rare, and
accurately aligning them would be a challenging task.

C. Lunar images super-resolution

This work introduces ANUBIS (Adversarial Network for
Uncertainty Based Image Super-resolution), see Fig. 3. ANU-
BIS is a generative model (with a Generative Adversarial
Network, GAN architecture) that maps 1/m pixel lunar surface
summed mode images to a 2× higher resolution regular mode
equivalent. This provides enhanced quality data of sections
of the Moon where the resolution was limited due to envi-
ronmental conditions. Additionally, the application gives an
uncertainty estimation at the same grid as the SR output to
provide information on the reliability of the super-resolved
image. The uncertainty is calculated by using an ensemble [14]
of networks whose outputs can be compared to understand
which parts of the super-resolved images are consistently

Fig. 2. Summed mode operation. (a) Mean of near neighbour pixels diagram.
(b) Perceptual validation of our downsampling approximation. A real Regular-
summed mode image pair that cover the same lunar surface area were used
to validate our approach.

enhanced similarly and therefore, reliable for any application
where the images are used.

The ANUBIS architecture workflow is shown in Fig. 3.
The first element of the architecture, the generator, is used
for upscaling the 16 × 16 pixels LR image patch input.
This network is formed by 8 residual blocks, 4 convolutional
(3 followed by ReLU activation layers), and 1 transposed-
convolution layer. Each one of the convolutional layers in-
cluding the residual blocks contain 64 channels with a stride
and padding of 1. The kernel size for the residual layers is
3 while for the rest of the convolutional layers is 1. The
ablation study performed on the network led us to remove the
batch normalization layers that were present in some GAN
of the literature for better performance. The second element
of ANUBIS, the discriminator, is used to improve the quality
of the SR output of the generator. It uses as input the SR
image and tries to discern if it is an actual real lunar surface
image or a super-resolved one. The discriminator is composed
by 5 convolutional layers followed by ReLU activations and a
final pooling followed by sigmoid activations. The architecture
generates a single (deterministic) super-resolved image for
every LR image input. The network assumes that the missing
information needed to infill and enhance the image resolution
is implicit in the input pixels, even though the SR is an ill-
posed problem. Instead of generating a single SR output from
one trained generator, ANUBIS generate one SR from each
member of the ensemble, following other recent works [16].
To do so, 24 instances of the GAN model were trained with
different random seeds and initial weights, creating a deep
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Fig. 3. The ANUBIS architecture consists of a ResNet-based generator and a CNN-based discriminator. Colors indicate the block types.

ensemble of networks that produces various super-resolution
images from a single LR image. The empirical distribution
of SR samples approximates the true posterior distribution
of HR images, conditioned on the entire dataset of LR/HR
pairs. Finally, the standard deviation is computed across the
SR samples, generating a pixel-wise uncertainty map, see Fig.
4. For every LR image, there are several corresponding HR
versions of it due to the missing information in the original
one. It is important to explore this distribution to ensure the
accuracy of the proposed super-resolved image and its validity
for real world applications where safety is critical.

ANUBIS is trained on the LR-HR image pairs previously
described in this section. Both architectures were trained
using the Adam stochastic gradient descent algorithm for
200 epochs. An MSE loss is used for the generator and a
Binary Cross-Entropy (BCE) loss function is used for the
discriminator. We use a batch size of 256 image patches and a
learning rate of 1 · 10−4 for the GAN. In the adversarial loss,
the importance ratio of the generator vs the discriminator loss
is 1000:1. All experiments were run on an NVIDIA A100
GPU with an early stopping mechanism with a patience of 20
epochs.

III. METHOD VALIDATION

A. Metrics

For the quantitative evaluation of ANUBIS, two different
metrics have been used: Peak Signal-to-Noise Ratio (PSNR)
and Structural Similarity Index Measure (SSIM). These two
metrics are the most commonly used evaluation methods in
SR state-of-the-art works for image enhancement comparison.
The results of the application introduced in this paper are
compared with different baselines and evaluated directly using

Fig. 4. Estimated uncertainty over the super-resolved image and its upper-left
patch. For every pixel (of intensity range [0,1]), we compute the variance over
the ensemble set of super-resolved images. The result is a heat map that is
associated with the uncertainty of the posterior distribution about the unknown
HR.

the mentioned metrics in this section. By obtaining good image
reconstruction, the pixel variance along ANUBIS’ output
image distribution can be studied to see which pixels are
consistent throughout the collection as it was stated in the
previous section.
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Fig. 5. Three examples of the lunar surface images super resolution comparison: (a) Low Resolution, (b) Bilinear, (c) Bicubic, (d) ANUBIS (our work) (e)
Ground truth. The selected images were randomly taken out of the test set of images.

1) Peak Signal-to-Noise Ratio: Peak Signal-to-Noise Ratio,
one of the most used metrics in image SR, estimates the quality
of the reconstruction performed by a DNN when enhancing
an LR image. It is directly derived by the Mean Squared Error
(MSE). Given a monochromatic high-resolution image IH of
size U, V and its super-resolution counterpart IS , the PSNR
is defined as:

MSE =
1

UV

U−1∑

i=0

V−1∑

j=0

(IH(i, j)− IS(i, j))
2 (1)

PSNR = 20 · log10(MAXIH )− 10 · log10(MSE) (2)

with MAX being the maximum possible pixel value of the
image.

2) Structural Similarity Index Measure: The Structural
Similarity Index Measure metric evaluates the degradation as
a variation in the structural information between IS and IH .
It complements the use of PSNR as a metric, instead of being
based on the absolute error, it focuses on the structures of the
images represented by the correlation between spatially close
pixels. For images IS and IH of size U, V , the SSIM can be
defined as:

SSIM(IH , IS) =
(2µISµIH )(2σISIH + c2)

(µI2
S
+ µI2

H
+ c1)(σI2

S
+ σI2

H
+ c2)

(3)

where: µ is the mean, σ2 is the variance, c1 = (K1L)
2, c2 =

(K2L)
2 are variables for stabilization of the denominator, L

being the dynamic range of the pixel values and lastly K1 =
0.01, K2 = 0.03

B. Results

For the evaluation of the enhancement process, we have
chosen four different baselines. The first two are traditional

computer vision techniques for image upscaling, the bilinear
and bicubic interpolation. The other two selected upscaling
methods are the Fast Super-resolution Convolutional Neural
Network (FSRCNN) [18] and the Enhanced Deep Resid-
ual Networks for single-image super-resolution (EDSR) [19].
These DL-based techniques are two of the best performing
networks metric wise according to one of the latest survey
paper [20] on the topic. The result images obtained after
performing the upscaling operation for all 10,000 LR image
patches from the test dataset with all five methods were
compared against their corresponding ground truth, evaluating
the quality of the super-resolved images with the metrics
chosen. Table I displays the obtained average metric values
across the total amount of image LR-HR pairs from the test
set. As ANUBIS generates a super-resolved image distribution,
the PSNR and SSIM values are calculated as an average across
this distribution. ANUBIS outperforms the baseline methods
in both of the selected metrics, presenting the best results
in enabling the summed mode LRO image upscaling needed
for planetary science applications. Along with these results,
a measurement in the reliability of the upscaling process of
our application could be obtained by analyzing the similarity
of the image collection produced by the deep ensemble of
networks that form ANUBIS, which is also of vital importance
when using generative models in real world applications to
avoid the so-called ”hallucinations” and misinformation that
can be added in the process.. Fig. 5 showcases three example
comparisons between some baseline, our method, and both
LR and HR image patches. The LR and HR pairs were taken
from the test set and the LR image patch was upscaled with
the different methods for the visual display of the results,
following the procedure that was used for the metric evaluation
of ANUBIS. It can be seen that ANUBIS is able to retrieve
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more details from the LR version of the image than the
baselines, even in the case where the ground truth images
present some distortion due to specific lighting conditions at
the moment of capture. As the images used in the training
of the proposed application are raw images captured by the
satellite with no preprocessing, the calibration process used
by NASA in LRO images could also be applied to the super-
resolved imagery to remove the mentioned distortions.

TABLE I
COMPARISON OF ANUBIS (OURS) VS. BASELINE METHODS USING BOTH

PSNR AND SSIM METRICS AVERAGED OVER THE 10,000 IMAGE PATCHES
THAT FORM THE TEST DATA.

Bilinear Bicubic FSRCNN EDSR ANUBIS*
PSNR (dB) 23.01 24.01 25.32 25.54 26.15 ± 0.97

SSIM 0.785 0.83 0.86 0.86 0.91 ± 0.03

C. Lunar robotics downstream tasks

In order to further validate ANUBIS, space robotics related
tasks were used to showcase the performance of our appli-
cation. Even though this validation acts as a check of the
potential of this application, it can be seen the improvements
that image SR can provide to enhance lunar robotics traverse
planning based on remote sensing data.

1) Obstacle detection: The first downstream task is lunar
surface obstacle detection based on satellite images for lunar
rover navigation. First, image gradients are calculated to
act as edge detectors. Then a dark spots filter is used to
obtain pixel-level information about lunar surface features.
This information was processed to create a binary obstacle
mask. Every extracted pixel with the image gradients and the
low-intensity filter were assigned a value of 1, having the
remaining pixels in the mask a 0. This mask is later used as an
input for the second downstream task, path planning. In this
operation, the goal is to find the same obstacles as in the LR
while displaying an amount of obstacles closer to the ground
truth in comparison. Fig. 6 shows an example of the results

TABLE II
OBSTACLE DETECTION COMPARISON (TEST DATASET).

# obstacles % obstacles
(1) Low Res 3,198,783 -
(2) ANUBIS 3,591,247 -
(3) High Res 3,645,228 -

(4) HR-SR Matches 3,252,770 89.233 %
(5) HR-LR Matches 2,866,850 78.648 %
(6) High Uncertainty 92,367 2.5 %

(7) Hallucinated Obstacles 5,874 0.16 %

of the obstacle detection task performed over LR, SR, and HR
images. Additionally, Table II shows the results of applying
the segmentation algorithm to the 10,000 image patches of the
test dataset. Rows (1), (2), (3) display the total pixel obstacle
count across the test dataset for each LR, SR, and HR capture
(ANUBIS obstacle count is performed over the average of each
produced distribution). Rows (4) and (5) show the amount
of obstacle matches between the HR, SR and LR masks
respectively. Row (6) contains the total amount of obstacles

Fig. 6. Obstacle detection image and patch example. (A) Low resolution,
(B) ANUBIS, (C) Ground truth. The super-resolved image (B) is the image
average of the distribution generated by ANUBIS.

with high uncertainty (low reliability) in the SR mask. Row
(7) displays the amount of hallucinated obstacles by ANUBIS
(compared to the ground truth). 89.233 % of the ground
truth obstacles are detected in ANUBIS super-resolved image.
In contrast, the percentage of obstacle matches between the
ground truth and the LR (enhanced with bicubic interpolation
for a more direct and straightforward comparison) is 78.648
%. The uncertainty map generated by ANUBIS is also used to
analyze the reliability of the detected obstacles. 92,367 pixel
obstacles (2.5 %) have high uncertainty, being 5,847 (0.16
%) of them hallucinated by the GAN. As there is always a
tiny chance of an obstacle being a hallucinated feature, with
the uncertainty estimation, these areas could be avoided in
real-world critical operations such as path planning for rover
navigation. It can be seen how ANUBIS output provides better
model accuracy for this downstream task when compared to
the performance based on LR images.

2) Traverse planning with uncertainty map: The second
downstream task defined for ANUBIS was path planning
using super-resolved images. Typically, the image resolution
required for this type of analysis is a minimum of 1 meter per
pixel or better to include all surface features relevant for rover-
/astronaut-scale navigation. The previously defined obstacle
detection algorithm was employed to create an obstacle mask.
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Fig. 7. Path planning downstream task example. 3 different trajectories
are overlayed in (a) ANUBIS super-resolved image, (b) Obstacle mask
(uncertainty obstacles included), (c) Uncertainty map, (d) ANUBIS super-
resolved image + obstacle mask.

A generated binary mask represents every detected potential
obstacle with a pixel value of 1. Then, both starting points
and end goals are defined. The goal of the path planning was
to define a traversable route for a virtual rover to navigate,
avoiding any obstacle by using an A* algorithm with a forward
heuristic (shortest path). The ANUBIS uncertainty map can
also be a valuable resource for path planning. A certain
threshold can be set to exclude high uncertainty regions from
the traversable areas. In some of the cases, the distance for the
super-resolved image-based trajectory will be greater, but the
safety of the task increases with it if the uncertainty estimate
is used. In future works, the uncertainty maps estimation will
be further explored to assess their potential in super-resolved
images based trajectory planning. Quantitative evaluation of
this task was done by checking the similarity between distance
traveled and trajectories in the test cases. Although this metric
might not be optimal for evaluating the improvement obtained
with the super-resolved images, it can act as a simple test to
see the difference between using an LR or an SR image for
the task compared to the HR ground truth. A 100 × 100 px
image (50 × 50 m area) was used as the operational terrain
for the downstream task, with a total of 6 paths generated on
it. Table III shows the path’s total distance for the different
cases.It highlights how the increased resolution allows more
precise and closer to the ground truth planning compared to
the one estimated with the LR image. Additionally, as the high
uncertainty super-resolved pixels are treated as obstacles, the
safety is potentially increased if the generated path would be
used for real-world navigation. For this downstream task, the
utilisation of the test set was not viable as the image patches

TABLE III
DISTANCE (M) FOR EVERY GENERATED PATH. FOR EVERY CASE,

EQUIVALENT LR/ANUBIS/HR IMAGE INPUTS WERE USED.

Path # LR ANUBIS HR
1 74.183 65.606 66.435
2 104.681 100.888 101.181
3 49.384 50.177 50.177
4 54.071 54.571 54.571
5 55.384 55.177 55.177
6 64.899 64.571 64.571

contained in it were too small (32 × 32 px) to generate and
plan a relevant trajectory.

3) Super-resolution based digital elevation map enhance-
ment: Lastly, a proof of concept of how image SR techniques
can also enhance elevation maps used for lunar missions is pre-
sented as a final downstream task. Typically, digital elevation
maps can be obtained through remote sensing images of the
lunar surface taken from different orbits (stereophotogramme-
try). NASA’s Ames Stereo Pipeline (ASP) [17] for example,
is a set of software tools that allows, among other things,
to perform elevation map generation of planetary locations
out of satellite images of missions such as LRO (Moon) and
MRO (Mars). Using diverse information about the satellite
position, the software framework estimates the stereo features
and therefore, the altitude of the different surface elements.
The elevation maps display the required data needed for
robotics trajectory planning among other tasks, as they present
slopes and terrain roughness along with surface obstacles such
as craters and boulders.

To showcase the utility of image SR with Digital Elevation
Maps (DEM), an additional step was included in NASA’s
ASP DEM generation process. This new preprocessing step
consisted of introducing ANUBIS into the pipeline to enhance
the resolution of the images before they were used to generate
lunar surface DEMs. This technique indirectly produces better
maps that can increase the accuracy of the lunar mission
planning and thus, lower its risks.

To validate this method, two different lunar regions were
selected that each feature a image stereo pair selected from
NASA’s LRO NAC dataset. These images were used as the
high resolution ground truth (HR) for the experiments. As
low resolution images with similar lighting conditions of these
areas were unavailable due to the overall scarcity of the NAC
dataset, we downsampled the images by using the summed
mode operation as introduced above, reducing the resolution
by half. Then, ANUBIS was utilised to super-resolve (SR)
these synthetically downsampled LR images. Finally, we used
NASA’s ASP tools to create two different versions of the
elevation map for each region (HR-SR). The exact algorithms
used were the Semi Global Matching (SGM) and More Global
Matching (MGM) implementations from the ASP.

An example of the resulting elevation maps (Kepler crater)
can be seen in fig. 8, along with an altitude profile of a selected
region that allow for a comparison of the altitude variation
across the maps. Table IV shows the direct altitude error com-
pared between the reference ground truth and the SR version
of the elevation map in average and also the maximum error
discrepancy. It can be seen how adding image enhancement
to the DEM generation pipeline produces elevation maps with
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Fig. 8. (a) Digital elevation maps comparison of the Kepler crater between the high resolution ground truth (HR, left) and the super-resolved (SR, right)
maps. The red line indicates the selected section to estimate the altitude profile. (b) Altitude profile of the selected region of the Kepler crater.

TABLE IV
ABSOLUTE

altitude error (m) between the High resolution ground truth elevation map
(HR) and its super-resolved and downsampled counterparts (SR,LR).

Lunar Avg. Error Max Error Avg. Error Max Error
6.2727 (HR-SR) (HR-SR) (HR-LR) (HR-LR)

Kepler Crater 0.6006 12.4150 3.1290 12.8857
Vitello Scarp 1 3.2819 12.4248 6.2727 14.4853

altitude values close to the ground truth and its same resolution
in each selected region. This map enhancement process was
performed in a Future Tech’s Digital Workstation powered by
an NVIDIA’s RTX Quadro 5000.

IV. CONCLUSIONS

We have presented a novel application of state-of-the-
art single image super-resolution and uncertainty estimation
for lunar satellite images. We used Generative Adversarial
Networks to double the resolution of images from NASA’s
Lunar Reconnaissance Orbiter satellite from 1 m/pixel to 0.5
m/pixel. By using a deep ensemble of these networks, we
were additionally able to provide uncertainty estimation of the

super-resolved images. Our quantitative and qualitative results
show that our method outperforms all baseline approaches.
We also evaluated the performance of our method on three
lunar exploration related tasks, a) surface obstacle detection, b)
lunar path planning and c) Digital Elevation Maps generation
enhancement. The performance of the application in these
tasks showcase how SR can enable enhanced mission planning
with the lunar remote sensing data gathered up until now. It
is worth noting that even if the upscaling process is enabling
more accurate lunar data processing, the enhanced data should
be always handled carefully as there might be missing infor-
mation worth considering in the mission planning.

The majority of all upcoming lunar missions will be focused
on the lunar south pole, which is generally covered by low
resolution imagery due to illumination limitations. Our work is
the first step in the direction of improving this data, providing
an enhanced data products for future exploration missions.
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Abstract

The Moon is an archive of the history of the Solar System, as it has recorded and
preserved physical events that have occurred over billions of years. NASA’s Lunar
Reconnaissance Orbiter (LRO) has been studying the lunar surface for more than
13 years, and its datasets contain valuable information about the evolution of the
Moon. However, the vast amount and heterogeneous nature of data collected by
LRO make the extraction of scientific insights very challenging - in the past most
analyses relied on human review. Here, we present NEPHTHYS, an automated
solution for discovering thermophysical changes on the surface using one of LRO’s
largest datasets: the thermal data collected by its Diviner instrument. Specifically,
NEPHTHYS is able to perform systematic, efficient, and large-scale change detec-
tion of present-day impact craters on the surface. Further work could enable more
comprehensive studies of lunar surface impact flux rates and surface evolution
rates, providing critical new information for future missions.

1 Introduction

The nature, magnitude, and frequency of present-day changes of the lunar surface are of key impor-
tance to understand and reconstruct the Moon’s and the Solar System’s history, to analyze the surface
evolution of airless planetary bodies and to identify potential environmental hazards for future robotic
and crewed For the Moon, the most extensive datasets that allow for the study of the surface are
provided by NASA’s Lunar Reconnaissance Orbiter (LRO) mission, which has been operating since
2009. Two of LRO’s most important instruments are its NAC (Narrow Angle Camera, Robinson
et al. (2010)), which acquires high-resolution (∼0.5 m footprint) optical images, and Diviner (Paige
et al. (2010)), which acquires intermediate-resolution (∼200 m footprint) point measurements of the
surface temperature.

∗Equal contribution

Machine Learning and the Physical Sciences workshop, NeurIPS 2022.



Despite the abundance of these global datasets with long temporal baselines, our knowledge about
present-day changes is limited. Past work has been able to identify a small number (≲ 1000) of
such changes - predominantly fresh, small impact craters ( Speyerer et al. (2016), Watters et al.
(2022), Williams et al. (2018)), but has faced three major challenges: 1) the massive size of the
existing datasets (hundreds of terabytes) which makes human mapping impossible, 2) highly variable
illumination conditions, and 3) complex noise in the dataset which makes faint and small change
signals hard to detect. For example, the most extensive change detection study so far (Speyerer et al.
(2016)) relied on the matching of multi-temporal optical NAC images acquired at similar local times,
which limited their spatial coverage to only 6.6% of the lunar surface.

To overcome such limitations, we turn to machine learning to provide more automated, scalable
and efficient change detection, which accurately detects low signal-to-noise events. In particular,
we focus on detecting thermophysical changes within the Diviner dataset; such changes are usually
caused by physical events such as small impacts but can have significant spatial thermal expressions
and remain visible for hundreds of thousands of years (Williams et al. (2018)). Specifically, we
focus on detecting fresh impact craters and their surrounding ejecta blankets, which have different
night-time cooling properties than the regular lunar surface, producing so-called cold spots (Williams
et al. (2018)) (Fig. 1). Fresh impact craters are believed to represent the largest source of lunar
surface change.

We introduce NEPHTHYS (New Event Perceiving High-Trust High-Yield System), which searches
for cold spots by using two different neural networks (a CNN-based binary classifier and a normalizing
flow based anomaly detector) to analyse preprocessed thermal images constructed from the Diviner
thermal point measurements. The output of the networks includes a detection confidence level to
increase their reliability. Our workflow is validated by scanning areas with known fresh impacts and
then verifying candidates by hand using NAC optical images (Williams et al. (2018)).

Figure 1: An example of impact detection with NEPHTHYS. Left: thermal Diviner mosaic (showing
average night temperature) of a scanned region (280x280 km): orange and blue dots indicate potential
candidates for fresh craters found by the binary classifier and anomaly detector, respectively. Green
dot inside the bounding box indicates a known recent impact, the target of the search. Validation of
the detection: (A),(B) our preprocessed thermal image before and after the impact, (C),(D) NAC
optical image before and after the impact.

2 Methodology

Our high-level detection workflow consists of two main steps. First, we carry out preprocessing of the
raw Diviner point measurements (See Appendix A for a detailed description of the Diviner dataset).
Specifically, given an area of interest on the surface, we bin and aggregate the point measurements
into two images, representing a before and after image of the surface temperature spanning the entire
operational window of the instrument (Fig. 2). Secondly, we feed these images into two different
detection networks, which independently predict whether an impact has occurred by searching for
an associated cold spot in the images. Finally, these networks can be scanned over the entire lunar
surface to provide an efficient and large-scale detection method.
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2.1 Data Preprocessing Workflow

Following Moseley et al. (2020), we first sort and store all of the available Diviner point measurements
into three-dimensional “data cubes”, indexed by location (in 0.5° latitude and 0.5° longitude intervals)
and local time (6-hour intervals), for computational retrieval efficiency. We then produce one before
and one after image for each region of interest: before images are populated using the oldest available
Diviner measurements over the respective location; after images are populated using the most recent
Diviner observations over the respective location. Importantly, we currently only use night time
point measurements acquired between 22:00 and 06:00 local time to avoid the complex changes in
temperature associated with daytime illumination. All data over 2009-2022 is used. Populating the
before and after images consists of two steps: a) Data normalization and b) Binning and aggregation.
Gaussian smoothing is also required as third step before creating a difference image, used as the input
of one of our ML solutions (Section 2.3).

Figure 2: Data preprocessing workflow used by NEPHTHYS.

In Fig. 2 we show a raw temperature image (after Data cubes download). We note that heterogeneous
stripes of different temperatures can be observed. This is because some point measurements are
taken at an earlier local time (within the 22:00 - 06:00 window used) when the surface has not cooled
down completely (brighter color). The darker regions instead correspond to measurements taken at
a later local time. To fix this issue, we normalize the measurements to a reference time (precisely,
00:00 local lunar time) computed using Hayne’s model (Hayne et al. (2017)), which simulates the
background temperature variation with local time for a given latitude on the Moon. After this step,
we obtain a more uniform image (Fig. 2, after Local time normalization).

In order to produce before and after images from the normalized point measurements, we need
to go through the second preprocessing step: Binning and aggregation. For each image, we bin
all the available point measurements onto 100 × 100 m grids. To create a before image we take
the measurements from the earliest year available in each bin and for the after image, we take the
measurements from the most recent year. Lastly we average the selected measurements in each bin to
get the final image pairs. To create a difference image, we subtract the after image from the before
image. We note that Diviner’s pointing accuracy includes slight errors, occasionally resulting in a
spatial misalignment of measurements, resulting in spatial noise in the difference images. Gaussian
filtering (Chung (2020)) is employed to smooth out this noise after the binning step in both images.
The last two pairs of images in Fig 2 show the effect of the Gaussian filtering.

2.2 Binary Classification

A straightforward solution to detect the presence of a fresh cold spot by analyzing the before and
after images separately is to check for the presence of a cold spot in both - if the before image does
not contain a cold spot but the after image does, then there was a recent change. We note there is a
difference between old cold spots and fresh cold spots: the former refers to impacts that occurred
before 2009 (the year the LRO diviner mission launched); the latter refers to impacts that happened
after 2009 - those are actual present-day changes.

We use a Deep Neural Network (DNN) (He et al. (2016)) as a binary classifier to determine whether
an image contains a cold spot or not. Our training data is a catalog of ∼ 2000 known, old cold spots as
positive samples (taken from Williams et al. (2018)) and ∼ 2000 random points as negative samples
taken over the entire lunar surface. We can safely use random points as negative samples given that
the probability of picking a point with an old or fresh cold spot is negligibly small (Williams et al.
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(2018)). The trained classifier can be deployed on the entire lunar surface: for each point we produce
the before and after images, use the model to classify both, and evaluate for changes.

2.3 Anomaly Detection

Ideally, if there were no changes, the before and after images of the same location should be identical.
However, minor measurement localization inaccuracies add noise (background noise). This is the
reason why applying simple thresholding techniques on the difference images is often challenging for
change detection. As an alternative approach, we propose to formulate the problem as an anomaly
detection task (Hendrycks et al. (2018), Yang et al. (2021)), shown in Fig. 3. Given a difference
image, we want to assess whether the image lies within the distribution of difference images where
no fresh cold spots are present. Our solution is based on DifferNet Rudolph et al. (2021), a recent
approach in which a Normalizing Flow (NF) Rezende and Mohamed (2015) is applied to the features
extracted from a DNN to compute such an anomaly score.

Figure 3: Overview of the architecture used for anomaly detection Rudolph et al. (2021)

Let XT be the set of training data composed of the difference images of locations without fresh
cold spots (the 2000 random locations used for the BC). For each xi ∈ XT , let ti be the features
extracted from the DNN in Fig. 3, and let zi be the features extracted from the NF. Following Rudolph
et al. (2021), we maximize the likelihood of the extracted features t which are quantifiable in the
latent space Z. After a change-of-variables and the use of the negative log-likelihood (Rudolph et al.
(2021)) obtain the following loss function to train the NF:

L(ti) =
∥zi∥2
2

− log

∣∣∣∣ det
∂z

∂t

∣∣∣∣ (1)

Intuitively, we want that NF maps t as close as possible to z = 0 for all of the training examples.
During evaluation we can compute the anomaly score through the negative log-likelihoods for each
test sample xj ∈ Xeval :

τ(xj) = E[− log pZ(zj)] (2)

An image is classified as anomalous if the anomaly score is above some threshold value, Θ.

3 Results and validation

To evaluate the quantitative performance of our binary classifier, we consider a validation set made of
400 images (half positive, half negative): it is able to achieve about 95% of accuracy on them. For
the anomaly detector we consider the known fresh cold spots (enhanced with augmented versions of
them) and random points: it assigns a score 4-times higher on average for the difference images that
contain a cold spot on them. A downstream task for the validation of our approach can be seen in
Fig. 1. Here we chose an area of 10x10 degrees in latitude and longitude that contains one known
fresh impact that occurred in 2013 (Williams et al. (2018)). The two detectors identify a number of
fresh cold spot candidates (orange dots: binary classifier, blue dots: anomaly detector). Importantly,
both approaches were able to find the target of the experiment, the known recent impact (green
dot). We repeated the same experiment for 4 additional sites with a-priori known fresh impacts:
NEPHTHYS was able to consistently find every known fresh impact. Unfortunately, the locations of
most existing known fresh impacts have not been made publicly available by LROC, and only these 5
were available from the Diviner team (Williams et al. (2018)) and recognizable in Diviner data.
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4 Conclusion, limitations and future steps

We have implemented NEPHTHYS: an ML-based approach to detect present-day thermophysical
changes on the lunar surface. A pre-processing pipeline was implemented to convert point mea-
surements from the Diviner instrument into images suitable for ML-driven change detection. Two
independent ML solutions were developed, which were able to efficiently scan a region of the Moon
and produce a list of potential surface changes. Verifying the detected sites was one of the biggest
limitations of our approach due to the lack of known impacts and significant human effort required to
check the candidates with NAC imagery. In future work, we would like to submit target acquisition
requests to the LROC team to further verify NEPHTHYS’ candidates. We would also like to assess
whether NEPHTHYS can detect other thermophysical changes, such as moonquakes and landslides.
Newly discovered surface changes will provide key insights into the history of the Moon and the
Solar System and contribute essential information to the planning of upcoming lunar missions.
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5 Broader impact

The main goal of our work is enabling planetary science researchers to process and analyze NASA’s
Lunar Reconnaissance Orbiter (LRO) data in an automated manner. We believe that our work could
have a great impact in the society. Helping in having successful lunar missions, our work contributes
to the exploration of the universe whose goal is also to find other planets suitable for life. Considering
the climate change and all the other problems that our planet is facing, a backup plan becomes urgent.
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Appendix

A LRO Diviner dataset

The LRO Diviner instrument (Paige et al. (2010)) is a passive radiometer on board NASA’s LRO
satellite which has been gathering point measurements of the lunar surface temperature along the
ground track of the satellite over the past 13 years. Measurements are collected across nine different
wavelength channels from optical to thermal wavelengths. Over multiple orbits, LRO Diviner has
covered the entire surface of the Moon, providing multiple measurements at each surface location
taken over the full range of local times (noon over midnight to noon). All collected data points are
publicly available on NASA’s PDS 2. We use a processed version of the raw Diviner data that was
pointing-corrected and calibrated (Level 1), specifically including channels 7, 8, and 9 (covering 12.5
to 200 µm), provided by the Diviner team (Paige et al. (2010)).

B Implementation details

Binary Classification. We build our approach over a standard ResNet-18 (He et al. (2016)) pretrained
on ImageNet (Russakovsky et al. (2015)). We train our model for 2000 epochs using batch size 32,
learning rate 0.001 and Adam optimizer. We use the standard cross-entropy loss to finetune only the
last block of the network keeping the rest frozen with the ImageNet weights. As data preprocessing
we first resize the images to 256, then we crop every image into 50x50 crops covering with 121
windows the entire image. Lastly, we resize every crop to 224 and feed the images into the network.

Anomaly Detection. We used as feature extractor AlexNet (Krizhevsky et al. (2017)) followed by
the Normalizing Flow block as proposed in DifferNet (Rudolph et al. (2021)). We update the weights
only for the Normalizing Flow block keeping the rest frozen with the ImageNet pretrained weights.
We first resize the images to 448 and then crop the image to four 224 sub images with no overlap,
then resize each sub image to 448. Considering the performances on the validation set, we set the
threshold value Θ to 0.8.

For the training of both of the architectures described in the previous section, a NVIDIA Tesla
V100 was used. The lightweight nature of the networks used made it possible to run multiple
iterations of the training for optimization purposes in a short amount of time. For inference, a similar
hardware setup will make it possible to scan specified lunar surface regions with the change detection
algorithms.

2https://pds-geosciences.wustl.edu/missions/lro/diviner.htm
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V Conclusions

1 Contributions

This thesis presents advancements in the use of machine learning to enhance and pro-

cess lunar data with the goal of improving and extending the available information

for upcoming lunar mission planning. Through the development of Lunar HighRes-

net, a deep learning-based Multi-Frame Super Resolution method, enhancement of im-

ages of the Moon’s surface was done for the first time. The creation and utilization

of two databases, one composed of imagery from NASA’s Lunar Reconnaissance Or-

biter mission and another obtained from a virtual Moon developed in Unreal Engine 4,

were essential to training this network. The performance improvement seen through

the incorporation of these databases in the network’s training demonstrates the value

of data-rich environments for such endeavors. ANUBIS, an innovative application of

Generative Adversarial Networks (GANs) for single image super-resolution and uncer-

tainty estimation of lunar satellite images was also introduced. The application is able

to double the input lunar image resolution while providing uncertainty estimation of

the process. This method outperforms all existing approaches and shows how Super

Resolution can enhance lunar mission planning with current lunar remote sensing data.

Notably, this development provides a pathway to improve the low-resolution imagery

of the lunar south pole, a primary focus area of upcoming lunar missions. Lastly, the

implementation of NEPHTHYS, an ML-based approach for detecting current thermo-

physical changes on the lunar surface, signifies an efficient and valuable tool for lunar

surface monitoring. While verification of detected sites remains a challenge due to the

lack of known impacts and the significant human effort required, the potential of this

approach to contribute essential information to future lunar mission planning is clear.
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Overall, these developments offer substantial contributions to the field of lunar research

and exploration, specifically in the areas of lunar imagery enhancement, precision in lu-

nar robotic mission planning, and the detection of lunar surface changes.

2 Limitations of the work

Despite the promising results demonstrated in this thesis, the path towards fully in-

corporating machine learning techniques into lunar science and future mission plan-

ning involves overcoming a series of challenges. One major limitation is the inherent

complexity of working with lunar data. The raw data collected from lunar missions,

although rich in information, requires a significant amount of preprocessing to make

it suitable for ML applications. This preprocessing step involves various tasks such as

denoising, data normalization, interpolation, and more, which can be time-consuming

and technically challenging. The successful deployment of ML algorithms heavily de-

pends on the quality of the input data, and hence, robust preprocessing mechanisms are

essential. In future work, the development of more efficient preprocessing pipelines or

even automated data cleansing approaches could further streamline this process.

Another key limitation lies in the demand for scientific validity and accuracy in the ma-

chine learning outcomes. While ML can provide insightful and efficient analyses, its

results must be reliable and precise enough to be translated into actionable scientific

conclusions. In other words, the ML models must not only enhance the data resolu-

tion but also preserve the scientific value of the data for it to be useful for upcoming

lunar missions. Hence, the challenge here is striking the right balance between techni-

cal performance and scientific relevance. This is a nontrivial task given that typical ML

performance metrics may not always align with the requirements of scientific validity.

Lastly, the success of this interdisciplinary research heavily depends on the seamless

collaboration between planetary scientists and ML researchers. To ensure the viabil-

ity and usefulness of developed ML applications in this field, researchers from both

domains need to work closely together. This cross-disciplinary collaboration poses its

own set of challenges, primarily rooted in differences in terminologies, methodologies,

and objectives across the two fields. However, such collaborations are also vital to align

the technical capabilities of ML with the scientific goals of lunar research.
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